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Abstract: Styrylquinolines are heterocyclic compounds that are known for their antifungal and
antimicrobial activity. Metal complexation through hydroxyl groups has been claimed to be a
plausible mechanism of action for these types of compounds. A series of novel structures with
protected hydroxyl groups have been designed and synthesized to verify the literature data. Their
antifungal activity against wild-type Candida albicans strain and mutants with silenced efflux pumps
activity has been determined. Combinations with fluconazole revealed synergistic interactions that
were dependent on the substitution pattern. These results open a new route for designing active
antifungal agents on a styrylquinoline scaffold.
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1. Introduction

Invasive mycoses are an important public health problem, especially for immunosuppressed
patient. Candida albicans is the one that is most often associated with serious invasive fungal infections,
and it is responsible for 8–10% of the cases with a high mortality rate (30–80% depending on the
patient) [1]. Treatment of fungal infections is markedly limited by the problems of drug safety and
fungal resistance. Among the drugs used in antifungal treatment, echinocandin is used for invasive
candidiasis while voriconazole and isavuconazole are the drugs of choice for aspergillosis. Other drugs
from the conazoles group, like fluconazole (FLC), have rather limited use due to the fact of resistance.
Another drug with a wide spectrum of activity is amphotericin B (AmB). Amphotericin B belongs
to a group of polyene antibiotics that act by forming an oligomeric pore structure within the fungal
plasma membrane by interacting with the membrane sterols. This leads to a flux of cations, membrane
depolarization, and cell death [2]. Amphotericin B can also bind to cholesterol in mammalian cells
and can cause severe cellular toxicity [3,4]. The mode of action of the azole derivatives is based on
inhibiting the ergosterol biosynthesis pathway at different stages [5]. Ergosterol is the major component
of the fungal cell membrane; hence, it is one of the targets for antifungal drugs [6]. However, the
growing resistance of fungi to azoles is a problem. Candida albicans has developed many drug resistance
mechanisms. One example is the overexpression of the drug transporters (e.g., ATP binding cassette
(ABC) pumps—Candida drug resistance (Cdr1p and Cdr2p). This mechanism is not very specific; ABC
transporters have the ability to export many structurally dissimilar compounds, for instance, azoles,
among others [7].
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Our team has been investigating the quinoline derivatives for their biological activity for several
years. For example, anticancer [8,9], antibacterial [10,11] and antifungal [12–14] quinolines have been
described during our research. In general, the idea of small-molecule quinolines that have an antifungal
activity has been known from the works of Gershon [15–18]. At the beginning, compounds that were
described were based on small quinolines that were substituted with halogens and preferably with the
8-hydroxy group (Figure 1(1)). Their activity was non-specific and covered a broad range of fungal
strains. These initial examples were later developed into more sophisticated molecules that had a more
specific mechanism of action.
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For example, several quinolines were found to be inhibitors of the fungal cell wall synthesis
(Figure 1(2)) [19]. They are lytic for microbial cells (Figure 1(3)) [20] including the Candida
strains [21,22] and cause an accumulation of endogenous reactive oxygen species in C. albicans
biofilms (Figure 1(4)) [23].

In this study, we present styrylquinolines (SQLs) that have promising, novel antifungal properties.
Styrylquinolines are interesting lipophilic compounds that were initially obtained as analogues
of allylamines [19], although their spectrum of activity is wider, covering also anticancer [24],
antibacterial [10], and antiviral activity [25,26]. Interestingly, favorable patterns of substitution vary
among these activities. The 8-hydroxyquinoline core prevails in most of those applications but other
positions are more specific and vary among types of activity. For example, for antiviral activity, SQLs
should have electron-donating groups in the styryl part of the molecule and particularly effective
are 3,4-dihydroxyl or alkoxyl groups [25,27]. The contrary is beneficial for anticancer activity where
resonance positions (2-, 4-) in the styryl moiety should be occupied by electron-withdrawing groups such
as cyano or nitro [9]. In antifungal activity, particularly high activities may be achieved by additional
electron-accepting groups in quinoline moiety such as in 5,7-dichloro-8-hydroxyquinoline [10]. This
may be associated with ability to chelate metal ions, that was primarily established as the mechanism
of action of small molecule quinoline antifungal agents [28,29]. Otherwise, the structure–antifungal
activity relationship for substitution in styryl rings is not yet fully explored. According to our previous
works as well as the literature data, the halogen and hydroxyl (but not alkoxyl) substituents at position
C4 seems to be effective [10,30]. Therefore, we decided to investigate whether the free hydroxyl group
is essential for this activity (Figure 2).
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Figure 2. The styrylquinolines (SQLs) that were synthesized in this study.

2. Results

In order to produce all of the combinations of acetyl/hydroxyl derivatives, we used selective
hydrolysis and the modified methods that are typically used for styrylquinoline synthesis as is depicted
in Figure 3.
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Figure 3. Synthesis of the styrylquinolines.

Commercially available 8-hydroxy-2-methylquinoline was reacted with acetic anhydride to
acetylate the hydroxyl group. The resulting 8-acetoxyquinaldine was converted into SQL 4 under
microwave irradiation according to the modified method that was reported for other SQLs [31].
Similarly, 8-hydroxy-2-methylquinoline combined with 4-hydroxybenzaldehyde was refluxed in
an acetic anhydride/acetic acid mixture for 18 h to produce SQL 1. Both hydroxyl groups were
acetylated in this reaction environment. Then, the acetic anhydride was evaporated under a vacuum.
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A pyridine/water mixture was added to the residue and refluxed for 3 h, which resulted in selectively
deacetylated SQL 2, while the hydrolysis of SQL 1 in methanolic K2CO3 produced SQL 3.

2.1. Antifungal Activity

To assess the antifungal activity of the styrylquinolines that were investigated, we determined the
minimal inhibitory concentration (MIC) values for the wild-type C. albicans strain. Furthermore, we
selected single and double cdr∆ mutants (Table 1) in order to gain insight into the chance of resistance.

Table 1. The minimum inhibitory concentration (mg/L) at which 50% of isolates were inhibited (MIC50)
for tested styrylquinoline compounds and amphotericin B (AmB) (n = 3).

Compound WT (Wild Type Strain) cdr1∆ cdr2∆ cdr1∆cdr2∆

SQL1 >138.8 >138.8 >138.8 138.8
SQL2 >122.12 >122.12 >122.12 122.12
SQL 3 26.33 3.29 26.33 3.29
SQL 4 >122.12 >122.12 >122.12 122.12
8HQ 17.42 36.29 17.42 17.42

8HQD 19.10 39.79 19.10 19.10
AmB 0.9241 0.9241 0.9241 0.9241

Fluconazole 18.37 0.490 0.980 0.244

Compounds SQL 4, SQL 1, and SQL 2, which did not have or had one hydroxyl group, had a
rather weak antifungal activity. It is worth noting that the position of the OH/AcO group seemed to
be irrelevant as both of the SQLs that had only one OH group that was unprotected had the same
MIC level as SQL 1 (Table 2). The SQL 3 had a strong antifungal effect, especially on the cdr1∆ strain.
Control compounds 8-hydroxyquinoline and 8-hydroxyquinaldine had a similar or worse effect on the
strains (Table 2).

Table 2. The fractional inhibitory concentration (FIC) values for styrylquinoline compounds (n = 3)
that were tested.

Compound WT (Wild Type Strain) cdr1∆ cdr2∆ cdr1∆cdr2∆

SQL 1 2 1 2 1
SQL 2 2 0.5 2 0.5
SQL 3 0.02 0.02 0.02 0.02
SQL 4 1 0.5 0.5 0.5

The simultaneous applications of two or more compounds is a good strategy against resistant
strains. The synergistic action of the mixtures of drugs can overcome resistance even with apparently
inactive substances [32]. To measure interactions of the SQLs with FLC, we determined the fractional
inhibitory concentration (FIC) for the drugs that were tested separately and in combinations. Next, we
estimated the FIC index for all of the interactions. These indexes can be used to determine interaction
types among two or more drugs that are used simultaneously. In general, FICs below 0.5 can be
considered as synergistic as presented in Section 4.3. We found a synergism between SQL 3 and FLC
against C. albicans (Table 2) but no difference in the FIC between the wild-type strain and the mutants
which indicates a non-specific activity of SQL 3 and FLC to the ABC pumps (Table 2). We found a
four-fold weaker FIC interaction for SQL 2 for the cdr1∆ and cdr1∆cdr2∆ strains than for the rest of
strains. This compound as well as FLC separately were ejected from the Candida cell by the ABC
transporters, but when the cells were treated with a combination of drugs, their export decreased
due to the competitive inhibition of Cdr2p, hence the low FIC for the cdr1∆ and cdr1∆cdr2∆ mutant.
A similar situation was observed in the case of SQL 4 for which the synergy was only apparent in the
strains that had one or both of the transporters deleted—when both of the Cdr pumps were expressed,
they complemented each other’s activity and no synergistic action was observed.



Molecules 2020, 25, 345 5 of 12

2.2. The Rhodamine 6G Efflux Assay

In order to determine whether SQLs influence ABC transporters in C. albicans, we investigated the
activity of the efflux pumps using an R6G assay. All of the compounds were applied at a concentration
that was below their antifungal activity concentration to maintain living cells during the experiment.
The SQL 4 had a weak influence on the R6G leakage from the cells (Figure 4). Despite the high
synergism of SQL 3 with FLC, we did not observe any inhibition of the pumps removing the R6G
from the cells (Figure 4). We also observed differences between the synergisms of SQL 1 and SQL 2
with FLC and their influence on the R6G efflux from the cells (Table 2, Figure 4).
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2.3. The Influence of Styrylquinolines on the Cdr1p Level

The treatment of C. albicans with antifungals and glucose can increase the expression of the ABC
transporters [33,34]. Fluorescent microscopy (Figure 5) showed a stronger signal from the green
fluorescent protein (GFP)-tagged Cdr1p in the cells that had been incubated with SQLs than in the
control without the compounds that were tested. To confirm this observation, we performed Western
blot experiments with crude protein extracts that were obtained from cells that were incubated with
SQLs (Figure 6). The Cdr1p-GFP protein level in these extracts was also higher in the treated cells than
in control.Molecules 2020, 25, x FOR PEER REVIEW 6 of 13 
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Among them, SQL 2 was the most effective inductor of Cdr1p-GFP protein synthesis followed by
SQL 1 and SQL 4. On the other hand, SQL 3 caused reduction in Cdr1p-GFP protein level in the cells.

3. Discussion

Based on our experience with SQLs, we decided to use acetylation as the protection of hydroxyl
groups. Although hydrolysis of acetoxy group may be rapid, it depends on structure and condition [35].
The same can be found in enzyme-dependent hydrolysis as in lipases present in Candida spp. [36].
We found that acetylated styrylquinolines are rather resistant to decomposition in solvent and in
the cell. The same was reported also in mammalian cells during in vitro examination of anticancer
activity [9,37]. Even during prolonged (96 h) incubation, derivatives with hydroxyl groups are more
than ten times active than their acetylated representatives. Moreover, low yield of SQL 2 (15%) can also
be associated with incomplete hydrolysis of SQL 1 in a pyridine/water environment, and problems
with isolation and proper purification of the compound to obtain high purity (multiple crystallization).
An alternative method for obtaining styrylquinolines is synthesis in the microwave field, where the
reaction environment is excess of aldehyde as in the case of SQL 4. The microwave method significantly
reduces the reaction time and resolves the disadvantages associated with the need for hydrolysis.
Unfortunately, it is generally only effective when the aldehyde is a liquid or has a low melting point
as reported elsewhere [31]. Otherwise, this method leads to a mixture of substrates and product
(as in the case of SQL 4, yield 9%), without solving problems with the isolation and purification of
final compounds.

Antifungal activity of styrylquinolines that were synthesized was tested against C. albicans strains
of different expression of Cdr efflux pumps. The observed activities were only partially in agreement
with our other investigations in which the free 8-OH group seems essential for activity. On the other
hand, the 4-OH in the styryl part seemed to have an effect that was similar to the 4-OMe and 4-OEt
substituents regardless of the quinoline part [10,38]. It is widely documented that the -OH group
plays an important role in destroying fungal cells [39–41]. Some compounds that contain the phenolic
groups can reduce ergosterol biosynthesis and damage the cell membrane of C. albicans [42] or bind
to chitin in the cell wall [43]. In this regard, the 8-OH/4-OH derivative expressed some interesting
patterns of activity that are worth of further investigation. The same level of activity of SQL 3 against
mutants without Cdr1p and both pumps (Table 1) indicated its role as a substrate of Cdr1p. Unlike
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other tested compounds, AmB showed an MIC50 at the same concentrations for all strains, suggesting
that it is not a substrate for ABC transporters.

In our previous investigations, we observed different influences on the Cdr1 transporter when
combinations of FLC-beauvericin and diS-C3(3)-beauvericin were applied in which beauvericin was
an inhibitor of the ABC transporters and diS-C3(3) was the substrate for these pumps [44]. Similar
differences in inhibitory activity were observed for curcumin [45], the modulatory effect of which was
restricted to R6G or miconazole, while it had no effect on the efflux of FLC. Larger flat, aromatic and
highly lipophilic compounds, such as styrylquinolines, are known to accumulate in the cell membranes.
To confirm that the cell membrane of C. albicans was not disrupted by SQL 3 and SQL 4, for which the
efflux of rhodamine was higher than the control, the cells that had been treated with styrylquinolines
were stained with non-permeable propidium iodide dye [23,46] and observed under a fluorescent
microscope. SQL 1, SQL 2, SQL 3, and SQL 4 did not show the red staining that is characteristic of
membrane disruption (data not shown). Confirmation of this findings was elaborated by means of
measuring expression level of Cdr1p-GFP in crude extracts. Surprisingly, it appeared that the SQL 3
compound reduced the amount of Cdr1p in the cells (Figure 6). Taking into account all of the data that
were obtained for this compound renders this observation even more interesting. The SQL3 showed
the best antifungal activity of all tested styrylquinolines both alone (Table 1) and in combination with
fluconazole (Table 2). SQL1, SQL2, and SQL4 increased both the level of gene expression and the
amount of Cdr1 in C. albicans cells (Figure 6) which probably contributed to the high resistance of this
fungus to these compounds (Table 1).

To sum up, we designed and synthesized four styrylquinolines in order to verify the hypothesis
of the importance of the hydroxyl groups in the quinoline and phenyl moieties. All of the compounds
were tested against the C. albicans wild type and mutants that had been deprived of one or two
ABC efflux pumps. According to the expectations, the SQL 3 compound with both hydroxyl groups
that were unprotected appeared to be the most active against the tested strains. Its activity pattern
suggested efflux through the Cdr1 pump. All of the compounds that were obtained were also tested in
combination therapy with a known Cdr substrate,FLC. The synergistic interactions and activity were
strongly reliant on the substitution pattern. Additional experiments will enable us to determine novel
inhibitors of the Cdr1p protein.

4. Materials and Methods

4.1. Compounds

(E)-2-[2-(4-acetoxyphenyl)vinyl]-8-acetoxyquinoline (SQL 1). Yield 67%, mp. 157–159 ◦C;
1H-NMR (400 MHz, CDCl3-d) δ 8.15 (dd, J = 8.5, 5.1 Hz, 1H), 7.73–7.60 (m, 5H), 7.55–7.37 (m,
3H), 7.19–7.12 (m, 2H), 2.58 (s, 3H), 2.35 (s, 3H); 13C-NMR (101 MHz, CDCl3-d) δ 169.84, 169.33, 155.65,
150.91, 147.38, 140.94, 136.41, 134.25, 133.71, 131.21, 129.10, 128.60, 128.32, 125.75, 125.54, 121.95, 121.68,
120.19, 21.17, 21.03 [47].

(E)-2-[2-(4-acetoxyphenyl)vinyl]quinolin-8-ol (SQL 2). Yield 15%, mp. 147–149 ◦C; 1H-NMR
(400 MHz, DMSO-d6) δ 9.56 (s, 1H), 8.29 (t, J = 10.8 Hz, 1H), 8.14 (d, J = 16.2 Hz, 1H), 7.83–7.72 (m, 3H),
7.53–7.42 (m, 1H), 7.43–7.33 (m, 2H), 7.22 (t, J = 5.6 Hz, 2H), 7.15–7.05 (m, 1H), 2.30 (s, 3H); 13C-NMR
(126 MHz, DMSO-d6) δ 169.65, 153.79, 153.40, 151.09, 138.61, 137.00, 134.66, 133.83, 128.65, 128.57,
128.17, 127.55, 122.83, 121.46, 118.05, 111.70, 21.36 [9].

(E)-2-[2-(4-hydroxyphenyl)vinyl]quinolin-8-ol (SQL 3). Yield 63%, mp. 156–157 ◦C; 1H-NMR
(400 MHz, DMSO-d6) δ 11.81 (s, 1H), 10.38 (s, 1H), 8.84 (d, J = 8.9 Hz, 1H), 8.42 (d, J = 8.9 Hz, 1H), 8.22
(d, J = 16.2 Hz, 1H), 7.79 (d, J = 16.3 Hz, 1H), 7.67–7.56 (m, 4H), 7.47 (dd, J = 6.1, 2.6 Hz, 1H), 6.95 (d,
J = 8.6 Hz, 2H); 13C-NMR (126 MHz, DMSO-d6) δ 161.19, 153.30, 148.85, 144.14, 143.99, 143.72, 130.85,
129.57, 128.20, 126.55, 119.16, 118.74, 116.83, 116.50 [47].

(E)-2-[2-(4-hydroxyphenyl)vinyl]-8-acetoxyquinoline (SQL 4).
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Step 1. 8-Acetoxyquinaldine: The 8-hydroxyquinaldine derivative (2.5 mmol) in 10 mL acetic
anhydride was heated for 16 h at 130 ◦C. Then, the mixture was evaporated to dryness and a solid was
crystallized from EtOH to produce a light yellow solid, yield 95%, mp. 67 ◦C; 1H-NMR (400 MHz,
CD2Cl2-d2) δ 8.12 (d, J = 8.5 Hz, 1H), 7.74 (dd, J = 8.2, 1.3 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.42 (dd,
J = 7.5, 1.3 Hz, 1H), 7.37 (d, J = 8.5 Hz, 1H), 2.74 (s, 3H), 2.48 (s, 3H).

Step 2. (E)-2-[2-(4-hydroxyphenyl)vinyl]-8-acetoxyquinoline: The appropriate quinaldine
derivative (1 mmol) was mixed thoroughly with two equivalent aldehyde, put into an open vessel, and
exposed to microwave irradiation for 20 min at 180 ◦C with a maximum power 80 W. Then, the reaction
mixture was cooled to 0 ◦C and the precipitate was filtered off. The solid was recrystallized from EtOH
in order to produce a dark yellow solid, yield 9%, mp. 132–136 ◦C; 1H-NMR (500 MHz, DMSO-d6) δ
9.98 (s, 1H), 8.27 (t, J = 11.4 Hz, 1H), 8.10 (d, J = 16.4 Hz, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.66–7.59 (m, 1H),
7.56–7.48 (m, 1H), 7.40–7.32 (m, 2H), 7.21–7.13 (m, 1H), 7.13–7.04 (m, 1H), 6.95 (t, J = 8.8 Hz, 1H), 6.88 (t,
J = 7.4 Hz, 1H), 1.91 (s, 3H); 13C-NMR (126 MHz, DMSO-d6) δ 169.69, 153.80, 153.38, 151.08, 138.60,
137.01, 134.64, 133.82, 128.66, 128.59, 128.17, 127.56, 122.82, 121.42, 118.07, 116.31, 111.71, 21.35.

4.2. Strains and Growth Media

The C. albicans strains used in this study were a generous gift from Dominique Sanglard (Table 3).
All of the strains were kept as frozen stocks in glycerol at −80 ◦C and routinely grown at 28 ◦C on a
YPD medium with 2% dextrose, 1% Bacto peptone (Diag-med, Warsaw, Poland) and 1% yeast extract
(Diag-med, Warsaw, Poland), and a Sabouraud medium (4% dextrose, 1% Bacto peptone (Diag-med,
Warsaw, Poland). For all of the experiments, except for a Rhodamine 6G (Sigma–Aldrich, Poznan,
Poland) assay, the strains were sub-cultured in w yeast nitrogen base (YNB) liquid medium (0.67%
YNB (Diag-med, Warsaw, Poland) and 2% dextrose) at 28 ◦C and diluted to the desired optical density
at 600 nm (OD600). For growth on solid media, 2% agar (Difco) was added.

Table 3. Collection of C. albicans strains that was used in this study. Strain CAF 2-1 is treated as a
wild-type (WT) strain. The deleted genes encoding drug efflux pumps (Cdr1, Cdr2 and Mdr1) are
marked delta in the Genotype column.

Strain Genotype Reference

CAF 2-1 ura3∆::imm434/URA3 [48]
DSY 448 cdr1∆::hisG-URA3-hisG/cdr1∆::hisG [49]
DSY 653 cdr2∆::hisG-URA3-hisG/cdr2∆::hisG [50]
DSY 654 cdr1∆::hisG/cdr1∆::hisG cdr2∆::hisG-URA3-hisG/cdr2∆::hisG [50]

4.3. Susceptibility Testing

Drug susceptibility testing was performed in microtiter plates with two-fold serial dilutions of the
tested compounds according to the EUCAST (EUCAST E.DEF 7.3) specifications with modifications.
The cultures were grown for 18 h on Sabouraud agar at 35 ◦C, and a few colonies were suspended in
0.85% NaCl at 0.5 (1.5 × 106 CFU/mL) in the McFarland scale. Next, the suspension was diluted to a
final concentration of 2.5 × 105 CFU/mL and 100 µL was mixed with 100 µL of the tested compound
suspended in 2 × YNB or a mixture of FLC (Sigma–Aldrich; Poznan, Poland) and styrylquinoline,
each at a starting concentration of MIC in order to obtain the fractional inhibitory concentration (FIC)
indexes. Those indexes are determining type of interaction between two drugs, where: synergy:
FICI ≤ 0.5, indifference: FICI > 0.5 to 4, antagonism: FICI > 4 [51]. The FIC index was defined as
the MIC of drug “a” applied in combination with drug “b”, divided by the MIC of drug “a”, added
together with the MIC of drug “b” applied in combination with drug “a”, divided by MIC of drug “b”
according to the formula below (Equation (1)):

FICI = MICa+b/MICa + MICb+a/MICb (1)
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Microtiter plates were incubated at 28 ◦C for 24 h and then shaken, and their optical densities
were read with a microtiter plate reader at a wavelength of 600 nm. The results are presented as the
percentage of growth relative to the control samples, and the MIC values are given as the lowest
concentration that inhibited 50% of the growth according to the EUCAST standards. The experiment
was performed in three biological replicates with three technical replicates.

4.4. Permeabilization Assays

The yeast cultures were sub-cultured overnight in YNB and diluted to an OD600 of 0.4 in a fresh
medium. The styrylquinoline compounds were added and incubated at 28 ◦C with shaking at 180 rpm.
Aliquots of the cultures were taken after 4 h and stained with propidium iodide (manufacturer: Bioshop,
distributor: Lab Empire, Rzeszów, Poland) [23,46] for 5 min at room temperature in order to assess the
membrane permeability. Observations were made using fluorescent microscopy (Zeiss AxioVision,
Poznań, Poland). The experiment was carried out in three biological replicates.

4.5. Western Blotting

The assay was performed according to a previous method [52] with modifications. A crude protein
extract was prepared from the cell suspensions after 4 h of induction with the tested compounds.
The aliquots of the cell suspensions were pelleted via centrifugation at 2260× g for 5 min and
resuspended in 1 mL of deionized water. The cells were lysed by adding 150 µL of 1.85 M NaOH-7.5%
β-mercaptoethanol (Sigma–Aldrich, Poznan, Poland) and incubated on ice for 10 min. The proteins
were precipitated by adding 150 µL of 50% trichloroacetic acid and incubated on ice for 10 min. Samples
were then centrifuged at 10,000× g for 5 min at 4 ◦C, washed in 1 mL of 1 M Tris-HCl pH 8.0, and
then resuspended in 50 µL of the sample buffer (40 mM Tris-HCl, 8 M urea, 5% SDS, 0.1 mM EDTA
1% β-mercaptoethanol, 0.1 mg/mL bromophenol blue). Following incubation at 37 ◦C for 30 min,
the samples were loaded onto 6% sodium dodecyl sulphate-polyacrylamide gel and developed in a
Mini-PROTEAN II electrophoresis cell (Bio-Rad, Poznań, Poland). The samples were then transferred
onto a nitrocellulose membrane using a Mini-PROTEAN Tetra System electrophoresis cell (Bio-Rad,
Poznań, Poland). The membranes were stained with Poncau S to check whether the gels had loaded
equally. The Cdr1p was immunodetected using polyclonal mouse anti-GFP antiserum with horseradish
peroxidase-conjugated anti-mouse antiserum as a secondary antibody. The signals were detected
using an ECL kit from PerkinElmer according to the manufacturer’s instructions. The experiment was
performed in four biological replicates.

4.6. Rhodamine 6G Assay

The R6G assay was performed according to Nakamura et al. [53] with modifications. The cell
culture was pelleted in the log phase and washed twice in double-distilled water and once in a HEPES
buffer (50 mM, pH 7.0). The cells were diluted in a fresh HEPES buffer to an OD600 of 1.0 and incubated
for 60 min at 30 ◦C and 200 rpm with 5 mM 2-deoxy-d-glucose (Sigma–Aldrich, Poznań, Poland). Next,
the tested compounds were added in 1

2 MIC concentrations and the cells were incubated for 5 min in the
same conditions. Then, 10 µM R6G was added and the cell suspension was incubated for an additional
90 min. The cells were pelleted, washed twice in a HEPES buffer, and suspended in fresh HEPES at
an OD600 of 10.0. The cell suspension was incubated for 5 min at 30 ◦C with shaking, the R6G efflux
was initiated by adding 10 mM glucose and the suspensions were incubated for 30 min from which
aliquots were removed at 15 min intervals. Aliquots of 400 µL were pelleted and three duplicates of
100 µL of supernatant were added to black microtiter plates. The fluorescence was measured in a Cary
Eclipse spectrofluorimeter (Agilent Technologies, Santa Clara, CA, USA) at an excitation wavelength of
529 nm (slit 5) and an emission of 553 nm (slit 10). The experiment was performed in three biological
replicates with three technical replicates.
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