
foods

Article

Evaluation of Lipid Oxidation, Volatile Compounds and
Vibrational Spectroscopy of Silver Carp (Hypophthalmichthys
molitrix) during Ice Storage as Related to the Quality of Its
Washed Mince

Sasinee Kunyaboon 1, Kanjana Thumanu 2, Jae W. Park 3, Chompoonuch Khongla 4 and
Jirawat Yongsawatdigul 1,*

����������
�������

Citation: Kunyaboon, S.; Thumanu,

K.; Park, J.W.; Khongla, C.;

Yongsawatdigul, J. Evaluation of

Lipid Oxidation, Volatile Compounds

and Vibrational Spectroscopy of

Silver Carp (Hypophthalmichthys

molitrix) during Ice Storage as Related

to the Quality of Its Washed Mince.

Foods 2021, 10, 495. https://

doi.org/10.3390/foods10030495

Academic Editors:

Encarnación Goicoechea and

Ainhoa Ruiz-Aracama

Received: 22 January 2021

Accepted: 20 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology,
Nakhon Ratchasima 30000, Thailand; sasinee2011@gmail.com

2 Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand;
kanjanat@slri.or.th

3 Seafood Lab and Department of Food Science and Technology, Oregon State University,
2001 Marine Drive #253, Astoria, OR 97103, USA; jae.park@oregonstate.edu

4 Department of Applied Biology, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology
Isan, Nakhon Ratchasima 30000, Thailand; chompoonuch.2840@gmail.com

* Correspondence: jirawat@sut.ac.th; Tel.: +6644-224359; Fax: +6644-224387

Abstract: Changes in the lipid oxidation of silver carp (Hypophthalmichthys molitrix) stored in ice
for 14 days and that of its respective washed mince were evaluated. Total lipid, phospholipid,
polyunsaturated fatty acid (PUFA) and monounsaturated fatty acid (MUFA) contents of the skin,
belly flap and mince decreased as the storage time in ice increased. The washing process decreased
the lipid contents but concentrated their phospholipid counterparts. The fish belly flap exhibited
the highest thio-barbituric acid reactive substances (TBARS) value, while the mince had the lowest.
1-Hexanol, 1-octen-3-ol, and 1-hexanal were key volatile compounds detected in the belly flaps of
fish stored for 7–14 days. Hexanal was the only major volatile compound found in washed mince
prepared from fish stored for an extended period in ice, but in a much lower amount compared with
that in the belly flap. FTIR (Fourier transform infra-red) spectra revealed a decrease in the number of
cis double bonds, methylene groups and phosphate groups in lipids extracted from fish stored in
ice for 7–14 days as compared with those extracted from fresh fish. Principle component analysis
(PCA) revealed that the FT-Raman band at 1747 cm−1 could be a potential marker for tracking the
degree of lipid oxidation in the belly flap of silver carp stored in ice. In addition, IR bands indicating
phosphate group (925, 825 cm−1) in oil extracted from washed mince were correlated with the extent
of the lipid oxidation of the raw material.

Keywords: silver carp; washed mince; FTIR; FT-Raman; lipid oxidation; volatile compounds

1. Introduction

Silver carp (Hypophthalmichthys molitrix) is an important freshwater fish species with
global production of 4,704,673 tons in 2017 [1]. At the industry level, silver carp has proven
useful as a potential raw material for surimi production, providing good gel-forming ability
with exceptional white color [2,3]. In tropical surimi production, whole fish are typically
kept in ice before being processed. It is well recognized that various parts of the fish body
contain different lipid contents, leading to varied degree of lipid oxidation during ice
storage. Lipid oxidation is known to produce undesirable flavors and oxidized products
that induce protein oxidation. This ultimately leads to a deterioration in the texture and
sensory characteristics of surimi. Fish freshness quality has been extensively studied with
regard to nucleotide degradation and changes in protein conformation. However, changes
in the lipid oxidation of silver carp during ice storage have not been well characterized.
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Many methods have been applied to evaluate lipid oxidation in fish and surimi,
including (1) measuring changes in oxidative substrates, such as fatty acids, total lipid
and phospholipid contents; and (2) assessing the quantity of primary and secondary
products of oxidation. The thio-barbituric acid reactive substances (TBARS) level, which is
a widely used lipid oxidation indicator, has some limitations. Malondialdehyde (MDA)
is only one of many possible secondary oxidation products formed [4]. In addition, other
compounds that do not result from the oxidation process can contribute to TBARS levels [5].
Recently, the evaluation of volatile compounds has become an additional indicator of lipid
oxidation in fish and surimi samples [6]. In addition, Fourier transform infrared (FT-IR)
and FT-Raman spectroscopy are techniques that can be used to monitor oxidative changes.
FT-Raman spectroscopy was used to monitor lipid oxidation in hake fillets during frozen
storage [7] and in beef during repeated freeze-thaw cycles [8]. Vibrational spectroscopy can
provide additional insightful information at the molecular level. Therefore, the objective
of this study was to evaluate the lipid oxidation of various parts of silver carp stored
in ice for 14 days. In addition, the lipid oxidation of washed mince prepared from fish
stored in ice for various periods was analyzed. Changes in volatile compounds were also
investigated. Vibrational spectroscopic techniques, namely FTIR and FT-Raman, were also
applied to monitor the lipid oxidation of oil extracted from raw materials stored in ice for up
to 14 days.

2. Materials and Methods
2.1. Sample Preparation

Live silver carp (Hypophthalmichthys molitrix) weighing 1.0–1.5 kg were transported
from the Khon Kaen Inland Fisheries Research and Development Center to a laboratory
at Suranaree University of Technology within 4 h. Upon arrival, fish were stunned by an
accurate blow to the head, with regard to animal welfare law, and immediately packed in
polystyrene foam boxes filled with ice, with a fish-to-ice ratio of approximately 1:2. The
polystyrene foam boxes were kept in a cold room (4 ◦C) for 14 days. Ice was added every
2 days. At 0, 7 and 14 days of storage, fish were randomly selected and washed with tap
water (27 ◦C). Fish skin and belly flap were manually separated and collected. Fish flesh
was minced using a grinder with a 5-mm perforation plate. Fish mince was washed three
times with potable water (<5 ◦C) at a mince/water ratio of 1:3. The third washing cycles
were carried out using the same volume of 0.3% NaCl solution. Centrifugation was carried
out at 5000× g for 15 min at 4 ◦C at each washing step. Any floating matter, including
muscle tissue and fats, was manually removed after centrifugation. Fish skin, belly flap
and unwashed and washed mince in a total of 36 samples were vacuum packed and kept
at −80 ◦C and used within 1 week.

2.2. Analysis of Lipid and Fatty Acids

Total lipid content was analyzed according to the Folch method [9] with slight modifi-
cations. Each ground sample (30 g) was homogenized with 180 mL of a chloroform and
methanol solution (2:1) for 1 min and centrifuged at 2000× g, 4 ◦C, for 10 min. The solution
was then filtered through Whatman No. 1 filter paper into a separatory funnel. Chloroform
(60 mL), deionized water (60 mL) and 0.58% NaCl (10 mL) were then added and thoroughly
mixed. After phase separation, the lower layer of the chloroform phase was collected,
and anhydrous sodium sulfate was added to remove water. The chloroform phase was
then filtered through Whatman No.1 filter paper. The chloroform was evaporated under
nitrogen. The extracted lipid was determined gravimetrically and total lipid was expressed
as g/100 g dry weight. Some portions of the extracted oil were kept at −80 ◦C before
further analysis of phospholipid, fatty acid profile and FTIR and FT-Raman spectra.

Phospholipid content was estimated as described by Eymard et al. [10]. Extracted
lipid was dissolved in chloroform (0.25 mg/mL). Then, 2 mL of solution was mixed with
1 mL of thiocyanate reagent (0.10 M ferric chloride hexahydrate and 0.40 M ammonium
thiocyanate). The mixture was centrifuged at 750× g, 4 ◦C, for 10 min. The red lower layer
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was collected for absorbance measurement at 488 nm. Phosphatidylcholine (PC) at various
concentrations, ranging from 0 to 0.1 mg/mL, was used as a standard. Phospholipid
content was expressed as g PC/100 g dry sample.

Fatty acid composition and quantification was evaluated using gas chromatography
(GC) according to the Association of Official Analytical Chemists (AOAC) method [11].
Methylation of fatty acid was performed as follows. Extracted lipid (25 mg) was weighted
in a 10-mL screw cap tube, and 1.5 mL of 0.5 M NaOH in methanol was added. The mixture
was flushed with nitrogen gas for 30 s and heated at 85 ◦C for 2 min. Subsequently, 1 mL
of internal standard (C17 fatty acid) and 2 mL 14% boron trifluoride (BF3) in methanol
was added. The mixture was flushed with nitrogen gas and reheated again at 85 ◦C for
30 min and mixed with 1 mL of isooctane. Subsequently, 5 mL of saturated NaCl solution
was added to separate isooctane phase from the methanol and water phase. The mixture
was reextracted with isooctane, and the isooctane phase was collected until 5 mL of the
extraction was obtained. The isooctane phase containing fatty acid methyl esters (FAME)
was filtered through a 0.45 µm syringe filter before GC analysis.

GC (7890A, Agilent technologies, Santa Clara, CA, USA) equipped with a flame
ionization detector (FID) and an SP2560 capillary column (100 m × 0.20 µm film thick-
ness × 0.25 mm internal diameter, Supelco Co., Ltd., Bellefonete, PA, USA) was used for
FAME analysis. The carrier gas was helium with a flow rate of 1.0 mL/min. The tem-
perature of the injection port and detector were maintained at 250 ◦C. Identification and
quantification of fatty acids were performed using external standards (Supelco 37 FAME,
Sigma–Aldrich Co., St.Louis, MO, USA) at concentrations ranging from 0 to 10 mg/mL
and was expressed as mg/g dry sample.

2.3. Heme Iron Content

Heme iron content was determined according to the method of Clark et al. [12]. Two
grams of ground sample were added to 20 mL of acid–acetone mixture (40 mL of acetone,
9 mL of water and 1 mL of concentrated hydrochloric acid). The mixture was homogenized
at 10,000 rpm for 30 s. Then, 20 mL of the acid-acetone mixture was added again, and the
mixture was kept in the dark for 1 h. The mixture was centrifuged at 2200× g for 10 min.
The supernatant was collected and filtered through Whatman No.1, and the absorbance
was measured at 640 nm. The concentration of total pigments in the sample (µg hematin/g
sample) was calculated by multiplying the absorbance by a factor of 6800 and then dividing
by the sample weight. The iron content was calculated using a factor of 0.0882 µg iron/µg
hematin. The heme iron content was expressed as mg/100 g sample [13].

2.4. Thiobarbituric Acid Reactive Substances (TBARS)

TBARS values were determined according to Reitznerová [4]. Two grams of sam-
ple were homogenized with 7.5% trichloroacetic acid (TCA) for 30 s and centrifuged at
10,000× g, 4 ◦C, for 10 min. The homogenate was filtered through Whatman no. 1 filter
paper. The supernatant (2 mL) was mixed with 2 mL of 0.02 M TBA solution. The sample
was heated at 95 ◦C for 20 min and cooled in ice or at room temperature for 10 min. The
absorbance was measured at 532 nm. 1,1,3,3-Tetraethyloxypropane (TEP) was used as a
standard. The TBARS value was expressed as ng of malonaldehyde/kg dry sample.

2.5. Determination of Volatile Compounds

Volatile compounds were detected by head space solid-phase microextraction gas
chromatography-mass spectrometry (SPME/GC-MS). The SPME fiber was coated with
carboxen–divinylbenzene–polydimethylsiloxane (CAR/DVB/PDMS) (Supelco, Bellefonte,
PA, USA). One gram of ground sample was placed in a 20 mL round bottom vial and then
mixed with 3 mL of deionized water, 0.7 g of NaCl, 10 µL of 7.2% butylated hydroxytoluene
(BHT) in 70% ethanol and 30 µL of 100 ppm cyclohexanol as an internal standard. The
vial was sealed with polytetrafluoroethylene (PTFE)/silicone septa (Agilent, Santa Clara,
CA, USA). The mixture was equilibrated at 60 ◦C for 10 min. Volatile compounds were
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then analyzed on a 450-GC coupled to a 320-MS Quadrupole mass spectrometer (Bruker
Daltonics, Billerica, MA, USA). The GC oven temperature program started at 3 ◦C for
5 min, followed by heating at 3 ◦C/min to 70 ◦C, then heating at 10 ◦C/min to 200 ◦C,
and then heating at 20 ◦C/min to 260 ◦C, and this temperature was maintained for 5 min.
Helium was employed as the carrier gas in the linear flow control mode with a constant
column flow of 1.0 mL/min. The quadrupole mass spectrometer was operated in the
electron impact (EI) mode, and the source temperature was set at 70 eV and 200 ◦C. Volatile
compounds were identified by searching MS library and using Kovats indices (RI).

2.6. Vibrational Spectroscopy

FT-Raman spectroscopy was performed on a Bruker RAM II FT-Raman module cou-
pled to a Bruker Vertex 70v interferometer (Bruker Co., Ettlingen, Germany). The excitation
source was an Nd:YAG laser at 1064 nm with 500 mW of laser power. The scattered
radiation was collected from the range between 4000 and 400 cm−1 with a resolution of
4 cm−1 and 256 scans. Extracted lipid samples were placed in a stainless steel cup inserted
in a sample holder and monitored via video camera. A Ge detector used liquid nitrogen
as the coolant. Instrument control and spectral acquisition were performed using OPUS
7.2 (Bruker Optics Ltd., Ettlingen, Germany). At least 12 Raman spectra per sample were
collected, averaged and normalized using the OPUS program, version 7.2. The integrated
intensity of the second derivative (13-point smoothing) was then computed to distinguish
the overlapped peaks. The result was expressed as the relative integrated intensity. FT-IR
spectroscopy with a single reflection attenuated total reflectance (ATR) sampling module,
coupled with MCT detector and cooled with liquid nitrogen (Bruker Tensor 27, Bruker
Optics Ltd., Ettlingen, Germany), was also used to collected IR spectra. Extracted lipid
(20 µL) was placed in contact with a horizontal ATR plate. IR spectra were obtained from
an interval of 4000–600 cm−1 at a 4 cm−1 spectral resolution with 64 scans. At least 30
spectra were collected from each sample, and they were analyzed with the OPUS 7.2
program. Spectra were taken from three replications and then averaged. Normalization
and the second derivative were carried out. The results were expressed as the relative integ-
rated intensity.

2.7. Statistical Analyses

Statistical analyses were performed using SPSS 17.0 software (SPSS Inc, Chicago, IL,
USA). Statistical evaluation was conducted using one-way analysis of variance (ANOVA).
Comparison of means within each tissue at various storage time was carried out by Dun-
can’s new multiple range tests. The significance of difference was defined at 95% confidence
interval (p < 0.05). Principal component analysis (PCA) of all measured parameters were
performed on means results using the XLSTAT software (Addinsoft, New York, NY, USA).

3. Results and Discussion
3.1. Changes in Lipids

The highest lipid content was found in the belly flap (33.9–40.6%), followed by muscle
(9.0–11.5%), and skin (7.0–8.8%) (Table 1). Lipids in fish are typically located in subcuta-
neous tissue, belly flap, muscle, mesentery, liver and head [14]. Moradi et al. [15] reviewed
that the lipid content in the skin of lean fish ranged from 0.2–3.9% (wet basis), while that
of fatty fish could be higher than 50% (wet basis). In contrast, lipid content in fish muscle
ranged from <2% in lean fish to >8% in fatty fish [15], which was equivalent to 10% and
40% (dry basis), respectively. Thilakarathne and Attygalle [16] reported that the highest
lipid content (6.52% wet basis) in Indo-Pacific sailfish (Istiophorus platypterus) was in the
skin, followed by the belly flap, which contained 3.91%. Distribution of lipids in fish body
appeared to vary with species. The study demonstrated that lipids are primarily located
at the belly flap in silver carp. Among various parts of the studied raw material, muscle
tissues contained the highest phospholipid content, which is an important component
of membranes.
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Table 1. Chemical composition changes of silver carp during iced storage for 14 days and their respective thrice-washed mince (dry basis).

Storage
Time (Days)

Skin Belly Mince Washed Mince

0 7 14 0 7 14 0 7 14 0 7 14

Total lipid
(g/100 g) 8.78 ± 0.34 a 8.12 ± 0.55 a 7.07 ± 0.60 b 40.52 ± 1.86 a 38.60 ± 1.98 a 33.86 ± 2.74 b 11.45 ± 0.15 a 10.74 ± 0.33 b 9.00 ± 0.14 c 6.40 ± 0.52 6.29 ± 0.85 5.83 ± 0.56

Phospholipid
(g PC/100 g) 0.52 ± 0.08 0.51 ± 0.09 0.47 ± 0.12 1.15 ± 0.18 1.10 ± 0.21 0.99 ± 0.22 1.67 ± 0.27 a 1.38 ± 0.17 b 1.19 ± 0.20 b 2.49 ± 0.23 2.35 ± 0.41 2.17 ± 0.36

Thiobarbituric
acid reactive
substances
(TBARS)

(ng of malon-
dialdehyde
(MDA)/kg)

0.69 ± 0.05 b 0.83 ± 0.11 ab 0.94 ± 0.06 a 2.08 ± 0.10 c 10.12 ± 0.90 b 12.51 ± 0.21 a 0.59 ± 0.03 c 0.70 ± 0.02 b 0.86 ± 0.06 a 0.77 ± 0.08 b 0.96 ± 0.05 a 1.06 ± 0.05 a

Heme iron
(mg/100 g) 0.092 ± 0.01 0.090 ± 0.01 0.071 ± 0.01 0.176 ± 0.02 0.155 ± 0.04 0.156 ± 0.05 0.772 ± 0.08 a 0.590 ± 0.03 b 0.294 ± 0.05 c 0.193 ± 0.04 a 0.118 ± 0.03 b 0.102 ± 0.02 b

a,b,c Different letters within each tissue are significantly different (p < 0.05). n = 3.
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The lowest phospholipid content was found in the skin, which is composed of sub-
cutaneous tissues that mainly contain fat cells composed of triacylglycerols. Aursand
et al. [17] reported lower contents of phospholipid in belly flap and higher proportion of
neutral lipid. When washing was performed, 35–45% of lipids were removed (Table 1).
Tongnuanchan et al. [18] reported that the lipid content of washed red tilapia mince de-
creased by 14.4%, in comparison with that found in unwashed mince. The removed fat
was mainly triacylglycerols, which were clearly separated and appeared as floating fats
after centrifugation. However, the phospholipid content of washed mince was increased
when compared with unwashed mince, regardless of storage time (Table 1). Membrane
lipids bind to membrane proteins, making it difficult to remove them by washing [19].
Myo-fibillar proteins remained in the washed mince along with membrane lipids. Eymard
et al. [10] also reported that washing horse mackerel led to a greater reduction in neutral
lipids as compared with polar lipids.

Total lipid content of all tissues from raw materials decreased during ice storage
(p < 0.5, Table 1), but those of washed mince were comparable (p > 0.05). A decrease
in lipid content during ice storage was likely to be due to the degradation of lipid by
endogenous lipases and/or lipid oxidation. Chaijan et al. [20] reported that, during ice
storage, triacyl-glycerols in sardine (Sardinella gibbosa) muscle decreased, while free fatty
acid, diglycerol and mono-glycerol contents increased. This suggested that triacyl-glycerols
were hydrolysed into free fatty acids. The phospholipid content of all samples tended to
decrease with storage time, particularly in the muscle (p < 0.05, Table 1). This indicated
oxidation of membrane lipids during ice storage.

The belly flap contained the highest saturated fatty acid (SFA), monounsaturated
fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) contents, while washed mince
contained the lowest (p < 0.05, Table 2). These results are in agreement with the total lipid
content (Table 1). The predominant SFA and MUFA in all samples were palmitic acid
(C16:0) and oleic acid (C18:1n9c). The major polyunsaturated fatty acid (PUFA) in the skin
and belly flap was linolenic acid (C18:3n3). The main PUFA in unwashed and washed
mince was docosahexaenoic acid (DHA, C22:6n3). These results suggested that unwashed
and washed mince from silver carp contained PUFA, which is prone to lipid oxidation.
MUFA and PUFA contents of all samples decreased with a concomitant increase in SFA
after raw materials were stored in ice for 14 days. The reduction of MUFA and PUFA was
probably due to lipid oxidation during ice storage. The increase in SFA was likely to be
due to the degradation of MUFA and PUFA, which, in turn, increased the proportion of
SFA [21]. These results are in agreement with Chaijan et al. [20], who reported that MUFA
and PUFA contents in 15 days ice stored sardine (Sardinella gibbosa) muscle decreased by
9.7% and 8.1%, respectively, whereas SFA content increased by 2.3%. Šimat et al. [22] also
reported that PUFA in farm-affected wild bogues (Boops boops, Linnaeus, 1758) was reduced
over a storage period of 16 days in ice.

3.2. Heme Iron Content

Heme iron is an important catalyst of lipid oxidation. The heme iron content in
muscle was significantly decreased in fish stored in ice for an extended period and in the
corresponding washed mince (Table 1). This might be due to the breakdown of the heme
iron complex, induced by oxidative cleavage of the porphyrin ring during ice storage.
Thiansilakul et al. [23] also reported that the heme iron content of seabass (Lates calcarifer)
and red tilapia (Oreochromis mossambicus and O. iloticus) muscles decreased after 15 days
in ice storage. The authors suggested that the disruption of heme protein and release of
heme iron occurred during ice storage. Rezaei and Hosseini [24] found that heme content
in whole rainbow trout (Oncorhynchus mykiss) also decreased with 20 days of ice storage,
which was due to the release of free iron from heme. The heme iron content in washed
mince was lower than that of unwashed mince (Table 1). The washing process removed
water-soluble heme proteins, leading to less heme iron in the washed mince.
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3.3. TBARS Value

The TBARS value of the different fish tissues increased with ice storage time (p < 0.05, Table 1).
The belly flap was found to have the highest TBARS value, as it contained the highest amount of
total lipid (p < 0.05, Table 1) and polyunsaturated fatty acids (Table 2). Moreover, various enzymes,
including lipoxygenase, peroxidase and microsomal enzymes in viscera [25], could potentially
promote lipid oxidation in the belly flap. Although heme iron content in unwashed mince was
higher than that in washed mince, the TBARS value was slightly lower (Table 1). Washed mince
contained higher phospholipids content with a higher proportion of PUFA, and thus it tended
to be more susceptible to lipid oxidation despite the lower amount of the catalyst, heme iron.
Addeen et al. [26] reported that a higher TBARS in washed chicken mince was plausibly due
to the presence of membrane lipids and the removal of natural antioxidants in muscle, such as
carnosine, anserine, glutathione, and polyamines, which are water-soluble compounds. Hoke
et al. [27] also reported that the TBARS of washed mince increased during the first three months
of frozen storage. In surimi and/or washed mince processing, lipid oxidation has not been as well
studied as protein denaturation. However, our results suggested that lipid oxidation of washed
mince produced from fish stored in ice for an extend period occurred to a greater extent than that
produced from fresh fish. In addition, washed mince is prone to lipid oxidation, as it contains a
higher proportion of membrane lipids and PUFA.

3.4. Volatile Compounds

Volatile compounds, including alcohols, aldehydes and ketones, increased in the
different tissues of silver carp during ice storage (Table 3). Several volatile compounds
that are markers of lipid oxidation were prevalent in fish belly. These included alcohols
(1-pentanol, 1-hexanol, 1-octen-3-ol, 1, -heptanol, 1-octanol) and aldehydes (hexanal, oc-
tanal, nonanal, 2-octenal), which are degradation products of peroxides. 1-Pentanol and
1-octen-3-ol are derived from the oxidation of linoleic acid. Iglesias et al. [28] reported that
1-octen-3-ol is an important volatile contributing to off-flavor, due to its low odor thresh-
old. 1-Heptanol, 1-octanol, 1-hexanol, nonanal and (E)-2-octenal are likely degradation
products of oleic acid [29]. 2,3-Octanedione is derived from the lipid oxidation of ω-6 fatty
acids [30]. Hexanal is a secondary product from the oxidation of linoleic acid, typically
used as a lipid oxidation marker in fish [5]. On day 14, hexanol and 1-octen-3-ol were
detected at their highest level in the fish belly (Table 3). This is related to the oxidation
of fatty acids, oleic acid and linoleic acid, respectively, which are abundant in the belly
flap (Table 2). 1-Hexanol and 1-octen-3-ol could be used as lipid oxidation markers of belly
flap of silver carp.

In skin, 1-hexanol, 1-octen-3-ol, 1-octanol and nonanal increased during the ice storage
of slver carp. These compounds are derived from oxidation of oleic acid and linoleic acid,
which were also found to be abundant in silver carp skin (Table 3). After 14 days of storage,
1-octen-3-ol and nonanal were predominant volatile compounds, and nonanal was found
to be the highest in all tissues. Therefore, 1-octen-3-ol and nonanal could be considered
lipid oxidation markers of silver carp skin.



Foods 2021, 10, 495 8 of 16

Table 2. Fatty acid contents of various tissues of silver carp during ice storage and their respective washed mince (mg/g
dry sample).

Fatty
Acids

Skin Belly Mince Washed Mince

D0 D7 D14 D0 D7 D14 D0 D7 D14 D0 D7 D14

C10:0 0.20 0.25 0.27 1.15 1.21 1.17 0.15 0.14 0.34 0.10 0.09 0.09
C12:0 0.08 0.10 0.08 0.50 0.52 0.60 0.05 0.03 0.08 0.03 0.03 0.04
C13:0 0.04 0.07 0.05 0.32 0.39 0.43 0.03 0.04 0.06 0.00 0.02 0.03
C14:0 1.30 2.06 1.59 9.55 11.28 12.08 0.92 1.17 2.04 0.56 0.65 1.20
C15:0 0.29 0.39 0.29 0.88 0.87 0.93 0.37 0.32 0.74 0.23 0.28 0.44
C16:0 8.16 8.53 10.90 58.59 63.75 65.59 7.87 8.37 10.63 6.00 6.33 10.51
C18:0 1.49 2.20 1.90 10.74 11.71 11.94 1.86 1.61 3.36 1.18 1.19 1.31
C20:0 0.14 0.28 0.15 0.89 0.90 1.09 0.11 0.11 0.23 0.08 0.08 0.16
C21:0 0.02 0.02 0.04 0.18 0.25 0.31 0.00 0.02 0.10 0.00 0.02 0.03
C22:0 0.00 0.04 0.00 0.08 0.05 0.05 0.00 0.03 0.12 0.00 0.02 0.03
C23:0 0.00 0.00 0.03 0.07 0.20 0.22 0.00 0.00 0.00 0.00 0.00 0.00
C24:0 0.86 0.95 0.90 4.26 2.52 2.52 2.43 2.30 2.43 2.03 1.82 2.29
C14:1 0.64 0.73 0.38 3.66 4.30 3.35 0.21 0.14 0.03 0.03 0.02 0.02
C16:1 3.77 3.33 3.43 24.09 24.56 23.19 2.49 2.13 2.16 1.60 1.66 1.54
C17:1 0.74 0.64 0.58 3.72 3.48 4.11 0.48 0.40 0.41 0.34 0.32 0.39

C18:1n9t 0.28 0.06 0.17 1.08 1.59 1.41 0.16 0.14 0.14 0.12 0.11 0.12
C18:1n9c 15.13 14.14 10.01 85.16 70.87 67.39 7.12 6.46 6.22 4.93 4.44 3.95

C20:1 0.92 1.56 0.87 5.38 4.72 6.21 0.58 0.57 0.60 0.38 0.33 0.59
C22:1n9 0.07 0.04 0.03 0.16 0.25 0.26 0.03 0.03 0.03 0.02 0.02 0.02
C18:2n6t 0.15 0.10 0.12 1.20 1.20 1.15 0.06 0.06 0.04 0.04 0.05 0.09
C18:2n6c 2.80 1.80 2.17 13.12 16.74 15.15 1.91 1.68 1.74 1.61 1.22 1.18
C18:3n6 0.29 0.10 0.19 1.04 1.59 1.45 0.15 0.12 0.13 0.13 0.12 0.19
C18:3n3 3.80 2.38 2.92 24.74 23.65 22.61 2.18 1.90 2.02 1.57 1.45 1.04

C20:2 0.35 0.23 0.25 1.42 2.02 1.91 0.24 0.20 0.21 0.21 0.18 0.15
C20:3n6 0.81 0.38 0.58 2.38 2.71 2.52 0.75 0.63 0.59 0.65 0.54 0.54
C20:3n3 0.45 0.36 0.42 2.74 2.90 2.63 0.35 0.31 0.34 0.24 0.29 0.41
C20:4n6 1.15 1.41 0.91 5.20 5.05 5.54 1.82 1.42 1.45 1.64 1.57 1.53

C22:2 0.98 0.00 0.00 4.48 4.30 4.37 0.00 0.00 0.00 0.00 0.00 0.00
C20:5n3 1.02 0.00 0.00 6.40 5.71 5.20 0.97 0.95 0.58 1.25 1.18 1.17
C22:6n3 1.90 2.63 1.39 13.88 9.83 9.70 3.47 2.66 2.58 3.07 2.39 2.34
Saturated

fatty
acid

(SFA)

12.58 ±
1.05 b

14.89 ±
0.92 ab

16.20 ±
0.94 a

87.20 ±
1.89 b

93.65 ±
2.25 ab

96.93 ±
2.53 a

13.78 ±
0.98 b

14.14 ±
1.23 b

20.13 ±
0.62 a

10.21 ±
0.53 b

10.55 ±
0.67 b

16.11
±

1.08 a

Monounsaturated
fatty
acid

(MUFA)

21.55 ±
0.93 a

21.49 ±
0.85 a

15.47 ±
0.84 b

123.25
± 2.91 a

109.77
± 1.58 b

105.93
± 2.82 b

11.09 ±
0.31 a

9.87 ±
0.57 ab

9.59 ±
0.41 b

7.42 ±
0.69

6.91 ±
0.76

6.62
±

0.26

Polyunsaturated
fatty
acid

(PUFA)

13.70 ±
0.92 a

9.39 ±
0.83 b

8.97 ±
0.70 b

76.59 ±
1.18 a

75.70 ±
1.09 ab

72.23 ±
1.41 b

11.91 ±
0.32 a

9.94 ±
0.29 b

9.69 ±
0.34 b

10.41 ±
0.45 a

8.99 ±
0.39 b

8.64
±

0.46 b

a,b Different letters within each tissue are significantly different (p < 0.05). n = 3.

1-Hexanol, 1-octen-3-ol, nonanal and 2,3-octanedione were found to increase in mince
during ice storage (Table 3). 1-Hexanol was likely to be derived from the degradation
products of oleic acid, which was the most abundant fatty acid in mince (Table 2). Several
ketones have been identified in dry-cured fish and regarded as a sign of fish spoilage [31].
Lower levels of volatile compound were detected in washed mince samples. This indicated
that washing can efficiently remove volatile compounds that cause off-odor. Only low
levels of hexanal were detected in washed mince prepared from aged fish (14 days ice
storage). Hexanal have also been found to be a predominant aldehyde in commercial silver
carp surimi [32]. Differences in volatile compounds from the different tissues of silver carp
are mainly due to variations in lipid content and fatty acid composition. The belly flap
of silver carp is susceptible to lipid oxidation, generating volatile compounds, especially
1-hexanol and 1-octene-3-ol and hexanal, which likely contribute to off-odor in fish stored
in ice for an extended period.
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Table 3. Relative signal intensities of volatile compounds of various part tissue of silver carp during ice storage and their respective washed mince.

RI Compounds
Skin Belly Mince Washed Mince

D0 D7 D14 D0 D7 D14 D0 D7 D14 D0 D7 D14

Alcohols

1256 1-pentanol 0.014 ±
0.004 a

0.022 ±
0.005 a N.D. 0.057 ±

0.014 b
0.259 ±
0.052 a

0.190 ±
0.064 a

0.019 ±
0.009

0.025 ±
0.005

0.056 ±
0.034 N.D. N.D. N.D.

1360 1-hexanol 0.040 ±
0.012 b

0.174 ±
0.047 a

0.198 ±
0.027 a

0.491 ±
0.259 b

1.642 ±
0.065 a

1.432 ±
0.055 a

0.199 ±
0.154 b

0.319 ±
0.049 ab

0.524 ±
0.039 a

0.039 ±
0.010

0.050 ±
0.017

0.053 ±
0.017

1456 1-octen-3-ol 0.029 ±
0.017 c

0.225 ±
0.004 b

0.285 ±
0.012 a

0.131 ±
0.059 b

0.926 ±
0.119 a

1.107 ±
0.520 a

0.048 ±
0.006 b

0.099 ±
0.013 ab

0.175 ±
0.073 a

0.041 ±
0.013

0.052 ±
0.028

0.048 ±
0.022

1460 1-heptanol 0.018 ±
0.001 b

0.095 ±
0.031 a

0.065 ±
0.015 ab

0.049 ±
0.031 b

0.162 ±
0.010 a

0.175 ±
0.042 a

0.020 ±
0.008 b

0.029 ±
0.003 b

0.064 ±
0.009 a

0.012 ±
0.007

0.016 ±
0.002

0.018 ±
0.001

1488 1,5-octadien-3-ol,
(Z)- N.D. N.D. N.D. N.D. 0.171 ±

0.022 a
0.279 ±
0.139 a N.D. N.D. N.D. N.D. N.D. N.D.

1492 2-Ethyl-1-hexanol 0.062 ±
0.015 ab

0.073 ±
0.020 a

0.033 ±
0.014 b

0.388 ±
0.232

0.354 ±
0.0353

0.396 ±
0.068 N.D. 0.111 ±

0.049 a
0.042 ±
0.035 b

0.230 ±
0.039 a

0.037 ±
0.015 b N.D.

1562 1-octanol 0.038 ±
0.009 b

0.153 ±
0.029 a

0.101 ±
0.023 a

0.018 ±
0.013 b

0.073 ±
0.004 a

0.068 ±
0.028 a N.D. 0.028 ±

0.015 a
0.021 ±
0.006 a

0.007 ±
0.001 a

0.003 ±
0.001 b

0.006 ±
0.001 a

1621 2-octenol 0.007 ±
0.002 b

0.031 ±
0.002 a

0.025 ±
0.011 a

0.021 ±
0.004

0.048 ±
0.008

0.087 ±
0.012 N.D. N.D. N.D. N.D. N.D. N.D.

1665 1-nonanol 0.024 ±
0.008 b

0.149 ±
0.035 a

0.091 ±
0.034 ab

0.041 ±
0.003

0.371 ±
0.005

0.027 ±
0.011 N.D. N.D. N.D. N.D. N.D. N.D.

1689 2-octyn-1-ol N.D. 0.039 ±
0.003 a

0.014 ±
0.002 b N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

1777 2-ethyl-1-hexanol N.D. N.D. N.D. N.D. 0.044 ±
0.004

0.041 ±
0.003 N.D. N.D. N.D. N.D. N.D. N.D.

1842 3-octen-1-ol, (E)- N.D. N.D. N.D. N.D. 0.053 ±
0.010

0.064 ±
0.007 N.D. N.D. N.D. N.D. N.D. N.D.

Aldehydes

1081 hexanal 0.019 ±
0.024

0.029 ±
0.007

0.027 ±
0.003

0.087 ±
0.034 b

0.144 ±
0.054 b

0.440 ±
0.135 a N.D. N.D. N.D. 0.014 ±

0.012 b
0.033 ±
0.005 b

0.055 ±
0.005 a

1281 octanal N.D. 0.070 ±
0.009 a

0.026 ±
0.004 b N.D. 0.027 ±

0.001 b
0.061 ±
0.018 a N.D. N.D. N.D. N.D. N.D. N.D.

1392 nonanal 0.032 ±
0.008 c

0.161 ±
0.036 b

0.242 ±
0.029 a

0.041 ±
0.008 b

0.063 ±
0.007 b

0.102 ±
0.017 a

0.022 ±
0.007 b

0.039 ±
0.003 ab

0.064 ±
0.014 a

0.013 ±
0.012

0.019 ±
0.003

0.020 ±
0.008

1430 2-octenal, (E)- N.D. N.D. N.D. N.D. 0.035 ±
0.006 b

0.073 ±
0.010 a N.D. N.D. N.D. N.D. N.D. N.D.

Ketones

1320 2,3-octanedione N.D. 0.023 ±
0.002 b

0.035 ±
0.007 a

0.049 ±
0.003 b

0.234 ±
0.053 a

0.291 ±
0.089 a N.D. 0.037 ±

0.008 b
0.142 ±
0.028 a N.D. N.D. N.D.

1576 3,5-octadien-2-one,
(E,E)- N.D. N.D. N.D. N.D. N.D. 0.024 ±

0.003 N.D. N.D. N.D. N.D. N.D. N.D.

N.D. = not detected. a,b,c Different letters within each tissue are significantly different (p < 0.05). n = 3.
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3.5. FT—Raman Spectroscopy

Changes in the selected FT-Raman wavenumbers of extracted lipid from the different
tissues of silver carp during ice storage and in its corresponding washed mince are shown
in Table 4. A decrease in the Raman band at 3015 cm−1 was observed in spectra from
belly flap and unwashed and washed mince during ice storage. In addition, a decrease
in the Raman band at 1267 cm−1 was observed from the analysis of the belly flap and
mince during ice storage of raw material. A decrease in the two Raman bands at 3015 and
1267 cm−1 corresponds to cis =CH stretching and =CH symmetric rock cis double bond
vibration, respectively, which indicated a reduction in unsaturated fatty acids during ice
storage. Our results suggested that the Raman intensity of the cis-olefinic group =C-H
stretching vibration at the 3015 cm−1 band and the =CH symmetric rock cis double bond
at 1267 cm−1 can be used to monitor the oxidation of the extracted lipids. A decrease in
the Raman bands of methylene groups (2935 cm−1 CH2 asymmetric, 2850 cm−1 symmetric
stretching, 1438 cm−1 the CH2 deformation and 1301 cm−1 CH2 in-phase twisting) was
also observed in lipids extracted from washed mince (Table 4, p < 0.05). An increase in
the band at 1747 cm−1 was found in all samples during ice storage, corresponding to
the ν(C=O) stretching of peroxides. Thus, the Raman band at 1747 cm−1 can be used to
monitor the progress of the oxidation of lipids extracted from different tissues of silver
carp. Another strong band at 1658 cm−1 corresponding to the cis double bond (C=C)
stretching motion appeared to decrease in the spectra of the belly flap and mince during
ice storage of raw material. This was likely due to the loss of conjugated double bonds,
which was concomitant with a decrease in MUFA and PUFA (Table 2). Our results are in
agreement with Chen et al. [8] who found that the Raman band at 1655 cm−1, assigned
to ν(C=C), decreased after repeated freeze-thaw of beef. They suggested that the oxi-
dation reduced the total unsaturation of lipid, resulting in a decrease in the C=C band.
Our study demonstrates that Raman spectroscopy can be potentially used to follow the
progress of lipid oxidation of silver carp during ice storage, as well as that of the respective
washed mince.

3.6. FTIR

Changes in the distinct FTIR bands of lipid extracted from the different tissues of
silver carp during ice storage and those extracted from washed mince prepared from fish
at various ice storage time are shown in Table 5. A decrease in the peak areas at 3013 cm−1,
corresponding to cis =C-H stretching, was observed in all samples (p < 0.05). The band
observed at 3012 cm−1 is related to the stretching vibration of cis olefinic =C–H double
bonds [33,34]. A continuous decrease in this band with extended storage time indicated
the loss of cis double bonds. This also corresponded to changes in the Raman band at
3015 cm−1 (Table 4). Volpe et al. [35] reported an increase in the FTIR band at 3011 cm−1 in
trout fillets stored at 4 ◦C for up to 12 days. It should be noted that the changes in FTIR
bands at 3011–3015 cm−1 of extracted lipid in this study had trends the differed from those
detected in fish flesh in situ [35]. Fish flesh is composed of other components, including
proteins, glycogen and nucleotides, which could interact to some extent with lipids and/or
peroxides during storage. On the other hands, extracted lipid fractions contain only lipids,
fatty acids and some degradation products of lipid oxidation. FTIR measurement of the
extracted lipids can better reflect the extent of lipid oxidation than measuring samples from
the flesh of whole fish. Changes in methylene groups at 2922 and 2853 cm−1, representing
asymmetric and symmetric stretching vibrations of methylene (−CH2) and methyl (−CH3)
group, respectively [33,36], were rather subtle. In addition, the FTIR band at 721 cm−1,
representing the bending vibrations of –(CH2) n–, HC=CH– (cis) groups [33,37], were
comparable in all samples. The band at 722 cm−1 was also assigned to the out-of-plane
bending of a cis-disubstituted group. Lipids extracted from silver carp stored for an
extended period tended to produce lower values at 722 cm−1, suggesting the loss of cis
double bonds and isomerization to a trans configuration, which commonly occurred in
lipid oxidation. Changes observed in all methylene groups (2924, 2853, 722 cm−1) reflect
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structural changes in fatty acids induced by lipid oxidation, particularly lipids extracted
from washed mince, which showed a decrease in Σ methylene groups as storage time of
raw material in ice increased (p < 0.05, Table 5). Our results indicated that silver carp stored
in ice for an extended period of time exhibited a higher degree of lipid oxidation. When
these raw materials were used to prepare washed mince, the resulting product contained
higher oxidized lipids content, even after extensive washing (3 cycles). These changes can
be monitored using either FTIR or FT-Raman spectroscopy, which is a rapid technique
that requires fewer chemicals when compared with the classical peroxide/TBARS analysis.
Carbonyl compounds are indicated by the wavenumber at 1744 cm−1, which is related to
the stretching vibration of triglyceride ester carbonyl (C=O) [37,38]. An increase in the band
intensity at 1745 cm−1 was observed in all samples during ice storage (p < 0.05, Table 5).
Volpe et al. [35] reported that the FTIR band at 1743 cm−1 was associated with peroxidation
of fatty acids, which increased over time during the storage of trout fillets. Thus, an
increase in the FTIR band intensity at 1745 cm−1 implied the formation of peroxides
and/or secondary oxidation products. This was concomitant with an increase in TBARS
value during the ice storage of all samples (Table 1).

An increase in the IR band 970 cm−1, implying an increase in −HC=CH-isolated
trans double bonds, was observed in lipids extracted from belly flap of 14 days iced fish.
In addition, lipid extracted from washed mince had higher level of trans fat than those
extracted from unwashed mince (p < 0.05), suggesting a greater extent of lipid oxidation in
the former. The higher content of phospholipids in washed mince and the washing process,
in which agitation with the incorporation of air is continually applied, could be important
factors that contribute to higher lipid oxidation of washed mince.

In the skin and belly, the phospholipids observed at 925 cm−1 and 825 cm−1, cor-
responding to P-O-C symmetric and asymmetric stretching, respectively, appeared to
undergo subtle changes with increasing storage time (p > 0.05, Table 5). However, these IR
bands decreased in mince stored in ice for an extended period and in the respective washed
minces. These FT-IR results are well correlated with phospholipid content analyzed using
the colorimetric method (Table 1). This implied that oxidation of phospholipid induced
by autooxidation and/or by the action of phospholipase took place during the ice storage
of fish. It should be mentioned that phosphate groups were not detected in FT-Raman
spectra. Therefore, the FT-IR and FT-Raman techniques can complement each other to
reveal information about both polar and nonpolar moieties in lipids.

3.7. Principal Component Analysis (PCA)

The first two components of PCA explained 74.23% of the variation (Figure 1). The skin,
belly flap and unwashed and washed mince are clearly separated in different quadrants
(Figure 1). The belly flap was characterized by high levels of lipid, TBARS and volatile
compounds, particularly 1-octen-3-ol and 1-heptanol, which increased with storage time.
Oil extracted from the belly flap was characterized by a Raman band at 1747 cm−1, the
summation of methylene group detected by Raman spectroscopy (Raman ∑methylene),
and an IR band at 1745 cm−1. The intensity of these spectra increased with the storage
time of the raw material. Thus, these bands could be used as markers of lipid oxidation in
the belly flap, along with 1-octen-3-ol and 1-heptanol as volatile markers. Mince samples
are located in the PCA quadrant opposite to the belly flap, indicating lower contents of fat
and volatile compounds. It should be noted that the effect of storage time on the measured
parameters is not as well correlated for mince as it is for the belly flap. Our study suggests
that the belly flap should be a target tissue for monitoring the extent of the lipid oxidation
of silver carp during ice storage. For washed mince sample, phospholipid content is a
distinct characteristic, while IR bands that indicate phosphate group (925, 825 cm−1) are
notable in the oil extracted from washed mince (Figure 1). This could be a potential marker
to indicate the degree of lipid oxidation in the washed mince, which correlated with the
freshness quality of raw material stored in ice.
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Table 4. Relative integrated intensity of selected regions of Raman spectra of lipids extracted from various tissues of silver carp during ice storage and their respective washed minces.

Wavenumber
(cm−1)

Band As-
signment

Skin Belly Mince Washed Mince

D0 D7 D14 D0 D7 D14 D0 D7 D14 D0 D7 D14

3015
cis-olefinic
group =CH
stretching

7.374 ± 0.14 7.260 ± 0.11 7.279 ± 0.06 7.763 ± 0.30
a

7.525 ± 0.22
b

7.151 ± 0.18
c

8.463 ± 0.11
a

8.098 ± 0.23
ab

7.964 ± 0.23
b

9.187 ± 0.14
a

9.044 ± 0.10
ab

8.840 ± 0.10
b

∑methylene groups (2935,
2850,1438, 1301)

56.450 ±
0.51

56.003 ±
0.21

55.856 ±
0.79

55.157 ±
0.45

54.306 ±
0.84

54.133 ±
0.31

54.496 ±
0.41

53.930 ±
0.53

53.546 ±
0.64

51.845 ±
0.34 a

50.632 ±
0.50 b

50.645 ±
0.79 b

2935 νas CH2 9.805 9.827 9.783 9.545 9.510 9.401 9.538 9.543 9.422 9.753 9.579 9.560
2850 νs CH2 32.890 32.591 32.487 31.604 31.140 31.398 31.717 31.504 31.306 29.675 28.614 28.648
1438 δ(CH2) 9.380 9.227 9.229 9.461 9.073 8.931 8.856 8.666 8.676 8.468 8.501 8.504

1301
t CH2

in-phase
twisting

4.375 4.358 4.357 4.547 4.583 4.403 4.384 4.217 4.143 3.949 3.938 3.933

1747
ν(C=O)

carbonyl
compounds

1.421 ± 0.01
b

1.526 ± 0.07
ab

1.576 ± 0.03
a

1.519 ± 0.04
b

1.575 ± 0.14
b

1.606 ± 0.07
a

1.255 ± 0.12
b

1.455 ± 0.03
a

1.449 ± 0.04
a

0.991 ± 0.04
b

1.078 ± 0.09
ab

1.152 ± 0.04
a

1658

ν(C=C)
conjugated

double
bonds

11.119 ±
0.52

11.175 ±
0.60

10.901 ±
0.29

11.606 ±
0.41 a

11.210 ±
0.11 ab

10.739 ±
0.07 b

11.790 ±
0.38 a

11.287 ±
0.07 ab

10.994 ±
0.12 b

11.853 ±
0.22

11.874 ±
0.28

11.725 ±
0.11

1267
δ(=CH)

symmetric
rock (cis)

2.541 ± 0.10 2.517 ± 0.23 2.497 ± 0.19 3.503 ± 07 a 3.231 ± 0.09
ab

3.051 ± 0.17
b

3.549 ± 0.02
a

3.346 ± 0.08
ab

3.072 ± 0.04
b 3.895 ± 0.09 3.867 ± 0.07 3.701 ± 0.07

Abbreviation: s, symmetric; vs, asymmetric; ν, stretch; δ, deformation; r, rock; a,b,c Different letters within the same row of each treatment are significantly different (p < 0.05).

Table 5. Relative integrated intensity of selected regions of Fournier transforms infra-red (FT-IR) spectra of extracted lipid samples from various tissues of silver carp during ice storage
and their respective washed minces.

Wavenumber
(cm−1)

Band As-
signment

Skin Belly Mince Washed Mince

D0 D7 D14 D0 D7 D14 D0 D7 D14 D0 D7 D14

3013
Olefinic
ν(=C-H)

(cis)

2.685 ± 0.10
a

2.538 ± 0.04
ab

2.508 ± 0.10
b

2.980 ± 0.12
a

2.743 ± 0.15
ab

2.635 ± 0.09
b

3.203 ± 0.12
a

3.035 ± 0.35
a

2.895 ± 0.31
a

3.558 ± 0.20
a

3.243 ± 0.17
ab

2.913 ± 0.22
b

∑methylene groups (2924,
2853, 722)

32.507 ±
0.57

32.057 ±
0.56

32.065 ±
0.79

32.636 ±
0.23

32.141 ±
0.24

32.201 ±
0.42

32.516 ±
0.40

32.665 ±
0.76

31.583 ±
0.90

31.453 ±
0.51 a

30.818 ±
0.39 ab

29.991 ±
0.96 b
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Table 5. Cont.

Wavenumber
(cm−1)

Band As-
signment

Skin Belly Mince Washed Mince

D0 D7 D14 D0 D7 D14 D0 D7 D14 D0 D7 D14

∑methylene groups (2924,
2853, 722)

32.507 ±
0.57

32.057 ±
0.56

32.065 ±
0.79

32.636 ±
0.23

32.141 ±
0.24

32.201 ±
0.42

32.516 ±
0.40

32.665 ±
0.76

31.583 ±
0.90

31.453 ±
0.51 a

30.818 ±
0.39 ab

29.991 ±
0.96 b

2924 νas(CH2) 15.472 15.146 15.301 16.093 15.672 15.777 15.587 15.483 15.209 14.966 15.091 14.640
2853 νs(CH2) 12.019 11.968 11.745 12.038 12.000 12.322 11.457 12.221 11.457 11.294 11.217 11.002

722 -(CH2)-
rocking 5.017 4.943 5.020 4.504 4.469 4.101 5.472 4.961 4.917 5.193 4.510 4.349

1745 Ester
ν(C=O)

27.268 ±
0.11 c

27.712 ±
0.11 b

28.103 ±
0.05 a

23.014 ±
0.23 b

25.175 ±
0.86 ab

25.455 ±
0.85 a

23.292 ±
1.21 b

24.068 ±
1.01 ab

25.685 ±
1.16 a

21.069 ±
0.32 b

21.687 ±
0.26 ab

22.029 ±
0.11 a

970

-HC=CH-
(trans)

isolated
double
bonds

0.735 ± 0.04 0.755 ± 0.07 0.728 ± 0.09 1.693 ± 0.08
b

1.827 ± 0.12
b

2.188 ± 0.11
a 2.074 ± 0.23 2.345 ± 0.13 2.396 ± 0.21 4.105 ± 0.19 4.111 ± 0.22 4.605 ± 0.19

∑phosphate (925, 825) 1.104 ± 0.05 1.169 ± 0.08 1.128 ± 0.17 2.050 ± 0.35 1.866 ± 0.13 1.883 ± 0.23 1.598 ± 0.05
a

1.453 ± 0.04
b

1.458 ± 0.04
b

3.815 ± 0.12
a

3.203 ± 0.09
b

2.962 ± 0.13
b

925 νs(P-O-C) 0.717 0.889 0.605 1.326 1.213 1.282 1.296 1.183 1.171 1.957 1.934 1.947
825 νas(P-O-C) 0.386 0.280 1.047 0.724 0.653 0.601 0.302 0.270 0.287 1.858 1.269 1.014

Abbreviation: s, symmetric; vs, asymmetric; ν, stretch; δ, deformation; r, rock. a,b,c Different letters within each tissue are significantly different (p < 0.05).
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Figure 1. Correlation loading plot (a) and score plot (b) of principal component analysis describing measured quality
parameters, namely volatile compounds, fatty acid profiles, lipid oxidation indicators and band intensity obtained from
FT-IR and FT-Raman spectroscopy of skin (S), belly flap (B), and mince (M) of silver carp stored in ice for various times 0, 7
and 14 days and washed mince (Wm) prepared from fish stored in ice for 0, 7, and 14 days.

4. Conclusions

Lipid oxidation of silver carp varied among the different body parts of fish. The belly
flap of silver carp was the most susceptible part to lipid oxidation during prolonged ice
storage. Fatty acids in all parts decreased as the ice storage time was extended. 1-Hexanol
and 1-octen-3-ol were key volatile compounds detected in the belly of silver carp, and
they increased with storage time. Washing can efficiently remove volatile compounds
that cause off-odor. FTIR and FT-Raman spectroscopy revealed changes of cis double
bonds, methylene groups, phosphate groups and ester bonds and the formation of trans
isomerized fatty acids of lipids extracted from different parts of silver carp at various
storage time. The Raman band at 1747 cm−1 could serve as a potential marker to indicate
the extent of the lipid oxidation of oil extracted from the belly. The IR band at 925,
825 cm−1 could be used to monitor the extent of the lipid oxidation of washed mince,
which is well correlated with the freshness quality of the raw material. To maintain the
quality of silver carp mince and its respective washed mince, the fish belly should be
removed before ice storage and before the mechanical deboning process.
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meat and meat products: A comparison study of malondialdehyde determination between modified 2-thiobarbituric acid
spectrophotometric method and reverse-phase high-performance liquid chromatography. Molecules 2017, 22, 1988. [CrossRef]

5. Giménez, B.; Gómez-Guillén, M.C.; Pérez-Mateos, M.; Montero, P.; Márquez-Ruiz, G. Evaluation of lipid oxidation in horse
mackerel patties covered with borage-containing film during frozen storage. Food Chem. 2011, 124, 1393–1403. [CrossRef]

6. Iglesias, J.; Medina, I. Solid-phase microextraction method for the determination of volatile compounds associated to oxidation of
fish muscle. J. Chromatogr. A 2008, 1192, 9–16. [CrossRef]

7. Sánchez-Alonso, I.; Carmona, P.; Careche, M. Vibrational spectroscopic analysis of hake (Merluccius merluccius L.) lipids during
frozen storage. Food Chem. 2012, 132, 160–167. [CrossRef] [PubMed]

8. Chen, Q.; Xie, Y.; Xi, J.; Guo, Y.; Qian, H.; Cheng, Y.; Chen, Y.; Yao, W. Characterization of lipid oxidation process of beef during
repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy. Food Chem. 2018, 243, 58–64. [CrossRef]

9. Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol.
Chem. 1957, 226, 497–509. [CrossRef]

10. Eymard, S.; Carcouët, E.; Rochet, M.J.; Dumay, J.; Chopin, C.; Genot, C. Development of lipid oxidation during manufacturing of
horse mackerel surimi. J. Sci. Food Agric. 2005, 85, 1750–1756. [CrossRef]

11. Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists,
18th ed.; AOAC: Arlington, VA, USA, 2005.

12. Clark, E.M.; Mahoney, A.W.; Carpenter, C.E. Heme and total iron in ready-to-eat chicken. J. Agric. Food Chem. 1997, 45, 124–126.
[CrossRef]

13. Lombardi-Boccia, G.; Martínez-Domínguez, B.; Aguzzia, A.; Rincón-León, F. Optimization of heme iron analysis in raw and
cooked red meat. Food Chem. 2002, 78, 505–510. [CrossRef]

14. Ackman, R. Seafood lipids. In Seafoods: Chemistry, Processing Technology and Quality; Shahidi, F., Botta, J.R., Eds.; Springer: Boston,
MA, USA, 1994; pp. 34–48.

15. Moradi, Y.; Bakar, J.; Motalebi, A.; Syed Muhamad, S.; Che Man, Y. A review on fish lipid: Composition and changes during
cooking methods. J. Aquat. Food Prod. Technol. 2011, 20, 379–390. [CrossRef]

16. Thilakarathne, L.; Attygalle, M. Lipid composition of skin and muscle of the Indo-Pacific sailfish, Istiophorus platypterus. Vidyodaya
J. Sci. 2009, 14, 161–166.

17. Aursand, M.; Bleivik, B.; Rainuzzo, J.R.; Leif, J.; Mohr, V. Lipid distribution and composition of commercially farmed Atlantic
salmon (Salmosalar). J. Sci. Food Agric. 1994, 64, 239–248. [CrossRef]

18. Tongnuanchan, P.; Benjakul, S.; Prodpran, T.; Songtipya, P. Characteristics of film based on protein isolate from red tilapia muscle
with negligible yellow discoloration. Int. J. Biol. Macromol. 2011, 48, 758–767. [CrossRef]

19. Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in
meat and meat products. Antioxidants 2020, 8, 429. [CrossRef]

20. Chaijan, M.; Benjakul, S.; Visessanguan, W.; Faustman, C. Changes of lipids in sardine (Sardinella gibbosa) muscle during iced
storage. Food Chem. 2006, 99, 83–91. [CrossRef]

21. Chávez-Mendoza, C.; García-Macías, J.A.; Alarcón-Rojo, A.D.; Ortega-Gutiérrez, J.Á.; Holguín-Licón, C.; Corral-Flores, G.
Comparison of fatty acid content of fresh and frozen fillets of rainbow trout (Oncorhynchus mykiss) Walbaum. Braz. Arch. Biol.
Technol. 2014, 57, 103–109. [CrossRef]
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