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Stroke is a leading cause of motor disability worldwide, and robot-assisted therapies have been increasingly applied to facilitate the
recovery process. However, the underlying mechanism and induced neuroplasticity change remain partially understood, and few
studies have investigated this from a multimodality neuroimaging perspective. The current study adopted BCI-guided robot
hand therapy as the training intervention and combined multiple neuroimaging modalities to comprehensively understand the
potential association between motor function alteration and various neural correlates. We adopted EEG-informed fMRI
technique to understand the functional regions sensitive to training intervention. Additionally, correlation analysis among
training effects, nonlinear property change quantified by fractal dimension (FD), and integrity of M1-M1 (M1: primary motor
cortex) anatomical connection were performed. EEG-informed fMRI analysis indicated that for iM1 (iM1: ipsilesional M1)
regressors, regions with significantly increased partial correlation were mainly located in contralesional parietal, prefrontal, and
sensorimotor areas and regions with significantly decreased partial correlation were mainly observed in the ipsilesional
supramarginal gyrus and superior temporal gyrus. Pearson’s correlations revealed that the interhemispheric asymmetry change
significantly correlated with the training effect as well as the integrity of M1-M1 anatomical connection. In summary, our study
suggested that multiple functional brain regions not limited to motor areas were involved during the recovery process from
multimodality perspective. The correlation analyses suggested the essential role of interhemispheric interaction in motor
rehabilitation. Besides, the underlying structural substrate of the bilateral M1-M1 connection might relate to the
interhemispheric change. This study might give some insights in understanding the neuroplasticity induced by the integrated
BCI-guided robot hand training intervention and further facilitate the design of therapies for chronic stroke patients.

1. Introduction

Stroke is the leading cause of death worldwide, and the survi-
vors undergo various disabilities related to motor, sensory,
and cognitive functions. Specifically, robot-assisted therapy
is a kind of task-specific and high-intensity exercise in an
active, functional, and highly repetitive manner [1]. It has
been proven to be efficient to induce neuroplasticity modula-
tion and promising long-term motor recovery [2]. A brain
computer interface (BCI) can facilitate stroke rehabilitation
by integrating the exoskeleton robots to develop the BCI-
guided robot-assisted therapy, which is believed to engage
various brain functional regions [3] in the recovery process.

Electroencephalography (EEG), which can capture subtle
neurological changes, has been widely used in studying neural
functions. EEG signals result from themixture of propagating
electric potential fluctuations, mainly reflecting the postsyn-
aptic activity of large populations of cortical pyramidal cells
[4]. Additionally, functional magnetic resonance imaging
(fMRI) has become one of themost commonly used neuroim-
aging tools to assess the cortical alterations associated with
learning, diseases, or rehabilitation [5]. Resting-state fMRI
that measures the temporal correlation of the blood oxygen
level-dependent (BOLD) signal between different regions at
resting state has emerged as a powerful tool to map the func-
tional organization of the brain [6]. fMRImeasurements have
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an excellent spatial resolution inmillimeters but low temporal
resolution limited to few seconds. While EEG holds
millisecond-level temporal resolution, allowing the adequate
sampling of the rapidly changing electrical dynamics of neu-
ronal populations [4]. Since EEG and fMRI exhibit highly
complementary characteristics, their integration has been
widely exploited [7, 8]. Simultaneously recorded EEG and
fMRI data make it possible to integrate these two neuroimag-
ing modalities and have received substantial attention [9]. In
our current study, we also adopted a concurrent EEG-fMRI
technique to figure out related functional regions sensitive to
the training effect. It should be noted that researchers have
put numerous efforts to detecting these significant functional
regions based on various neuroimaging techniques. For
example, some studies have indicated the crucial role of sup-
plementary motor area (SMA) in a motor system to execute
various tasks including interlimb coordination [10] andmany
unimanual tasks involving movement sequencing as well as
internal pacing [11]. Specifically, for stroke patients, the
reduced partial correlation between SMA and M1 together
with the interhemispheric correlation of both SMAs during
visually paced hand movements has been found [12]. The
reduced partial correlation between ipsilesional of SMA and
M1 was also exhibited when stroke patients perform hand
movements [13] and index finger-tapping task [14]. Mean-
while, it is noted that improved motor function of stroke
patients might be highly correlated to a restitution of ipsile-
sional effective connectivity between SMA and M1 [15] and
functional connectivity of the ipsilesional M1 with contrale-
sional SMA [16]. Hence, in our study, we hypothesized SMA
would also play an essential role in motor recovery with
BCI-guided robot-hand training.

Quantification of EEG signal can be linked to the clinical
features, such as the rehabilitation progress in chronic stroke.
Nonetheless, due to the volume-conduction effect, the
activities of scalp EEG signal are often assumed to come from
multiple sources spatially dispersed in the brain cortex,
which blurs the underlying neural mechanisms [17]. There-
fore, EEG source imaging has emerged where the patient-
specific anatomical properties could be taken into account
using individual structural MRI images to disentangle useful
neural information. However, few studies leveraged the indi-
cators derived from EEG source space to investigate motor
training effects for chronic stroke patients.

Although linear measurements have been widely recog-
nized to reflect the brain characteristics, there is a growing
tendency that different nonlinear measures have been pro-
posed to depict the complexity of EEG signals and adopted
to predict treatment response to repetitive transcranial mag-
netic stimulation in depression [18], evaluate the effect of
stroke rehabilitation [19], and facilitate the classification
system for hand recovery in stroke patients [20]. Fractal
property that is quantified by the fractal dimension (FD)
[21] is a nonlinear descriptor for brain signals, including
EEG signals, which is closely associated with specialization
and efficiency of brain functioning [22]. Investigation of such
fractal nature as its correlation with the rehabilitation process
for patients with neurological disorders, including stroke, is
particularly important. The interhemispheric imbalance,

especially the imbalance between homologous primary
motor regions, always plays a crucial role in stroke motor
rehabilitation [23]. Additionally, structural imaging, such as
diffusion tensor imaging (DTI), has provided pivotal insights
into the functional role of the underlying structural tracts in
stroke-related changes [24]. Reductions in fractional anisot-
ropy (FA), a DTI-derived measure of degree of anisotropy
in white matter (WM), have been found in stroke individuals
[25]. Specifically, the integrity of transcallosal motor fibers
may play a role in monitoring the treatment response in
chronic stroke [26].

The purpose of this study is to investigate the neural
correlates of motor recovery after BCI-guided robot-
assisted training in chronic stroke from a multimodality
neuroimaging perspective. The EEG-informed fMRI analysis
was utilized to locate the potential functional brain regions
sensitive to the training effect. Furthermore, we hypothesized
that the training effect should be related to the interhemi-
spheric interaction change and such induced change was
supposed to be based on the structural substrates connecting
bilateral primary motor areas. Hence, the corresponding cor-
relation analyses were performed to verify these hypotheses.

2. Materials and Methods

2.1. Subjects. Fourteen chronic stroke subjects (13 males,
mean age = 54 ± 8 years, right-handedness) with unilateral
hemispheric impairment were recruited from local commu-
nity. The inclusion criteria were as follows: (1) first-ever
stroke, (2) more than 6 months since the stroke onset prior
to the experiment, (3) a single unilateral brain lesion, (4)
Hong Kong Montreal Cognitive Assessment (HK-MoCA)
[27, 28] score ≥ 22 to ensure sufficient cognitive function to
understand instructions and perform tasks, (5) moderate to
severe paretic hand dysfunctions (Fugl-Meyer Assessment
score for upper extremity < 47), and (6) no additional
rehabilitation therapies applied to the patient. The exclusion
criteria were as follows: (1) aphasia, neglect, apraxia, history
of alcohol, drug abuse, or epilepsy; (2) severe hand spasticity;
(3) hand deformity and wound; and (4) severe cognitive
deficits. Motor functions of the paretic upper limbs for all
stroke subjects were assessed with Fugl-Meyer Assessment
for upper extremity (FMA) which is a reliable and widely
used measurement [29] before and after the intervention,
respectively. Table 1 summarizes the demographics and clin-
ical properties of subjects.

2.2. Training Interventional Protocol. All subjects received a
20-session BCI-guided robot hand training therapy with an
intensity of 3-5 sessions per week and completed the whole
training process with 5-7 weeks. During each training ses-
sion, the surface EEG signals of each subject were acquired
using 16 electrodes (C1, C2, C3, C4, C5, C6, Cz, FC1, FC2,
FC3, FC4, FCz, CP1, CP2, CP3, and CP4 according to inter-
national 10-20 system) at a sample rate of 256Hz. The EEG
signals were then amplified (g.LADYbird, g.USBamp, g.Tec
Medical Engineering GmbH, Austria) and processed to
generate the real-time topography of the brain electrical
potential for surveillance. A paradigm with a fixed sequence
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showing instructions for motor imagery was played, during
which the subjects were guided to imagine either grasping
or releasing a cup following commands. EEG signal from
C3 or C4 channel according to the subject’s lesion side
was extracted to calculate the α suppression [30]. The EEG
data were transformed into the frequency domain using
Fourier transform, and the mean power in the α band (8-
13Hz) was derived. Then, the α suppression was calculated
as follows:

α suppression =
Prest − PMI

Prest
, ð1Þ

where PMI and Prest stand for the calculated α power during
the motor imagery period and the resting-state, respectively.
A trigger would be sent to an exoskeleton robot hand [31]
(illustrated in Figure S1 B; a detailed description is provided
in supplementary materials) to provide mechanical force and
assist the paretic hand in grasping and opening if the α
suppression exceeded 20% based on the previous study [32].
The success rate was defined as the percentage of correctly
detected trials during motor imagery tasks at each session.

This study was approved by the Joint Chinese University
of Hong Kong-New Territories East Cluster Clinical Research
Ethics Committee. All subjects gave written consent before the
intervention and underwent the experiments in the Chinese
University of Hong Kong rehabilitation labs. This study was
registered at https://clinicaltrials.gov (NCT02323061).

2.3. Data Acquisition. MRI scans were acquired for all the
14 subjects before and after the training sessions. A 3T
Philips MR scanner (Achieva TX, Philips Medical System,
Best, Netherlands) with an 8-channel head coil was used
to acquire high-resolution T1-weighted anatomical images
(TR/TE = 7:47/3:45ms, flip angle = 8∘, 308 slices, voxel
size = 0:6 × 1:042 × 1:042mm3) using a T1-TFE sequence
(ultrafast spoiled gradient echo pulse sequence), and
BOLD fMRI images (TR/TE = 2000/30ms, flip angle = 70∘,
37 slices/volume, voxel size = 2:8 × 2:8 × 3:5mm3) using an
EPI sequence (gradient-echo echo-planar-imaging
sequence). Besides, diffusion-weighted images were acquired
using a diffusion-weighted single-shot spin-echo echo-planar
pulse (DWISE) sequence (TR/TE = 3788/88ms, flip angle =
90∘ from 32 directions, 60 slices/volume, voxel size = 1:5 ×
1:5 × 2mm3). When acquiring resting-state fMRI data, sub-
jects were presented with a white cross in a black background
and instructed to rest while focusing on the fixation cross.
The resting-state fMRI acquisition lasted for 8 minutes.

The EEG data were acquired simultaneously with the
fMRI using Neuroscan system (SynAmps2, Neuroscan Inc.,
Herndon, USA). A 64-channel MR-compatible EEG cap
according to a standard 10-20 system was utilized, combined
with 2 extra electrocardiogram (ECG) electrodes attached at
the left lower and near-midline upper chest and 1 electrooc-
ulogram (EOG) electrode placed below the right eye. All
recording impedances were kept below 5k. The reference
channel was located at the point between Cz and CPz; an
AFz electrode was treated as the ground. Signals were filtered
between 0.1 and 256Hz using an analog filter and sampled at

1000Hz for off-line processing. The whole scheme of exper-
imental protocol is shown in Figure S1 A.

2.4. Data Analysis. In our study, the analysis was mainly per-
formed from multimodality perspective including fMRI,
EEG, and DTI neuroimaging data, and the whole analysis
pipeline is summarized in Figure 1. The left column included
the preprocessing of DTI data, M1-M1 fiber tractography,
and calculation of FA value of M1-M1 tract (please refer to
section 2.7 in supplementary materials). The middle column
included the analysis of EEG data including preprocessing,
distributed source estimation, time series extraction from
cM1 and iM1 seeds, and the calculation of indices character-
izing nonlinear properties (please refer to sections 2.2, 2.3,
and 2.6 in supplementary materials). The right column
mainly included the preprocessing of fMRI data, iM1 EEG
regressor construction, and integrated EEG-informed fMRI
analysis (please refer to sections 2.1 and 2.4 in supplementary
materials). The detailed description of each step is provided
in the supplementary materials.

2.5. Statistical Analysis. Statistical analyses were performed
using SPSS 25.0 (IBM SPSS Statistics, NY, US) with the
significance level set at p < 0:05. A paired t-test between
pretraining and posttraining was applied to examine if
FMA score has changed after the intervention. For the con-
ventional fMRI analysis, the paired t-test was performed for
pre- and posttraining based on the individual partial correla-
tion maps from 14 subjects. For EEG-informed fMRI
analysis, two-way repeated-measure analysis of variance
(ANOVA) was conducted with two fixed effects of time
(pre- and posttraining) and frequency bands (theta, alpha,
and beta) and with subject effect considered as a random
effect for iM1 regressor. Paired t-tests as the post hoc analysis
were further performed between pre- and posttraining based
on the individual partial correlation maps for each frequency
band. Multiple comparisons were corrected using Gaussian
random field theory at the cluster level (voxel-wise signifi-
cance: p < 0:005; cluster-wise significance: p < 0:05) [33].
For the survived clusters, false discovery rate (FDR) correc-
tion was further performed (p < 0:05) [34]. Pearson’s correla-
tion coefficients were calculated between FMA score changes
and interhemispheric asymmetry change before and after
the training. To investigate the potential underlying
structural base influencing the interhemispheric property
alternation, correlation analysis was also conducted between
interhemispheric asymmetry change and FA of M1-M1
anatomical connection.

3. Result

We first assessed the effect of training on motor functions in
the stroke participants. A paired t-test indicated a statistically
significant improvement in FMA scores following training
intervention, from 21 ± 6:7 to 25 ± 7 (tð13Þ = 3:313, p =
0:006). Besides, an increasing trend of success rate along with
20 training sessions was observed, with the mean of 73.01%
for the first five sessions to 76.78% for the last five sessions.
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The two-way ANOVA indicated that clusters with
significant time × frequency interaction were found in a clus-
ter at bilateral SMA, paracentral lobule and contralesional
superior frontal gyrus (BA6 C&I), a cluster at ipsilesional
precentral and postcentral gyrus (BA4 I and BA6 I), and a
cluster at contralesional superior parietal lobe (SPL) and infe-
rior parietal lobe (IPL) (BA7 C) (Illustrated in Figure 2 and
summarized in Table 2).

Paired t-tests were performed between pre- and post-
training with different combinations of three representative
EEG bands (theta, alpha, and beta). When theta band EEG
signal was used as the regressor, significantly increased
partial correlation was found in one cluster overlying the
contralesional superior parietal gyrus, inferior parietal gyrus,
and precuneus (BA7 C). Significantly decreased partial corre-
lations were found in the ipsilesional precentral gyrus (BA4 I)
and ipsilesional supramarginal gyrus (BA48 I). When alpha
band EEG signal was used as the regressor, significantly
increased partial correlations were found in a cluster involv-
ing the contralesional superior frontal gyrus and middle
frontal gyrus (BA8 C and BA6 C) and the other clusters
including the contralesional precuneus, cuneus, and superior
occipital gyrus (BA7 C, BA19 C, and BA18 C). Significantly
decreased partial correlation was found in the ipsilesional
superior temporal gyrus (BA48 I). When beta band EEG sig-
nal was used as the regressor, significantly increased partial
correlations were found in the contralesional postcentral
gyrus (BA4 C) as well as a cluster covering contralesional
SMA and superior frontal gyrus (BA6 C). Significantly
decreased partial correlation was found in the ipsilesional

superior temporal gyrus (BA48 I) (illustrated in Figure 3
and summarized in Table 3).

For conventional seed-based fMRI connectivity analysis,
paired t-test showed that significant clusters were observed
mainly in contralesional Brodmann area 6 when seed ROI
was located at iM1 (illustrated in Figure 4).

Then, we explored the relationship between training
effect and nonlinear property changes quantified by FD.
Pearson’s correlation revealed that the FMA score change
significantly correlated with interhemispheric asymmetry
change (Figure 5(a), r = −0:6219, p = 0:0352; Bonferroni
corrected) before and after training. We hypothesized that

5. Preprocessing1. Preprocessing

10. Preprocessing

AmplifierEEG

Monitor

2. M1-M1 fiber
tractography

3. M1-M1 FA value
calculation

4. Correlation analysis
between inter-hemispheric

asymmetry change and
M1-M1 FA

6. Distributed
source

estimation

7. Time series
extraction

from cM1 and
iM1

8. FD calculation of cM1, iM1 and
inter-hemispheric asymmetry 

9. Correlation analysis
between training effect and
non-linear property change

11. EEG-informed
fMRI analysis

12. Regressor
construction

𝜃

𝛼

𝛽

Motor
controller

𝛼

suppression

MATLAB
program

Figure 1: Illustration of analysis pipeline. The whole analysis included processing of fMRI, EEG, and DTI data; EEG-informed fMRI analysis;
correlation analysis between training effect and nonlinear property change characterized by FD; and correlation analysis between
interhemispheric asymmetry change and integrity of M1-M1 anatomical connection quantified by FA.

5.7 8

RL
ANOVA

Figure 2: Surface rendering of brain functional regions which
showed significant time × frequency interaction for iM1 regressor.
The right side is the ipsilesional side.
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the alteration of interhemispheric property would be
associated with corresponding structural characteristics.
Indeed, a significant relevance between interhemispheric
asymmetry change and FA of M1-M1 anatomical connec-
tion was observed (Figure 5(b), r = 0:6529, p = 0:0228;
Bonferroni corrected).

4. Discussion

4.1. Motor Functional Recovery. The reorganization of the
central nervous system plays an important role in the recov-
ery of dysfunctions. It is an intrinsic property of the human
brain to change its function and reorganize after a lesion
forms [35], referred as neuroplasticity in stroke rehabilita-
tion. Leveraging the mechanism of neuroplasticity, robot-
assisted hand, which performs high-frequency movements
accompanied by sensory feedback, has been shown to be an
important factor in improving hand function [36]. The

robotic hand could provide haptic as well as proprioceptive
feedback on the intended movement. On the other hand,
BCI is able to offer feedback to facilitate the appraisal of per-
formance by enforcing the sensory aspect in the sensorimo-
tor loop [37], thereby restoring the action-perception
coupling. Some studies have observed significant improve-
ment of FMA scores in BCI groups, but not in the control
groups that receive random functional electrical stimulation
(FES) [38] or receiving random robotic orthosis feedback
[39]. Our study also showed the consistent significant FMA
improvement after intervention involved BCI. Besides, the
observed increasing trend of success rate also provided the
evidence implying that the function of patients improved
with more training sessions. In this context, a number of
functional brain regions are expected to be involved in the
process of recovery. It should be noted that not only perile-
sional but also distant brain regions would be affected even
if the brain damage is focal [40, 41]. Hence, finding the

Table 2: Brain regions showing significant time × frequency interaction.

C/I Anatomical region Peak MNI coordinate x, y, zð Þ
iM1 regressor

C&I Supplementary motor area -5 1 48

C&I Paracentral lobule

C Superior frontal gyrus

I Precentral gyrus 60 8 26

I Postcentral gyrus

C Superior parietal lobe 60 8 26

C Inferior parietal lobe

C/I: contralesional or ipsilesional.

RL RL

R

–6 8.71

L

Theta Alpha

Beta

Figure 3: Surface rendering of brain functional regions which showed significant partial correlation change before and after training, given
the regressor embedding spectral information (including theta, alpha, and beta frequency bands) derived from EEG source time course of
iM1. The right side is the ipsilesional side.
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Table 3: Brain regions showing significant pre-post partial correlation change.

Frequency band +/- C/I Anatomical region Peak MNI coordinate x, y, zð Þ
iM1 regressor

Theta

+

C Superior parietal gyrus

-32 -62 40C Inferior parietal gyrus

C Precuneus

-
I Precentral gyrus 52 -16 26

I Supramarginal gyrus 46 -11 49

Alpha
+

C Superior frontal gyrus
-24 18 42

C Middle frontal gyrus

C Precuneus

-8 -86 38C Cuneus

C Superior occipital gyrus

- I Temporal pole 58 10 0

Beta
+

C Postcentral gyrus -54 -14 24

C Supplementary motor area
-12 8 56

C Superior frontal gyrus

- I Superior temporal gyrus 67 -20 12

+/-: increased or decreased; C/I: contralesional or ipsilesional.

4.0

2.7
X = –29 Y = 13 Z = 46

(a)

iM1

(b)

Figure 4: The conventional seed-based fMRI results illustrated from (a) sagittal view, coronal view, and axial view and (b) rendering surface.
The right side is the ipsilesional side.
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0.015

0

5

10

FM
A

 sc
or

e c
ha

ng
e

15

20

(a)

–0.015

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

–0.010 –0.005 0.000
Interhemispheric asymmetry change

0.005 0.010 0.015
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M
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FA

r = 0.6529
p = 0.0228
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Figure 5: Significant correlations were observed (a) between FMA score change and interhemispheric asymmetry change as well as (b)
between interhemispheric asymmetry change and FA of M1-M1 anatomical connection.
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regions responding to the effect induced by the training ther-
apy is essential for a better understanding of the underlying
mechanism of stroke recovery.

4.2. Related Functional Brain Regions. EEG oscillation has
been used as an important index for evaluating brain activity,
while different bands of EEG signals reflect various brain
activities. EEG theta band has been associated with cognitive
processing [42] and sensory stimulus identification and
codification [43]. Alpha band oscillation is regarded as the
dominant oscillatory activity of the human brain and has
been associated with basic cognitive functions such as atten-
tion and memory [44]. Beta band oscillation is associated
with a variety of processes, including top-down communica-
tion [45], sensory sampling [46], sensorimotor integration
[47], and attention [48]. Simultaneous EEG-fMRI has been
widely adopted to investigate how changes in electrophysio-
logical oscillations may be linked to hemodynamic functional
interactions within and between brain networks [49, 50].

In our study, increased correlations with BOLD signal
were observed in parietal regions for both theta and alpha
band EEG signals from iM1 and in prefrontal regions for
alpha band EEG signal from iM1. These regions overlapped
with the well-known frontoparietal attention network,
including portions of the lateral prefrontal cortex and poste-
rior parietal cortex (illustrated in Figure 6(a)). The frontopar-
ietal network is thought to be involved in a wide variety of
tasks by initiating and modulating cognitive control abilities
[51] and also regulating among default mode network, dorsal
attention network, and central-executive networks [52, 53].
Previous simultaneous EEG-fMRI studies have reported that
theta and alpha power from EEG correlated with BOLD sig-
nals from frontoparietal networks encompassing brain
regions involved in an attention process [50, 54]. Meanwhile,
it has been reported that brain regions in the frontal-parietal
network are highly related to motor imagery BCI training
[55] and correlate with the performance of MI-BCI [56].
Increased correlations with the BOLD signal were also
observed in sensorimotor areas for beta band EEG signal
from iM1 in our study (illustrated in Figure 6(b)). Mantini
et al. indicated that the sensorimotor network is primarily
associated with beta oscillations [50].

Interestingly, the observed increased correlations were all
located in contralesional hemisphere, which suggested the
crucial role of interactions between hemispheres, especially
motor-related regions during a recovery process. A similar
interhemispheric connectivity increase was also seen in fMRI
studies. Longitudinal studies indicated that interhemispheric
functional connectivity could predict motor improvements
after stroke [15, 57]. Pichiorri et al. illustrated the more sig-
nificantly increased interhemispheric connections between
the ipsilesional motor area and contralesional frontal and
parietal areas from the beta band of resting EEG data in the
BCI-supported MI training group compared with the MI-
only group, which were speculated as related to BCI training
effects [58]. The similar increased interhemispheric partial
correlation found in our study might also be related to BCI
training effect. Furthermore, decreased correlations were
observed in the ipsilesional supramarginal gyrus and supe-

rior temporal gyrus across all the frequency bands and in
the ipsilesional precentral gyrus for theta band. It is also
interesting to note that all corresponding regions were
located in the ipsilesional hemisphere, which might be due
to the close distance to the lesion, which implied the func-
tional potential of intrahemispheric communication among
ipsilesional regions, consistent with some previous studies
[59]. Combining the regions found in the contralesional
hemisphere, it seems to provide some evidence that impaired
and intact hemispheres might play plausibly complementary
roles in responding to training intervention, which deserves
further investigation in the future.

For comparison, the conventional seed-based fMRI con-
nectivity analysis was also conducted. It could be seen that
most of the significant functional regions illustrated by the
conventional seed-based fMRI connectivity analysis could
also be detected by EEG-informed fMRI analysis whose
regressors were reconstructed from EEG source signals in
our study. Specifically, more functional regions derived from
our proposed method were revealed to be influenced by the
training intervention. We inferred that the reason for this
phenomenon should be linked to high temporal resolution
of EEG signal. This allowed more useful neural information
to be disentangled from different frequency bands because
there are abundant oscillatory activities in the human brain,
which could provide a comprehensive understanding of the
involvement of functional regions during the recovery pro-
cess. It is worth noting that as we expected, the significant
changes of the partial correlation with SMA were observed.
The enhanced partial correlation between contralesional

Sensorimotor network

(a)

(b)

12

3

Contralesional frontal-parietal network

X = –42 Y = 14 Z = 42

X = 14 Y = –17 Z = 67

Figure 6: The overlap with contralesional frontal-parietal network
and sensorimotor network. (a) The orange color-coded areas
indicated the contralesional frontal-parietal network. The azure
and violet color-coded areas indicated the regions which showed
significant partial correlation change for theta and alpha band
EEG signals from iM1. (b) The orange color-coded areas indicated
the sensorimotor network. The azure and violet color-coded areas
indicated the regions which showed significant partial correlation
change for theta and beta band EEG signals from iM1. The
contralesional frontal-parietal network and sensorimotor network
were extracted using independent component analysis (ICA), and
the detailed description of the extraction process is provided in
supplementary materials. The right side is the ipsilesional side.
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SMA and ipsilesional M1 was found in both conventional
and EEG-informed fMRI analyses. Park and colleagues have
shown that functional connectivity of ipsilesional M1 and
contralesional SMA at onset was positively correlated with
motor recovery at 6 months after stroke, which suggested
the significance of preservation of such partial correlation
[15]. Therefore, BCI-guided robot hand training might facil-
itate in restoring and enhancing the communication between
contralesional SMA and ipsilesional M1, which might be
beneficial for stroke motor recovery later.

4.3. Training Effect Correlated with Interhemispheric
Interaction Change. It could be noted that the obvious
pattern of interhemispheric interaction from a previous fMRI
analysis result existed. We expected that such interhemi-
spheric response should be closely related to training effect.
There is a growing awareness about linking the potential
motor function improvement after rehabilitation therapies
with neural characteristics derived from electrophysiological
signals to unfold the underlying mechanisms of the stroke
recovery and treatment gains. The majority of these studies
were focusing on linear indices, while nonlinear methods
have drawn more attention recently. It has been indicated
that the human brain is a nonlinear system [60], which can-
not be comprehensively explained solely by linear analysis.
The complex fluctuations of brain signals are not purely
random but reveal a temporal organization over multiple
time scales [61]. Hence, nonlinear methods have been proven
to be efficient tools in understanding the complexities of the
brain, and the measurement of EEG complexity could be
linked to the efficiency of brain functional abilities [61]. On
the other hand, different from fMRI, EEG has a higher tem-
poral resolution and contains abundant nonlinear dynamic
properties [62, 63]. Therefore, a variety of nonlinear methods
have been applied to EEG analysis [64].

It was also widely believed that the presence of lesion
following stroke would lead to an interhemispheric imbal-
ance where iM1 no longer inhibited cM1 and the normal
mutual communication between two hemispheres was
severely broken, which has shown to positively correlate with
motor impairment [65]. Therefore, the rebalance of the two
hemispheres is essential for stroke rehabilitation and stroke
recovery. It has been illustrated in some neuroimaging
researches that increased change in resting-state functional
connectivity of bilateral M1 coupled with better motor and
functional improvements after robot-assisted bilateral arm
therapy [23]. Pellegrino et al. found interhemispheric corre-
lation changes correlated closely with the acquisition of more
accurate hand control after robotic therapy [66]. Consistent
with previous studies, our study also demonstrated the signif-
icant correlation between FMA score increment and decline
in interhemispheric asymmetry, which indicated that more
rebalance would bring about more motor improvement.

4.4. Structural Substrate of the Bilateral M1-M1 Connection.
Due to the significance of interhemispheric rebalance in the
recovery process, we hypothesized that such interhemi-
spheric asymmetry change after training therapy should be
built on some structural base in human brains, and the most

intuitive one was the interhemispheric structural connectiv-
ity via transcallosal commissural projections. Hence, we
further explored the association between corresponding
asymmetry change and M1-M1 anatomical connection and
found that the interhemispheric asymmetry change signifi-
cantly correlated with the FA value of M1-M1 connection
fibers, which indicated that more interhemispheric rebalance
could be achieved for patients with lower M1-M1 anatomical
connection. In a recent study, it was observed that, among
stroke patients with good motor outcomes, those with more
severe impairment in M1-M1 anatomical connection had a
higher M1-M1 resting-state functional connectivity [67]
which implied the importance of restoring interhemispheric
interaction for patients with lower M1-M1 connection level
to achieve ultimate recovery goal. Together, these findings
suggested that our training intervention protocols or similar
therapies should be considered, especially for patients with
poor M1-M1 anatomical connection.

4.5. Limitations and Future Work. Several limitations need to
be noted in the current study. First of all, the sample size was
not large, which might limit the generalization power to
some extent. Second, most of our subjects were male which
might restrict our finding extended to female stroke popula-
tion although we assumed that the gender factor was less
likely to affect the result significantly. Another potential
concern was about the influence of the stroke lesion on the
reconstructed source data. It should be noted that, in the
current cohort of stroke subjects, most lesions were located
in the subcortical regions. Because of this, we limited the
source space to the cortex when performing the EEG distrib-
uted source estimation which was also widely adopted in
practice [68]. Meanwhile, we mainly extracted source signals
from iM1 and cM1 seeds which were also far away from the
lesion regions. Besides, the 64-channel EEG set-up could
already achieve an accurate description of the spatial distri-
bution of the stroke-related EEG, which guaranteed the qual-
ity of the source estimation to some extent [69]. Hence, in
our study, the influence of the stroke lesion on the quality
of the reconstructed source data was supposed to be negligi-
ble. However, more advanced algorithms that take the brain
lesions into account could be developed for more accurate
source estimation in future studies. Besides, due to the lack
of the control condition, it is quite difficult to check whether
and to what extent the observations were clearly linked to our
experimental intervention. Therefore, a control group with
pure robot hand training without BCI could be included to
clarify this vagueness in the future.

Recently, studies have proposed that surface-based
methods might improve the quality of cortical area localiza-
tion compared to the volume-based methods in fMRI analysis
[70]. However, it should be noted that studies on EEG-
informed fMRI with a surface-based method are quite scarce,
compared with a volume-based method. We also tried a pre-
liminary attempt on EEG-informed fMRI analysis with
surface-based method. The detailed analysis process and the
observed results were described in supplementary materials.
Furthermore, a more standard pipeline of EEG-informed
fMRI analysis with surface-based method should be developed
to fill this gap in the future.
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5. Conclusion

This study presented a paradigm to investigate the neural
correlates of motor recovery after training therapy based on
multimodality neuroimaging techniques, which could pro-
vide more complementary information for each other such
as oscillatory information derived from EEG signal. Some
significant brain regions linked to important functional
networks were observed to be sensitive to our integrated
BCI-guided robot-hand training intervention, although cau-
tions should be taken when interpreting these observations
due to the absence of a control group. The training effect
was found to be highly related to interhemispheric asymme-
try alternation. The underlying structural substrate might be
associated with M1-M1 anatomical connection. Finally, our
study provided valuable clinical information for both stroke
prognosis and understanding of regional communication in
the brain given training therapy.
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