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Background: Freezing of gait (FOG) is an intermittent walking disturbance experienced

by people with Parkinson’s disease (PD). FOG has been linked to falling, injury, and

overall reduced mobility. Wearable sensor-based devices can detect freezes already in

progress and provide a cue to help the person resume walking. While this is helpful,

predicting FOG episodes before onset and providing a timely cue may prevent the freeze

from occurring. Wearable sensors mounted on various body parts have been used to

develop FOG prediction systems. Despite the known asymmetry of PD motor symptom

manifestation, the difference between the most affected side (MAS) and least affected

side (LAS) is rarely considered in FOG detection and prediction studies.

Methods: To examine the effect of using data from the MAS, LAS, or both limbs for FOG

prediction, plantar pressure data were collected during a series of walking trials and used

to extract time and frequency-based features. Three datasets were created using plantar

pressure data from the MAS, LAS, and both sides together. ReliefF feature selection was

performed. FOG prediction models were trained using the top 5, 10, 15, 20, 25, or 30

features for each dataset.

Results: The best models were the MAS model with 15 features and the LAS and

bilateral models with 5 features. The LAS model had the highest sensitivity (79.5%) and

identified the highest percentage of FOG episodes (94.9%). The MAS model achieved

the highest specificity (84.9%) and lowest false positive rate (1.9 false positives/walking

trial). Overall, the bilateral model was best with 77.3% sensitivity and 82.9% specificity. In

addition, the bilateral model identified 94.2% of FOG episodes an average of 0.8 s before

FOG onset. Compared to the bilateral model, the LAS model had a higher false positive

rate; however, the bilateral and LASmodels were similar in all the other evaluationmetrics.

Conclusion: The LAS model would have similar FOG prediction performance to the

bilateral model at the cost of slightly more false positives. Given the advantages of single

sensor systems, the increased false positive rate may be acceptable to people with PD.

Therefore, a single plantar pressure sensor placed on the LAS could be used to develop

a FOG prediction system and produce performance similar to a bilateral system.

Keywords: freezing of gait, plantar-pressure, machine learning, wearable sensors, Parkinson’s disease, prediction,

most affected side, least affected side
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
condition that presents various symptoms, including rigidity,
bradykinesia (slowed movements), postural instability, tremor,
and freezing of gait (FOG) (1). FOG is an intermittent walking
disturbance, often experienced in mid-late stage PD (2) as a
sudden inability to step despite the intention to walk. FOG can
lead to falling, injury, and long-term effects such as fear of
future falls and loss of mobility (3). Various wearable sensor-
based systems have been developed (4, 5) to detect FOG using
data from the freeze episode or predict freeze onset using data
preceding the freeze (6–9). Cueing using auditory, visual, and
tactile stimuli has been used during a freeze to help end the
freeze and help the person resume walking (10–12). However,
an intelligent cueing approach that generates a stimulus before
the freeze, based on freeze prediction, is preferable, since it may
prevent FOG from occurring.

Accelerometers and gyroscopes are the most commonly used
sensors for FOG detection and prediction (4, 5). FOG prediction
systems often use multiple sensors of the same type mounted on
various body parts (7, 9, 13–17). Given that FOG identification
systems would benefit from increased wearability and simplicity,
researchers have developed FOG detection systems that use
everyday devices and clothing such as smartphones (18–21)
and pants (22, 23). However, noise from sensor movement
relative to the body can adversely affect performance. Plantar
pressure insole sensors that can be easily worn in a shoe have
also been effective for FOG detection (24, 25) and prediction
(26–28) and have advantages in terms of wearability and
simplicity. In addition to sensor type considerations, attempts
have been made to reduce prediction system complexity by using
only a single sensor input, such as a single shank-mounted
accelerometer (29) or a waist-mounted inertial measurement
unit (IMU) (30). A single-sensor system would eliminate the
need for multisensor synchronization, reduce the number of
sensors worn, reduce the amount of data to acquire and process,
and may be more acceptable to end users. However, additional
study is required to determine if single-sensor FOG prediction
systems could produce models comparable in performance to
multisensor systems.

One approach to reduce the number of sensors would be to
limit sensors to one side of the body. While single-side (7, 9, 13–
15, 29) and bilateral (16) IMU sensors have been investigated for
FOG prediction, the unilateral use of plantar pressure sensors
compared to bilateral use has not been studied.

An important factor in using sensors on only one side of the
body is that PD motor symptoms manifest asymmetrically and
commonly affect one side of the body more severely (31). The
most affected side (MAS) and the least affected side (LAS) are
person specific and do not correspond to the dominant leg or
hand. Although FOG detection systems have been effective using
only waist and left leg sensor locations [e.g., using the Daphnet
dataset (32)] without consideration of the MAS and the LAS,
FOGpredictionmodels have lower sensitivity and specificity than
FOG detection models that used similar methods (4, 17, 25) and
could be improved. While previous studies have not considered

PDmotor symptom asymmetry in FOG prediction models, there
is a potential advantage of considering the MAS and the LAS in
FOG prediction model development, especially if a single sensor
is used exclusively.

Given the asymmetry in PD gait, benefits of single-sensor
FOG prediction systems and ease of wearing plantar pressure
insoles, there is a need to determine if single-limb insole
instrumentation can be as effective as bilateral instrumentation in
FOG prediction and if there is a preferred leg for plantar pressure
insole instrumentation in FOG prediction. This study aimed to
determine whether MAS, LAS, or bilateral plantar pressure data
were most useful for FOG prediction. Identification of the most
appropriate implementation approach is important in developing
optimal systems for end users and guiding clinicians in setting up
future FOG cueing systems.

MATERIALS AND METHODS

Data Collection
The dataset used in this study is the same as in Pardoel et
al. (25), with the data collection methods summarized here.
Walking data were collected from 11 males with PD who
experienced freezing at least once per week. Inclusion criteria
were: ability to walk independently (without a walking aid),
not have undergone deep brain stimulation, and not have
conditions other than PD that impair their ability to walk. Data
were collected during a single visit to the Human Movement
Performance Laboratory, University of Ottawa. Ethics approval
was obtained from the University of Ottawa (H-05-19-3547)
and University of Waterloo (40954) and all the participants
provided informed written consent. Participants were tested
while on their regular antiparkinsonian medication dosage and
schedule. Data collection was typically scheduled in the hours
prior to the participant’s next dose, so that the medication
would be wearing off during testing and FOG would more likely
occur. Participants provided disease history and were assessed
using the New Freezing of Gait Questionnaire (NFOG-Q) and
the Unified Parkinson’s Disease Rating Scale (UPDRS)-Part III
(motor examination). Participants were also asked whether their
PD symptoms predominantly affected the right or left side of
their body. Laterality and severity of symptoms were confirmed
by the researcher (JN) conducting the UPDRS III.

Pressure-sensing insoles (FScan, Tekscan, Boston,
Massachusetts, USA) were used for plantar pressure
measurement during walking and data were recorded at
100Hz. FScan insoles are thin (<1mm) and flexible, with a
resolution of 3.9 pressure-sensing cells per cm2. Prior to data
collection, a new pair of insoles were equilibrated using a
pressurized air bladder and trimmed to fit inside the participant’s
regular shoes. Immediately before starting the walking trials, the
sensors were calibrated by having the participant stand on one
foot, transfer their entire weight to the other foot, and repeat
this starting with the second foot. The walking trials were video
recorded using a smartphone camera (30 Hz).

Participants walked a freeze-inducing path up to 30 times
(Figure 1). The walking path included one 90◦ and one 180◦ turn
in each direction around the cones. The path also included a 180◦
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FIGURE 1 | Freeze-inducing path used in walking trials [reprinted from Pardoel et al. (27), adapted from Pardoel et al. (25)].

turn in a narrow hallway. Prior to data collection, participants
were asked which turning direction is most likely to cause
freezing. This direction was selected for each participant as the
primary turning direction in the narrow hallway. In some cases,
participants were asked to change the turn direction after some
trials did not produce a freeze. Additional physical and verbal
tasks were performed simultaneously to increase likelihood of
freezing. The physical task involved carrying a plastic tray with
objects on it and the verbal task consisted of continuously saying
words out loud beginning with a specific letter.

Data Labeling
Following data collection, the video and plantar pressure data
were synchronized and labeled using a custom MATLAB 2019b
program. Synchronization was achieved by performing a single
leg stomp at the beginning of each trial and confirmed using
multiple heel strike events. During data collection, FOG episodes
were identified and offline labeling was later performed by
researcher SP to refine the FOG onset and termination times. In
cases of uncertainly, a second labeler was consulted. Each video
frame was labeled as FOG or non-FOG. The video labels were
transferred to the synchronized plantar pressure data using linear
interpolation to the closest timestamp.

The beginning of a freeze was defined as “the instant the
stepping foot fails to leave the ground despite the clear intention
to step.” The end of the freeze was defined as “the instant the
stepping foot begins or resumes an effective step.” For example, a
step was considered effective the instant the heel lifted from the
ground, provided that it was followed by a smooth toe off with the
entire foot lifting from the ground and advancing into the next
step without loss of balance. As a special case, if a person froze,
stopped trying to advance and remained standing, the instant
that the participant stopped trying to advance was considered the
end of the freeze. This was determined by the complete absence
of foot movement and known FOG characteristics such as
trembling of the knee, medial-lateral weight shifting, or attempt
at shuffling. Furthermore, gestures and facial expressions clearly
indicated that the participant was no longer trying to advance.

Only a few of these special cases occurred. Pre-FOG labels were
applied to all the data within the 2 s period immediately prior to
the onset of a freeze episode and non-FOG labels were applied
to all data that were not FOG or pre-FOG. If two FOG episodes
were less than 2 s apart, the data between the two FOG episodes
were labeled as pre-FOG. The 2 s pre-FOG duration represents
the duration of approximately two strides and has been sufficient
for FOG prediction in previous studies (8, 27). Furthermore, 2 to
3 s pre-FOG durations have led to higher pre-FOG classification
accuracy than longer pre-FOG durations (17).

Data Windowing
Following data collection and labeling, data for each walking
session were windowed using a 1 s window with a shift of 0.2 s
between consecutive windows (Figure 2A). Prior to classifier
model development, windows were grouped into target and non-
target classes and models were trained to differentiate between
the classes. The objective was to develop a single model that could
predict and detect FOG. Therefore, the target class included data
windows containing purely pre-FOG data (W9–W13), windows
containing both the pre-FOG and FOG data (W14–W18), and
purely FOG data (W19) (Figures 2A,B). The non-target class
included all the other windows (W1–W8, W20).

Feature Extraction and Ranking
Features were calculated from each data window and used to
train FOG prediction models. Anterior-posterior and medial-
lateral center of pressure (COP) positions and total ground
reaction force (GRF) were extracted from the plantar pressure
data. Prior to COP calculation, if the GRF of one foot accounted
for less than 5% of the two foot total, the GRF was set
to zero to remove noise or residual pressure during swing
phase. COP velocity and acceleration were determined from
the first and second derivatives of COP position. The GRF and
COP position, velocity, and acceleration were used to calculate
13 time-domain features and 22 frequency-domain features
(Table 1). The features used have been previously used for FOG
identification (25).
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FIGURE 2 | Example of data windowing and target class compositions: (A) Windows W1–W3 contain: non-freezing of gait (FOG) data only, W4–W8: non-FOG and

pre-FOG data, W9–W13: pre-FOG data only, W14–W18: pre-FOG and FOG data, W19: FOG data only, and W20: FOG and non-FOG data, (B) Prediction model class

composition.

In total, 166 unilateral and 1 bilateral features (number
of weight shifts) were extracted from the plantar pressure
data, resulting in a total of 333 features. Relief-F ranking
feature selection was used to determine the best features
(Relief-F was found to be better for feature reduction than
minimum-redundancy maximum-relevance ranking, tested in
earlier experiments). For bilateral limb models, all 333 features
were ranked. For the unilateral models, separate datasets
were created with the 166 MAS and the 166 LAS features.
Relief-F feature ranking was performed for the MAS and
LAS datasets.

Freezing of Gait Prediction Model Training
All prediction models developed in this paper used the same
parameters and training methods. The only difference between
the models was the input dataset and input features. Separate
prediction models were trained using the top ranked 5, 10, 15,
20, 25, and 30 features from each of the MAS, LAS, and bilateral
datasets. These values were based on previous testing that found
no performance improvement when using more than 30 features.
Additionally, using more than 30 features substantially increased
model training time. Steps of 5 features were used to limit the
total number of models trained and evaluated.

Each data window was classified using a binary classification
model. Decision tree ensembles using random undersampling
boosting (RUSBoosting) were trained. Each of the 100 trees had
5 splits. A leave-one-freezer-out cross-validation was performed,
as in Pardoel et al. (27). Participants who did not freeze were
always included in the training dataset and never held out as the
test participant.

Freezing of Gait Prediction Model
Performance Evaluation
The trained models were evaluated using windows and FOG
episodes similar to the evaluation in Pardoel et al. (27). The
window-based evaluation compared each window classification
to the ground truth label and calculated sensitivity and specificity.
The FOG episode-based evaluation determined if and when
each episode was detected by the model. Classification of three
consecutive windows to the target class (Figure 2B) resulted in
a model trigger decision (MTD) (Figure 3), which would trigger
a cue if applied in a cueing system. If a MTD occurred within
the MTD target zone (explained below), then the corresponding
FOG episode was successfully identified. Identification delay
(ID) was the time between FOG onset and a successful MTD
identification. A negative ID indicated that the model predicted
the FOG episode before onset and a positive ID indicated that the
model detected the FOG episode after onset.

In the literature, pre-FOG gait has been identified 3 steps prior
to FOG onset (37) and predictions have been reported 4–5 s in
advance (7, 38) of FOG. Furthermore, model classification target
zones have been defined as 8 s prior to FOG onset (9). In this
paper, the MTD target zone was specific to each FOG episode
(Figure 3), based on a prediction target zone that was initially set
to 6 s prior to FOG onset (Figure 3). If another FOG, stand to
walk transition, or turn to walk transition occurred within the
6 s period prior to FOG onset, the prediction target zone was
shortened to exclude these turning, standing, or FOG data. This
ensured that false positives caused by the end of the previous
FOG episode, turn to walk transition, or stand to walk transition
were not mistakenly interpreted as predictions of the upcoming
FOG. To ensure that the turning data were not included in the
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TABLE 1 | Plantar-pressure based features extracted from windowed data (25).

Feature Feature description Source Number of input

parameters

Total

features

Time domain features (n = 13)

Number, duration, length of

COP reversals

Number, length, duration of centre of pressure (COP) path direction reversals per

window (n = 3)

(33) 2 6

Number, duration, length of

COP deviations

Number, length, duration of medial-lateral COP deviations per window. Deviation

is the first derivative of COP ML exceeding a threshold of ± 0.5 mm/window (n

= 3)

(33) 2 6

CV of COP position,

velocity, acceleration

Anterior-posterior (AP) and medial-lateral (ML) coefficients of variation (CV) of

COP position, velocity, and acceleration (n = 6)

(33) 2 12

Number of weight shifts Number of times the majority of total GRF (>50%) changed foot (n = 1) - 1 1

Total computed features 25

Fast Fourier transform (FFT) features (n = 8)

Total power in FFT signal Power in FFT signal per window as sum of squared amplitude (n = 1) (34) 14 14

Dominant frequency Frequency bin with highest amplitude per window (n = 1) (35) 14 14

Max, min, mean Maximum, minimum, and mean amplitude of FFT signal (n = 3) (35) 14 42

Power in locomotion, freeze

bands

Power under FFT curve in locomotion band (0.5–3Hz) and freeze band (3–8Hz)

(n = 2)

(32) 14 28

Freeze index Ratio of power in freeze band (3–8Hz) and locomotion band (0.5–3Hz) (n = 1) (32) 14 14

Total computed features 112

Discrete wavelet transform features (n = 14), Haar mother wavelet

Variance of coefficients Variance of the detail and approximation coefficient vectors (n = 2) (36) 14 28

Max, min, mean Maximum, minimum, mean of detail and approximation coefficient vectors (n = 6) (36) 14 84

Max, min, mean energy Maximum, minimum, mean energy of detail and approximation coefficient

vectors (n = 6)

(36) 14 84

Total computed features 196

FIGURE 3 | Model trigger decision example. Three consecutive windows (W1–W3) classified as the target class (Figure 2) result in a model trigger decision (MTD),

where the MTD instant corresponds to the end of the third window. The FOG is successfully identified if there is a MTD instant within the MTD target zone. The time

difference between FOG onset and MTD instant is the identification delay (ID). The period between the beginning of the MTD target zone and the FOG onset is the

prediction target zone. The initial prediction target zone is the 6 s period before FOG onset [Adapted from Pardoel et al. (27)].

MTD target zone, a 1 s delay was used, so that the prediction
target zone started 1 s after the end of the turn. Similarly, for
transitions from standing to walking, a 1 s delay was used to
remove periods of gait initiation from the MTD target zone
(Figure 3).

Each MTD was considered to be either a true positive
(within the MTD target zone) or a false positive (outside
the MTD target zone). The MTD false positive rate (false

positives/trial) was calculated for each participant using the
number of false positives and number of trials. In this analysis,
false positive MTD that occurred during standing or gait
initiation were ignored. Gait initiation was defined as the
first second of walking after standing. As a final step in
model development, a 2.5 s no-cue interval was used, wherein
MTD were ignored if they occurred <2.5 s after the previous
MTD (27).

Frontiers in Neurology | www.frontiersin.org 5 April 2022 | Volume 13 | Article 831063

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pardoel et al. Prediction of Freezing of Gait

TABLE 2 | Participant information, questionnaire results, and number of freezing of gait (FOG) episodes experienced during testing.

Participant Age (years) Years since diagnosis NFOG-Q UPDRS III Most affected side Number of FOG

P01 67 16 14 10 Right 49

P02 80 11 21 20 Left 35

P03 71 11 17 13 Left 14

P04 64 10 4 18 Left 0

P05 70 14 20 13 Right 0

P06 68 19 22 29 Left 10

P07 78 5 15 16 Right 221

P08 70 12 17 20 Right 24

P09 80 10 18 18 Left 9

P10 80 2 4 15 Left 0

P11 72 5 19 20 Right 0

Mean (SD) 72.7 (5.5) 10.5 (4.8) 15.5 (5.9) 17.5 (4.8)

TABLE 3 | Number of FOG episodes during turns.

Participant Hallway and non-hallway Hallway

MAS turn FOG LAS turn FOG Total (MAS and LAS) turn FOG MAS turn FOG LAS turn FOG Total (MAS and LAS) turn FOG

P01 22 0 22 22 0 22

P02 20 15 35 20 2 22

P03 5 7 12 5 7 12

P06 10 0 10 10 0 10

P07 31 36 67 21 0 21

P08 18 6 24 0 6 6

P09 3 4 7 0 3 3

Total 109 68 177 78 18 96

MAS turn FOG: freeze during turning with MAS as outside (stepping) limb and LAS pivot. LAS turn FOG: freeze during turning with LAS as outside (stepping) limb and MAS pivot.

RESULTS

Participant information is presented in Table 2. The number of

FOG episodes that occurred during turning are presented in

Table 3.
Freezing of gait prediction model performance for each

number of features used is shown in Figure 4. All values are

means calculated over all held out test participants (i.e., freezers).
Overall, the highest sensitivity (79.5%) was for the LAS model
with 5 features. The LAS model had the highest sensitivity for
5, 10, 15, and 25 features. The bilateral model had the highest
sensitivity for 20 (74.6%) and 30 (66.7%) features.

Specificity for all MAS, LAS, and bilateral models ranged
between 81.3 and 88.0%. The highest overall specificity (88.0%)
was for the bilateral model with 30 features. The LAS (87.5%) and
MAS (83.9%) models using 30 features also had a high specificity.

The highest percentage of identified FOG episodes ranged
from 90.2 to 94.9% for all models that used 5, 10, or 15 features.
For increasing numbers of features, the percentage of identified
FOG decreased for all models. Overall, the highest percentage of
identified FOG (94.9%) was for the LAS models with 5 features.

For each model, some FOG episodes were predicted
in advance of the freeze, while other FOG episodes were
detected after onset. The ID is the average of all FOG
identifications for each participant. The LAS and bilateral
models produced similar identification delays using 5, 10,
15, and 20 features. Overall, the earliest identifications were
for the bilateral and LAS models with 5 features, which
both had a −0.8 s ID. For all the models that used 5,
10, or 15 features, the ID values were between −0.4 and
−0.8 s.

The MASmodels had the lowest average false positive rate per
walking trial for all numbers of features and the LAS models had
the highest false positive rates. Overall, the lowest false positive
rate was for the MAS model using 20, 25, or 30 features (1.0 false
positives/trial). The highest false positive rate was for the LAS
model using 10 features (3.3 false positives/trial).

Generally, using more features tended to increase specificity,
decrease sensitivity, decrease percentage of identified FOG
episodes, and decrease number of false positives per trial.
Increasing the number of features resulted in later predictions for
the bilateral and MAS models.
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FIGURE 4 | FOG prediction model performance (all values are means calculated over all held out test participants): (A) Sensitivity, (B) Specificity, (C) Episodes

identified as a percentage of the total number of FOG episodes for each participant, (D) ID, and (E) Number of false positives per walking trial.

TABLE 4 | Rank sum for each combination of dataset and number of features.

Dataset Number of input features

5 10 15 20 25 30

MAS 17 16 12* 19 21 20

LAS 14* 18 20 20 15 18

Bilateral 13* 14 19 20 19 20

* Indicates the model selected as best.

To select the best feature set, the model for each feature
set (Figure 4) was ranked for each evaluation metric and the
model (feature set) with the smallest rank sum was selected. For

example, for the MAS, the model with 5 features was the third
best model for sensitivity, fifth best for specificity, third best for
percentage of identified FOG episodes, best (first ranked) for ID,
and fifth best for false positive rate. These ranks (3, 5, 3, 1, and
5) were summed to produce a summed score of 17 for the MAS
model feature set with 5 features. This ranking was done for the
MAS, LAS, and bilateral models (Table 4).

According to the ranking, the best MAS model used
15 features. The best LAS and bilateral models both
used 5 features. The features used in the best models
are given in Table 5. To examine model performance
for each participant, the cross-validation results for the
best MAS, LAS, and bilateral models are presented in
Tables 6–8.
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TABLE 5 | Features used for the best most affected side (MAS), least affected side (LAS), and bilateral models.

MAS

15 features

LAS

5 features

Bilateral

5 features

Number of AP COP path reversals Number of AP COP path reversals Dominant frequency of COP velocity AP for

right leg

Dominant frequency of COP velocity AP Power in freeze band (3-8Hz) of COP velocity

AP

Number of AP COP path reversals for left leg

Dominant frequency of COP velocity ML Dominant frequency of COP velocity AP Number of AP COP path reversals for right leg

Mean energy of WT aC of COP position AP Power in freeze band (3-8Hz) of COP position

AP

Dominant frequency of COP velocity ML for

right leg

Number of ML COP path deviations Dominant frequency of COP acceleration AP Mean energy of WT aC of COP position AP for

right leg

Mean WT aC of COP position AP

Power in freeze band (3-8Hz) of COP velocity AP

Mean WT aC of COP velocity AP

Dominant frequency of COP acceleration ML

Power in freeze band (3-8Hz) of COP position AP

Dominant frequency of COP acceleration AP

Mean WT dC of GRF

Max energy of WT aC of COP position AP

Power in freeze band (3-8Hz) of COP position ML

Mean duration of AP COP path reversals

AP, anterior-posterior; ML, medial-lateral; WT, wavelet transform; aC, approximation coefficient; dC, detail coefficient.

TABLE 6 | Sensitivity and specificity results for the best MAS, LAS, and bilateral models.

Participant MAS 15 features LAS 5 features Bilateral 5 features

Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%)

P01 59.2 87.6 77.9 73.3 69.7 81.8

P02 73.7 87.9 70.0 86.6 71.7 86.7

P03 60.7 89.3 73.8 87.5 68.3 89.5

P06 84.0 88.3 95.1 88.6 93.5 89.6

P07 57.2 83.6 64.5 79.7 68.8 81.0

P08 88.8 80.7 92.6 85.2 89.1 79.1

P09 93.7 76.9 82.3 68.2 79.7 72.3

Mean 73.9 84.9 79.5 81.3 77.3 82.9

(SD) 14.1 4.3 10.5 7.3 9.7 5.8

Sens, sensitivity; Spec, specificity.

DISCUSSION

The overall best model for FOG prediction was the bilateral

model, with 77.3% sensitivity, 82.9% specificity,−0.8 s ID, 94.2%
of FOG episodes identified, and 2.4 false positives per walking

trial. The LAS model had similar results and only 0.8 more false

positives per walking trial than the bilateral model. The MAS
model had inferior results to the other two models, with 3.4%

lower sensitivity and 3% fewer identified FOG episodes, 0.4 s later
than the bilateral model.

For the bilateral model, sensitivity and specificity were lower
than models in the literature, where sensors were worn on
both limbs (17). A model using gyroscope data from the shins
predicted FOG with 84.1% sensitivity and 85.9% specificity
(17). However, the model was developed using data from only

35 FOG episodes. For comparison, the models developed in
this paper used data from 362 FOG episodes. Using many
FOG episodes during model training is desirable, since it
can help achieve good model generalizability and thus, better
classification performance when tested on previously unseen
data. Other models in the literature achieved even higher
sensitivity and specificity (9, 14, 15). For example, a person-
specific model (i.e., model tuned to a specific individual)
using an ensemble of 9 support vector machine classifiers and
data from 3 IMU sensors reported 93% sensitivity and 87%
specificity (9). Using the same dataset, a 3 class (pre-FOG,
FOG, and non-FOG) k-nearest neighbors classifier achieved
94.1% sensitivity and 97.1% specificity (14). However, these
systems were person specific and may not be generalizable
to new participants or they used multiple sensors on various
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TABLE 7 | Episode-based model performance for the best MAS, LAS, and bilateral models.

Participant MAS 15 features LAS 5 features Bilateral 5 features

EI (%) ID (s) FPR

(FP/trial)

EI (%) ID (s) FPR

(FP/trial)

EI (%) ID (s) FPR

(FP/trial)

P01 85.7 −0.14 1.5 87.8 −0.2 1.3 89.8 −0.3 1.7

P02 97.1 0.01 0.8 91.4 −0.6 1.0 94.3 −0.8 1.0

P03 78.6 −0.53 2.1 85.7 −0.6 2.6 85.7 −0.5 2.3

P06 100.0 −0.07 2.2 100.0 −0.8 1.9 100.0 −0.6 1.6

P07 76.5 0.02 1.3 99.1 −0.7 5.8 89.6 −0.4 2.7

P08 100.0 −0.85 1.5 100.0 −1.3 3.5 100.0 −1.2 2.9

P09 100.0 −1.59 3.6 100.0 −1.8 6.0 100.0 −1.7 4.9

Mean 91.1 –0.4 1.9 94.9 –0.8 3.2 94.2 –0.8 2.4

(SD) 9.8 0.6 0.8 5.9 0.5 1.9 5.5 0.4 1.2

EI, episodes identified as a percentage of the total number of FOG episodes for each participant; ID, identification delay; FP, false positive; FPR, false positive rate. ID is reported as a

participant average.

TABLE 8 | Identified FOG during turns for the best MAS, LAS, and bilateral models.

Participant MAS 15 features LAS 5 features Bilateral 5 features

Identified

MAS turn FOG

(%)

Identified

LAS turn FOG (%)

Identified

MAS turn FOG (%)

Identified

LAS turn FOG (%)

Identified

MAS turn FOG (%)

Identified

LAS turn FOG (%)

P01 81.8 – 86.4 – 86.4 –

P02 95.0 100.0 90.0 93.3 95.0 93.3

P03 40.0 100.0 60.0 100.0 60.0 100.0

P06 100.0 – 100.0 – 100.0 –

P07 64.5 75.0 100.0 100.0 83.9 91.7

P08 100.0 100.0 100.0 100.0 100.0 100.0

P09 100.0 100.0 100.0 100.0 100.0 100.0

Mean 83.0 95.0 90.9 98.7 89.3 97.0

(SD) 21.4 10.0 13.7 2.7 13.5 3.7

MAS turn FOG: freeze during turning with MAS as outside (stepping) limb and LAS pivot. LAS turn FOG: freeze during turning with LAS as outside (stepping) limb and MAS pivot.

parts of the body and are thus, not directly comparable
to this study, which used a single sensor to create person-
independent models.

The sensitivity and specificity of the LAS model were
comparable to other single-sensor FOG prediction studies in
the literature (6, 29, 30, 39). The best LAS model performed
better for FOG prediction than a similar tree-based algorithm
(AdaBoosted C4.5 decision tree) that used data from a single
waist-mounted IMU (30). Compared to a FOG prediction
model that used electroencephalography (EEG) signals, the LAS
had lower sensitivity (79.5% compared to 85.86%) and similar
specificity (81.3% compared to 80.25%) (6). However, a single
plantar pressure sensor could be integrated into regular footwear
and could be used in a much more user-friendly wearable system
than EEG sensors.

The LAS model FOG episode identification performance was
very good compared to other models in the literature. The LAS
model identified 94.9% of episodes, which was similar to (9),
where 94% of episodes were identified and only slightly worse
than a person-specific model used in Naghavi et al. (16) that
identified 97.4% of episodes. The best MAS, LAS, and bilateral

models in this paper all identified more than 91.0% of the FOG
episodes. Furthermore, the LAS and bilateral models identified
FOG 0.8 s before the freeze initiation. Thus, if used as part of a
cueing system, the LAS and bilateral models would cue most of
the FOG episodes, with identifications made just under 1 s prior
to FOG onset.

The LAS model had higher sensitivity, earlier FOG
identifications, and identified a higher percentage of FOG
episodes than the MAS model. This may be explained by an
increased role of the least affected limb in balance and postural
stability during walking. Differences between the MAS and LAS
have been identified in various motor tasks (40) and participants
with PD (with and without FOG) preferentially adjusted the
positioning of their least affected limb to retain balance after
slipping (41). Therefore, the LAS limb may also be preferentially
used for stability during walking, similar to how amputees rely
on the intact limb for stability and balance (42). Postural stability
and FOG are intricately related (43) and stability in freezers can
be negatively affected by dual-task walking, which is a common
trigger for FOG (44). Furthermore, stability and postural control
in PD can be assessed using COP (45, 46). COP-based features
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that indicate postural instability may also indicate upcoming
FOG. Therefore, if participants are preferentially using the
least affected limb for stability control when walking, the link
between instability and FOGmay lead to the LAS being the more
informative limb for FOG prediction. The connection between
postural stability, FOG, and the preferential limb for stability
control during walking should be further investigated.

The best MAS model had the highest specificity, lowest false
positive rate, and latest predictions compared to the best LAS
and bilateral models. Therefore, the MAS predicted FOG less
in advance, but resulted in fewer false positive MTD. The best
MAS model had 1.9 false positives per walking trial. Using the
duration of each walking trial and averaging over all walking
trials and all participants, the best MAS model thus produced
one false positive approximately every 38 s of walking. Similarly,
one false positive was produced approximately every 28 s for
the bilateral model and every 24 s for the LAS model. However,
since a specially designed freeze-inducing walking path was used
in this paper, fewer false positives may be experienced during
daily walking.

In a clinical setting, the choice of limb to use for sensor
mounting and data collection may depend on the person,
their FOG history, and the intervention (cueing) approach. For
someone who tends to recover independently following a freeze,
minimizing false positives may be more important than early
cueing. Thus, instrumenting the MAS may be preferable, to
benefit from the higher specificity and fewer false positives.
In contrast, for someone who frequently experiences loss of
balance and potential falls when freezing, the LAS may be
preferable, since FOG episodes would be identified earlier and
with higher sensitivity. For this person, a late or missing cue
may be more disruptive to overall walking than the increased
number of false positives. The type of cue may also influence
the decision to instrument the MAS or LAS limb. When using
a low intensity or minimally distracting cue, false positives may
be better tolerated, thus supporting the use of the LAS model. An
intense or potentially bothersome cuemay be best used withMAS
instrumentation to reduce unnecessary cueing.

While the LAS model performance was similar to the
bilateral model, the bilateral model is recommended for best
FOG prediction performance, since it produced fewer false
positives. On the other hand, the difference between false positive
frequencies (LAS 1:24 s, bilateral 1:28 s, and MAS 1:38 s) may
be imperceptible to the user. Furthermore, single sensor systems
can potentially be simpler, less expensive, and more user-friendly
than systems with multiple sensors. These advantages may be
more important than a slight decrease in false positive rate.
Therefore, systems that use plantar pressure data from the LAS
may be preferable to systems that use plantar pressure data from
both the feet.

Of the total 362 FOG episodes, approximately half (n = 177)
occurred during turning. Of the 177 turning FOG, 109 occurred
when the MAS was the outside limb (LAS was the pivot limb).
The LAS model identified 90.9% of turning FOG when the LAS
was the pivot limb and 98.7% when the LAS was the outside limb.
The best MAS and bilateral models correctly identified more
than 95% of turning FOG when the MAS was the pivot limb
and correctly identified 83.0% (MAS model) and 89.3% (bilateral

model) when the MAS was the outside limb. The performance
of the models could be affected by most hallway turns having
the MAS as the outside limb, the imbalance in the number of
turns in each direction, and the differences in number of freezes
during turns for each participant. Future study may explore FOG
identification for the MAS or LAS turns.

This study involved 11 participants, 7 of which froze during
testing. In total, 362 FOG episodes were recorded, with 221
FOG episodes from participant P07; further study with larger
datasets is recommended. A larger dataset including participants
with various FOG subtypes (e.g., shuffling, trembling in place,
akinetic) would allow the exploration of connections between
FOG subtypes and preferred limb for instrumentation.

CONCLUSION

This study compared the performance of FOG prediction models
that used plantar pressure data collected from the most affected
side, least affected side, and both sides. Of the RUSBoosted
ensembles of decision trees trained, the best models used 5
features for the LAS and bilateral models and 15 features for the
MASmodel. The LASmodel had higher sensitivity and identified
a higher percentage of FOG episodes more in advance of the
FOG onset compared to the MAS model. The MAS model had
higher specificity and fewer false positives. In a system that uses
a single plantar pressure sensor, the decision to instrument the
LAS or MAS may be person specific. For someone who tends
to recover independently from FOG, instrumenting the MAS
may be preferable, since there would be fewer false positives.
However, for someone who experiences loss of balance during
freezing, cueing earlier may be more important than minimizing
false positives, thus instrumenting the LAS may be preferable.

The LAS and bilateral model performance was similar for all
evaluation metrics, except the false positive rate. The LAS model
had a slightly higher false positive rate than the bilateral model.
Therefore, based on prediction performance, using plantar
pressure data from both feet are recommended. However, since
the difference in false positive rate between the LAS and bilateral
models was small, the advantages of a single sensor system may
outweigh the increase in false positive rate. In practice, using a
single-limb plantar-pressure based FOG prediction system could
enhance wearability and compliance, since fewer sensors would
need to be worn.
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