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Abstract

Klebsiella pneumoniae is responsible for a wide range of clinical symptoms. How this bacterium adapts itself to ever-
changing host milieu is still a mystery. Recently, small non-coding RNAs (sRNAs) have received considerable attention for
their functions in fine-tuning gene expression at a post-transcriptional level to promote bacterial adaptation. Here we
demonstrate that Hfq, an RNA-binding protein, which facilitates interactions between sRNAs and their mRNA targets, is
critical for K. pneumoniae virulence. A K. pneumoniae mutant lacking hfq (Dhfq) failed to disseminate into extra-intestinal
organs and was attenuated on induction of a systemic infection in a mouse model. The absence of Hfq was associated with
alteration in composition of envelope proteins, increased production of capsular polysaccharides, and decreased resistance
to H2O2, heat shock, and UV irradiation. Microarray-based transcriptome analyses revealed that 897 genes involved in
numerous cellular processes were deregulated in the Dhfq strain. Interestingly, Hfq appeared to govern expression of many
genes indirectly by affecting sigma factor RpoS and RpoE, since 19.5% (175/897) and 17.3% (155/897) of Hfq-dependent
genes belong to the RpoE- and RpoS-regulon, respectively. These results indicate that Hfq regulates global gene expression
at multiple levels to modulate the physiological fitness and virulence potential of K. pneumoniae.
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Introduction

Since Klebsiella was first identified as a pathogen of pneumonia

in 1882, the remarkable ability of K. pneumoniae to cause a wild

range of human diseases, from urinary tract infections to life-

threatening systemic infections [1], has attracted increasing

attention to the pathogenesis of this bacterium. Not solely confined

inside the human host, K. pneumoniae has a great capacity for

adaptation to diverse environments, including the surface water,

sewage, soil, intestinal tracts of mammals [1], and even the interior

of plants [2]. How K. pneumoniae responds to environmental

changes and thus adapts itself to a specific niche becomes an

interesting question. Nevertheless, our knowledge with regard to

the regulatory mechanisms which this bacterium utilizes to ensure

its survival upon different conditions is very limited.

An ever-increasing number and variety of small non-coding

RNAs (sRNAs) are being identified to serve regulatory functions in

bacteria. Numerous cellular processes, such as iron homeostasis

[3], outer membrane proteins (OMPs) biogenesis [4], sugar

metabolism [5], quorum sensing [6] and various stress responses

[7], are subject to the post-transcriptional control exerted by

sRNAs. At present, most characterized sRNAs regulate gene

expression by basepairing with mRNAs. While some sRNAs are

cis-encoded having the potential to basepair mRNAs with long

stretches, the majority of regulatory sRNAs in Gram-negative

bacteria are trans-encoded and share limited complementarity

with their target mRNAs [8]. The trans-acting sRNAs are

functionally analogous to eukaryotic miRNAs that usually exert

negative regulation by repress protein levels through translation

inhibition, mRNA degradation, or both [9]. In many cases,

because of the limited complementarity, the trans-acting sRNAs

mediated regulation requires the chaperone protein Hfq to

facilitate RNA-RNA interactions.

Hfq assembles into homohexameric rings which are structurally

similar to those formed by Sm and Sm-like proteins in eukaryotic

cells [10]. Besides enhancing the formation of sRNA-mRNA

duplex, Hfq contributes to RNA regulation through interacting

with RNA turnover enzymes, including RNase E, polynucleotide

phosphorylase, and poly (A) polymerase [11]. Hfq has a broad and

diverse impact on bacterial physiology and virulence beyond its

original role as a host factor required for replication of Qb RNA

bacteriophage [12]. Defects including reduced growth, impaired

resistance to various stresses, and altered virulence are detected in

E. coli lacking hfq [13]. It has also been shown that virulence of

several pathogenic bacteria, including Brucella abortus [14],

Francisella tularensis [15], Vibrio cholera [16], Listeria monocytogenes

[17], Legionella pneumophila [18], Pseudomonas aeruginosa [19], Yersinia

[20,21], Salmonella Typhimurium [22], and uropathogenic E. coli

[23], were significantly attenuated by hfq mutations.

Recently, by sequence analysis, we have identified an hfq

homologue and sRNAs from K. pneumoniae genomes. The presence

of these homologues in various strains of K. pneumoniae, including
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NTUH-K2044 (NC_012731), MGH78578 (NC_009648), and

342 (NC_011283) suggests that this pathogen also utilizes the post-

transcriptional regulation mediated by Hfq to control various

cellular processes. However, the role of Hfq-sRNA mediated

regulation in K. pneumoniae is yet to be defined. In this study, we

aimed to understand how Hfq contributed to the control of gene

expression and the pathogenesis in K. pneumoniae. An hfq deletion

mutant was generated in K. pneumoniae CG43S. The loss of hfq

attenuated K. pneumoniae virulence in a mouse model, as well as

altered physiological characteristics of K. pneumoniae, including

production of capsular polysaccharides, stress tolerance, and

homeostasis of envelope. The microarray data demonstrated that

the expression of almost a fifth of K. pneumoniae genes was

drastically deregulated. It also suggested that beside directly

regulating individual genes expression at the post-transcriptional

level, by affecting sigma factor RpoS and RpoE, Hfq positioned

itself at the upper level of the gene regulatory hierarchy that

control the physiological fitness and virulence potential of

K. pneumoniae.

Results

Deletion of hfq attenuated K. pneumoniae virulence
The hfq gene is located in clockwise orientation at bps 446148–

446456 in the genome of K. pneumoniae strain NTHU-K2044 [24].

As in E. coli, it is located in the miaA-hfq-hflX cluster with three

promoter regions as indicated in Fig. 1A. The nucleotide sequence

of hfq region in K. pneumoniae CG43S is identical to that in strain

NTHU-K2044. Additionally, K. pneumoniae Hfq protein shares

85.4% sequence identity with its homologue in E. coli, and just like

Enterobacteriaceae Hfq protein, it has the conserved Sm1 and Sm2

motifs (Fig. 1B). To explore the physiological role of Hfq, an hfq

deletion mutant, named Dhfq, was constructed in the genetic

background of K. pneumoniae CG43S. Furthermore, two trans-

complemented strains, Dhfq-C1 and Dhfq-C2, which carried the hfq

gene under the control of pBAD promoter and its native

promoters, respectively, were generated as described in Materials

and Methods (Fig. 1A).

To examine whether Hfq was critical for virulence of K.

pneumoniae, competitive assays were performed in 8-week-old male

BALB/c mice by orally inoculating them with the bacterial

mixture containing equal amount of Dhfq and the parental strain

CG43S [25]. At 48 hour post-inoculation (hpi), colonization of the

small intestine by Dhfq was comparable to that by CG43S.

However, in the colon Dhfq was out-competed by CG43S with a

CI value of 0.36 (Fig. 2A). While all the CG43S-infected mice had

a bacterial burden approaching 102 to 104 CFU in the liver, Dhfq

was undetectable at the same time point (Fig. 2A). Diminishment

of Dhfq in the liver suggested that the disseminating ability of K.

pneumoniae to extra-intestinal organs was abolished by the absence

of hfq. To further investigate whether Hfq was involved in a

systemic infection of K. pneumoniae, groups of mice were

intraperitoneally inoculated with Dhfq or CG43S and their survival

was monitored for two weeks. The intraperitoneal inoculation

method allowed the infection to bypass the colonization step of K.

pneumoniae in the small intestine. When mice were inoculated with

104 CFU of CG43S, all of them died by day 2 (filled squares,

Fig. 2B). Even when the inoculums was decreased to 103 CFU,

60% of the mice still succumbed to the infection of CG43S (filled

diamonds, Fig. 2B). On the other hand, when mice were

inoculated with 104 CFU of Dhfq, 80% of the mice survived the

experimental period (open circles, Fig. 2B). An involvement of hfq

in a systemic K. pneumoniae infection was further supported by in vivo

competition results. As shown in Fig. 2C, Dhfq was out-competed

by CG43S at 6 h after intraperitoneal inoculation with the average

CI values of 0.11 and 0.01 in the liver and spleen, respectively

(Fig. 2C). The significant decline in the in vivo CI values might not

be due to an inability to compete under nutrient-limiting

conditions, as the growth of Dhfq approximated to that of

CG43S with the in vitro CI value of 0.82 in M9 medium.

Hfq affected global gene expression
Previous reports have shown that Hfq contributes to the

regulation of numerous cellular pathways in E. coli [23,26,27]. To

gain insight into the genes whose expression was regulated by Hfq

in K. pneumoniae, DNA microarray experiments were performed to

compare the transcriptome of Dhfq with that of CG43S. Probes

were made from the RNA of K. pneumoniae which were grown to

log-phase in LB medium at 37oC. Of 5,024 genes in the K.

pneumoniae genome, 897 genes (approximately 18%) showed a

.1.5log2 fold change (2.83-fold) in transcript abundance in Dhfq

when compared to that in CG43S. Among the 897 Hfq-dependent

genes, down-regulated genes (n = 610) were more than twice as up-

regulated genes (n = 287), suggesting that Hfq-mediated regulation

in K. pneumoniae was more frequently positive than negative.

Based on the genome annotation of NTHU-K2044 strain

(NC012731;[24]), the 897 Hfq-dependent genes belong to more

than 19 functional categories (Fig. 3 and Table S1 and S2). Several

categories of genes were more notably affected by the absence of

hfq. 34.3% (36/105) of the genes in the signal transduction

category were deregulated in the Dhfq strain, of which, 14 were up-

regulated and 22 were down-regulated. In addition, Hfq-

dependency accounts for 35.7%, 30.6%, 26.36%, and 18% of

genes belonging to the categories of energy production and

conversion, transport and metabolism of lipid, carbohydrate, and

amino acid, respectively (Fig. 3).

Hfq modulated the production of K2 capsular
polysaccharides

Capsule has been established as a virulence determinant in K.

pneumoniae. Interestingly, Dhfq failed to induce a systemic infection

in mice but exhibited an enhanced hypermucoviscosity phenotype

with 4.4-fold more K2-specific capsular polysaccharides (CPS)

production compared to CG43S. The quantity of K2-CPS was

restored to a normal level in Dhfq by the introduction of hfq-

complementing plasmid (Dhfq-C2) (Fig. 4A). As revealed by the

microarray analysis, abundance of the major transcript orf3-orf15

of K2 cps gene cluster (D21242.1; Fig. 4B) increased in the range of

2–4 folds in the Dhfq strain as compared to that in CG43S

(Fig. 4C). Furthermore, K2 cps genes have been shown to be

regulated by transcriptional activators, RcsA [28] and RmpA [29],

whose transcripts both significantly increased in the absence of hfq.

These results suggested that Hfq may modulate the production of

K2 CPS by negatively regulate the expression of RmpA and RcsA

at the post-transcriptional level.

A loss of hfq altered expression profiles of envelope
proteins

Previous studies indicated that lacking hfq caused accumulation

of outer membrane proteins and thus induced an envelope stress in

UPEC, Salmonella, and Vibrio [16,22,23]. To examine whether a

loss of hfq affected the expression profiles of K. pneumoniae envelope

proteins, two-dimensional gel analysis was utilized to compare

extracytoplasmic proteins which were purified from cultures of

Dhfq and CG43S grown aerobically in LB medium. As shown in

Fig. 5A, a significant difference in the expression of extracyto-

plasmic proteins between Dhfq and CG43S was noted. Among 94

Hfq in K. pneumoniae Gene Expression and Virulence
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proteins analyzed, 32 proteins were up-regulated and 10 were

down-regulated in the absence of Hfq. Analyses of outer

membrane proteins in one-dimensional gels revealed an increase

in the protein levels of OmpF (OmpK36) and a decrease of OmpC

(OmpK35) in Dhfq as compared to those in CG43S and in the

trans-complemented strain Dhfq-C2 (Fig. 5B). These changes were

consistent with the microarray data that the deletion of hfq caused

the levels of ompF mRNA to rise by 23.9 fold and the ompC mRNA

to drop by 3.3 fold (Fig. 5C).

Dhfq lost its stress tolerance to H2O2, heat shock, and UV
radiation

To determine whether Hfq was required for K. pneumoniae to

cope with stresses that it may encounter inside the host, the growth

of Dhfq was characterized in various stressful conditions. As shown

in Fig. 6, while Dhfq grew normally in LB medium (Fig. 6A), the

growth of Dhfq lagged behind that of CG43S by approximately

one hour and reached a lower density at saturation when the

strains were grown in minimal medium (Fig. 6B), suggesting that

the loss of Hfq caused only minor effects on K. pneumoniae response

to nutrient deficiency. On the other hand, the loss of hfq rendered

K. pneumoniae incapable of surviving after 10 minutes of treatment

with H2O2 (Fig. 6C) or heat shock (Fig. 6D), and also increased the

sensitivity of K. pneumoniae to ultraviolet (UV) irradiation (Fig. 6E).

The reduced tolerance of Dhfq to the stresses was restored to the

wild-type level by the introduction of the hfq-complementing

plasmid driven by its native promoters (Dhfq-C2) (Fig. 6C, D, and

E).

Overlap among Hfq-, RpoS-, and RpoE-regulons
Our microarray data showed that the transcript level of rpoS was

down-regulated by 3.6-fold in the absence of hfq (Fig. 7A). The

decrease of rpoS transcripts in Dhfq was restored to the wild-type

level by the complementation of hfq under the control of pBAD

promoter and the restoration was confirmed by Northern blotting

analysis (Fig. 7B). In accordance with this, the protein level of

RpoS was down-regulated by the absence of Hfq (Fig. 7C). To

determine whether the virulence attenuation and phenotypic

alterations observed in the Dhfq strain was attributed to the

downregulation of rpoS by the loss of Hfq, an rpoS deletion mutant

Figure 1. K. pneumoniae hfq. (A) Genomic organization of hfq gene in K. pneumoniae. In the Dhfq strain, the coding region of hfq was deleted and
replaced by a chloramphenicol cassette amplified from pACYC184. The coding region of hfq, represented as a light grey bar, was cloned to pBAD202,
under the control of arabinose-inducible promoter, to give the complementation plasmid pYC343. The grey bar indicates the region of hfq together
with its native promoter cloned to pACYC184 yielding the complementation plasmid pYC457. Three promoter regions of hfq are indicated as P1, P2,
and P3, respectively. (B) Alignment of hfq sequences of the Gram-negative pathogens with their Hfq functionally identified. The highly conserved
SM1 and SM2 motifs are indicated as black and grey lines, respectively.
doi:10.1371/journal.pone.0022248.g001
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(DrpoS) was generated in K. pneumoniae CG43S. Unlike Dhfq, whose

virulence to mice was significantly attenuated, DrpoS behaved

much like CG43S as it caused 80% mortality of mice within one

week (open diamonds, Fig. 2B). DrpoS also displayed wild-type-

level tolerance of K. pneumoniae in response to heat shock and UV

irradiation (Fig. 6D and 6E). On the other hand, the loss of rpoS

did abolish the ability of K. pneumoniae to conquer H2O2 stress

(Fig. 6C). The results suggested that the downregulation of rpoS in

the Dhfq strain contributed partially to the defects on stress

tolerance resulted from the loss of hfq, but could not by itself

attenuate the virulence of K. pneumoniae. Meanwhile, the expression

of RpoE had also been examined. Although the transcript level of

rpoE in the Dhfq strain was found similar to that in CG43S in the

microarray analysis, Western blotting analysis revealed that the

absence of hfq resulted in decreased protein level of RpoE at early-

and mid-log phase (Fig. 7C). An rpoE deletion mutant (DrpoE) was

generated. Unlike DrpoS, DrpoE was totally avirulent when given

intraperitoneally with the same inoculums that caused 80%

mortality in the DrpoS-infected group (open diamonds, Fig. 3B).

DrpoE was as sensitive as Dhfq in its responses to heat shock and

UV irradiation (Fig. 6D and 6E), whereas it exhibited a wild-type-

level resistance to H2O2 (Fig. 6C). These results suggested that the

virulence attenuation as well as the loss of tolerance to heat shock

and UV irradiation in Dhfq may result from the decrease of RpoE

protein by the lack of hfq.

To further determine whether the set of Hfq-dependent genes

overlapped with those belonging to the RpoS- and/or RpoE-

regulon, genes whose transcripts were deregulated significantly

upon the overexpression of RpoS or RpoE were identified. As

revealed by microarray analyses, among the 610 down-regulated

Figure 3. Functional classification of Hfq-dependent genes. Microarray-based transcriptome analyses revealed 897 ORFs that are significantly
deregulated in Dhfq as compared to that in CG43S. Based on the genome project of K. pneumoniae NTHU-K2044 (NC012731;[24]), the 897 Hfq-
dependent genes were grouped into different functional classes. The values represent the percentage of genes affected by Hfq in Dhfq versus CG43S
within the respective class. Black bars: up-regulated genes; grey bars: down-regulated genes.
doi:10.1371/journal.pone.0022248.g003

Figure 2. K. pneumoniae virulence attenuated by the absence of hfq. (A) Bacterial loads in small intestine, colon, and liver determined at 48 h
after oral inoculation with suspension containing equal amount of K. pneumoniae CG43S (56108 CFU) and Dhfq (56108 CFU). Filled and open circles
represent CG43S and Dhfq retrieved from five BALB/c mice, respectively. (B) Survival of K. pneumoniae-infected mice. Groups of five mice were
inoculated by intraperitoneal injection with 26103 CFU of CG43S (filled diamonds), or with 16104 CFU of CG43S (filled squares), Dhfq (open circles),
DrpoS (open diamonds), or DrpoE (open squares), and monitored for 14 days. (C) Groups of six mice were inoculated intraperitoneally with bacterial
suspension containing equal amount of K. pneumoniae CG43S (16103 CFU) and Dhfq (16103 CFU). Bacterial loads of CG43S (filled circles) and Dhfq
(open circles) in spleen and liver were determined at 6 h post-inoculation. Horizontal bars indicate geometric means. The limit of detection was
approximately 10 CFU. Samples which yielded no colonies were plotted having the value as 10 CFU g21 tissues. Competitive index is defined as Dhfq

output/CG43Soutput 4 Dhfq input/CG43Sinput. The indicated P values were determined using the Student’s t-test.
doi:10.1371/journal.pone.0022248.g002
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genes identified in Dhfq, the transcript abundance of 90 and 109

genes were significantly affected by overexpression of RpoE and

RpoS (Table S1), while 85 and 46 genes out of the 287 up-

regulated genes were under control of RpoE and RpoS,

respectively (Table S2). Overall, 19.5% (175/897) and 17.3%

(155/897) of Hfq-dependent genes belong to the RpoE- and

RpoS-regulon, respectively, and 4.8% (43/897) of Hfq-dependent

genes were presented in both regulons. These results suggested

that the Hfq-mediated downregulation of RpoS and RpoE was

responsible for the Hfq-dependency for 32% of the 897 genes

identified in the Dhfq strain.

Hfq-dependent changes in transcript abundances of
sRNAs in K. pneumoniae

As an RNA chaperone which is critical in stabilizing sRNA-

mRNA complexes, Hfq is required for the trans-acting sRNAs to

regulate the expression of their target mRNAs [30]. Most of the

Hfq-dependent sRNAs are less stable and no longer regulate their

target mRNAs in E. coli lacking hfq [31]. Therefore, it was likely

that the abundance of a number of Hfq-dependent genes were

affected by the change of sRNA abundance in the absence of Hfq.

To test this possibility, 33 K. pneumoniae sRNA genes which have

homologues in E. coli K-12 were identified from the genome of K.

pneumoniae NTHU-K2044 (Table 2) and their transcripts abun-

dances was examined by microarray analyses. As shown in

Table 2, 25 K. pneumoniae sRNAs were downregulated by the

absence of Hfq, of which, 11 sRNAs (GcvB, MicF, RyeB, RyeE,

RygB, RyhA, RyiA, SraB, MicM, SroC, and SroG) exhibited .3-

fold lower transcript abundance in Dhfq than in CG43S. Among

them, the diminishment in transcript abundance of MicF was

confirmed by Northern blotting (Fig. 7D). In accordance with the

finding in E. coli that MicF inhibited the translation of ompF

mRNA [4], the decline of MicF in the Dhfq strain derepressed the

negative control of ompF transcript and consequently enhanced the

expression of K. pneumoniae OmpF protein (Fig. 7A and 7B). The

identification of sRNAs that required Hfq for maintaining their

abundance in K. pneumoniae suggested that a subset of K. pneumoniae

genes whose expression changed in the absence of Hfq were

controlled by the Hfq-dependent sRNAs.

Discussion

Small RNAs, along with Hfq, are emerging as regulators that

enable bacteria to modulate gene expression in response to

changing environments. In this study, we demonstrate that Hfq

modulates the expressions of a wide range of genes and thus

regulates the physiology and virulence of K. pneumoniae. In the

absence of Hfq, K. pneumoniae drastically lost its ability to

disseminate into extra-intestinal organs, and was unable to induce

a systemic infection. Comparison of the Dhfq strain with its

parental strain revealed that several physiological characteristics

were altered due to the Hfq deficiency, including production of

capsular polysaccharides, envelope protein expression profiles, and

tolerance to H2O2, heat shock, and UV irradiation. Genome-wide

transcriptome analyses showed that 897 genes involved in

numerous cellular processes had .2.83-fold change in their

transcript abundance in Dhfq. The apparent influence of Hfq on

almost a fifth of K. pneumoniae genes indicated that Hfq acted as a

global regulator. Since RpoS and RpoE were found to be down-

regulated in Dhfq, Hfq may also govern gene expression indirectly

in K. pneumoniae through its positive effect on the availability of

sigma factors. The idea was supported by the microarray data that

32% of Hfq-dependent genes belong to the RpoE- and/or RpoS-

regulon. Moreover, reduction on the transcript levels of 25 K.

pneumoniae sRNAs (out of 33 known sRNAs) in Dhfq indicated that

a large proportion of genes that were affected in the absence of

Hfq were mediated through the action of sRNAs.

The majority of the known sRNA-mediated regulation is

negative [8,30]. As shown in Fig. 8A, with the aid of Hfq, sRNAs

bind to the 5’-UTR of a single or multiple target mRNAs, occlude

the ribosome-binding site, prevent ribosome association, and thus

inhibit translation initiation. In many cases, the sRNA-mRNA

duplex is then subject to degradation [32]. Hfq recruits the RNA

degradosome, consisting of RNase E, PNPase, RhlB helicase, and

enolase, and RNA degradation is triggered by the RNase E

cleavage at sites distal from the pairing region [11]. Based on this

model, we speculate that the absence of Hfq relieves the sRNAs-

mediated negative regulation and elevates the transcript abun-

dances of genes that are targeted by certain sRNAs. In line with

this assumption, a significant number of 287 up-regulated genes

identified in Dhfq (Table S2) might be subject to this kind of Hfq-

sRNA-mediated negative regulation in K. pneumoniae. On the other

hand, unlike eukaryotic miRNAs, there are three bacterial sRNAs,

DsrA, RprA, and RyhA, have been identified to activate the

expression of rpoS through anti-antisense mechanism whereby

basepairing of the sRNAs disrupts an inhibitory secondary

structure formed by the rpoS mRNA leader sequence [30,33]. As

shown in Fig. 8B, derepression of rpoS translation increases the

availability of RpoS (sS), and activates the expression of genes

belonging to the rpoS regulon. Therefore, due to a loss of positive

regulation by sRNAs, the absence of Hfq caused the reduced

translation efficiency of rpoS (Fig. 7A–C). This result is consistent

with some of the changes in the gene expression profile observed in

Dhfq, as shown by microarray data that 17.3% of Hfq-dependent

genes fall in the RpoS regulon. In addition to the influence on

translational efficiency of rpoS, the decreased transcript level of rpoS

suggested that Hfq-dependent regulation of rpoS in K. pneumoniae

was more complicated than that in E. coli and Salmonella [30,33].

Although the mechanism requires further studies to clarify, the

existence of Hfq-dependent transcriptional activators of rpoS or the

possibility that a loss of hfq affects the stability of rpoS transcript

may explain this result.

Hfq acts as a global regulator in a variety of pathogens [9],

however, the spectrum and severity of mutant phenotypes

observed upon the deletion of hfq varied among the different

pathogens so far analyzed. In S. Typhimurium and E. coli [33,34],

the involvement of Hfq in bacterial virulence was indicated by its

requirement for translation derepression of RpoS. In K. pneumoniae,

Figure 4. Hfq modulated the production and expression of K2 CPS. (A) Enhancement of K2 capsular polysaccharides by the deletion of hfq.
Capsular polysaccharides were extracted from overnight-cultured K. pneumoniae CG43S, Dhfq, and the complementation strain Dhfq-C2 by the
method described previously [56]. The amount of K2 CPS was reflected by the uronic acid content that was determined by the method described [57]
from a glucuronic acid standard curve and expressed as micrograms per 109 CFU. The indicated P values were determined using the Student’s t-test.
(B) Genomic organization of K2 cps gene cluster which is depicted from that in K. pneumoniae Chedid (NCBI accession no. D21242.1). (C) Fold
changes in transcript abundances of K2 cps genes detected by microarray (black bars) and QPCR (grey bars) in Dhfq relative to that in CG43S are
indicated. (D) Fold changes in transcript abundances of CPS-regulating genes, rcsA, rcsB, rcsC, and rmpA detected by microarray (black bars) and
QPCR (grey bars) in Dhfq relative to that in CG43S are indicated.
doi:10.1371/journal.pone.0022248.g004
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Figure 5. Hfq modulated the expression profiles of envelop proteins. Two hundred micrograms of extracytoplasmic proteins isolated from
overnight-cultured K. pneumoniae CG43S (A) or Dhfq (B) were electrophoresized with two-dimension gels. Images of silver-stained gels analyzed with
ImageMasterTM 2D Platinum Version 5.0 are shown. L1-3: landmarks for comparison. Proteins whose expression levels are significantly higher in CG43S
or Dhfq are indicated with a red cross. (C) Outer membrane proteins were extracted, fractionated by 12% of SDS-PAGE gel, and silver-stained. The
portion of the gel with bands corresponding to the major porins, OmpC, OmpF, and OmpA, is presented. (D) Fold changes in transcript abundances of
ompK17, ompF, ompC, ompR, and ybfM detected by microarray (black bars) and QPCR (grey bars) in Dhfq relative to that in CG43S are indicated.
doi:10.1371/journal.pone.0022248.g005
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although the expression of rpoS (Fig. 7A and 7B) and the RpoS-

mediated oxidative stress response (Fig. 6C) was affected by the

absence of Hfq, Dhfq was far more attenuated in causing a systemic

infection than was DrpoS (Fig. 2B). The dispensability of rpoS for K.

pneumoniae virulence suggests that the Hfq-dependent control of

virulence genes in K. pneumoniae is largely mediated through an

RpoS-independent manner, which is in accordance with previous

studies that the virulence defect of hfq mutants in V. cholera and B.

abortus is independent of the effects on RpoS expression [14,16,35].

In addition to RpoS, the expression of envelope stress sigma

factor, RpoE, was also affected by the absence of Hfq. While

Dhfq lost its capacity to tolerate oxidative stress as DrpoS

(Fig. 6C), the increased sensitivity to heat shock and UV

irradiation in the absence of Hfq more closely resembled the

phenotypes observed in DrpoE (Fig. 6D and 6E). The Hfq-

associated regulation on RpoE expression varied among

different bacteria. Previous studies indicated that Hfq negatively

regulated the expression of RpoE in E. coli [36], S. Typhimur-

ium [22], and V. cholerae [16]. However, in Rhodobacter sphaeroides

[37] and Sinorhizobium meliloti [38], Hfq exerted a positive effect

on RpoE. Interestingly, in K. pneumoniae, despite the transcript

abundance of rpoE was slightly increased in the absence of Hfq

(Fig. 7A), the protein level of RpoE was decreased in the Dhfq

strain and was elevated by the introduction of an Hfq-

complementation plasmid (Fig. 7C). The result indicated that

the expression of RpoE might be regulated by Hfq at multiple

levels. The deletion of hfq in K. pneumoniae caused modification of

the expression profiles of OMPs. As shown in the proteomic

result, 10 extracellular proteins were down-regulated and 32

proteins were up-regulated (Fig. 5A and 5B). The disturbance of

envelope homeostasis in Dhfq could induce the envelope stress

and release RpoE from the anti-sigma factor RseA [36]. Upon

the overexpression of RpoE, as revealed by microarray data, the

transcriptional level of rpoE-rseA-rseB operon and RybB were

respectively elevated to .9-fold and 300-fold over the vector

control, suggesting that the increased anti-sigma factor RseA

and RseB as well as the RpoE-inhibiting sRNA, RybB, might

exert a feedback control by down-regulating the elevated level of

RpoE protein at either post-transcriptional or post-translational

level. The decrease of RpoE protein in Dhfq might be an

outcome of the net effect from the induction of RpoE by the

envelope stress and the subsequent feedback control of RpoE by

its negative regulators, RseA, RseB, and RybB. However, as the

rybB transcript abundance was slightly reduced in Dhfq with a

fold change of -1.39 (Table 2), there might be some other Hfq-

dependent factors involved in the negative regulation of RpoE

in K. pneumoniae. Although further studies are needed to unveil

the underlying mechanism, the decreased RpoE level in Dhfq

can partially explain the overlap of stress responsiveness and

virulence attenuation observed among Dhfq and DrpoE (Fig. 2B).

In our oral infection mouse model [39], K. pneumoniae lacking

hfq retained its intestine-colonization ability but failed to

disseminate into extra-intestinal tissues that attenuated the

induction of a systemic infection (Fig. 1). Why did not the loss of

Hfq abrogate the ability of K. pneumoniae to establish intestinal

colonization? Transcripts abundances of genes belonging to the

type III fimbriae-encoding operon were significantly up-

regulated in the absence of Hfq (Table S2). As demonstrated

in our previous study that the type III fimbriae was a major

factor for K. pneumoniae to establish its intestinal colonization

[39], the increased production of type III fimbriae in Dhfq may

compensate for the possible defects on intestinal colonization

caused by the deletion of Hfq and can therefore render Dhfq

with the wild-type-level colonizing ability. As the overproduc-

tion of RpoS caused 3-10 fold decrease in the transcripts

abundances of type III fimbriae-encoding genes, the Hfq-

dependent control on type III fimbriae expression might be

attributed to the derepression of rpoS in Dhfq (Table S2). On the

other hand, since capsule had been established as a virulence

determinant for K. pneumoniae pathogenesis, it was interesting

that Dhfq produced more K2 capsular polysaccharides, but

failed to develop a systemic infection. It seems that the

enhancement of capsular polysaccharides may not be advanta-

geous in all cases. As our microarray data revealed that almost a

fifth of genes (123/516; 23.8%) of the carbohydrate transport

and metabolism category were significantly downregulated in

Dhfq (Fig. 3), the overproduction of capsular polysaccharides in

the absence of Hfq may unbalance the metabolic flow of carbon

sources and therefore affects the bacterial physiology under a

nutrient-deprivation surrounding, such as inside the host during

infections. Since K. pneumoniae can survive upon different

circumstances, according to the result, we speculate that Hfq

may modulate the expression of capsular polysaccharides to set

a balance between the carbon usage and the production of

capsule, which benefits this bacterium with an adaptive

potential to switch among a panel of growth programs.

Most sRNAs have negative impacts on gene expression in

bacteria. Genes whose expression is subject to the control of

sRNAs are believed to be up-regulated by the loss of hfq.

Interestingly, in our study, the number of genes that were down-

regulated (n = 610) was more than twice the number of up-

regulated genes (n = 287) in Dhfq K. pneumoniae. The positive

effects of Hfq on gene expression in K. pneumoniae may be

mediated through upregulation of sigma factors, or repression of

sRNA-controlled transcriptional repressors, or through an sRNA-

independent manner. It has been shown that Hfq per se can bind

with mRNAs, tRNAs [40], and various proteins. In addition to

direct interacting with Qb phage RNA [41], Hfq binds its own

mRNA that inhibits the formation of translational initiation

complex to autoregulate its own expression [42]. A variety of

proteins, including ribosomal proteins, RNases, helicases, Rho-

factor, RNA polymerase, protein H-NS, polynucleotide phos-

phorylase (PNPase), and poly(A)polymerase (PAP I), exhibited a

direct interaction with Hfq [32,43,44,45,46]. We speculate that

Hfq can contact with proteins to influence K. pneumoniae gene

expression. As shown in Fig. 8C, Hfq can recruit the RNA

degradosome to stimulate RNA degradation. Hfq can alter

mRNA stability by promoting PAP I-mediated polyadenylation

[47,48,49]. In the presence of S1 protein, Hfq may interact with

RNA polymerase to modulate transcriptional activities [46].

Although the majority of Hfq is located in the cytoplasm, it has

been found that a minor fraction of Hfq associates with the

nucleoid that preferentially binds curved DNA. This observation

suggests that with the dual binding capacity to both DNA and

Figure 6. Stress tolerance attenuated in K. pneumoniae lacking hfq, rpoS, or rpoE. Growth of K. pneumoniae CG43S (filled diamonds), Dhfq
(open squares), and Dhfq-C2 (filled circles) in (A) LB and (B) M9 media is determined by CFU calculation at indicative time points. Survival of K.
pneumoniae CG43S, Dhfq, Dhfq-C2, DrpoS, and DrpoE, upon the treatment of 200 mM H2O2 for 10 minutes (C), 50uC shock for 10 minutes (D), or UV
irradiation (1 J/cm2) (E) are determined by CFU calculation and presented as (CFU after treatment/CFU before treatment) 6100%. * P,0.05,
determined with the Student’s t-test.
doi:10.1371/journal.pone.0022248.g006
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Figure 7. Hfq affected the expression of sigma factors and small RNAs. (A) Fold changes in transcript abundances of rpoH, rpoD, rpoS, rpoE,
and rpoN detected by microarray (black bars) in Dhfq relative to that in CG43S are indicated. (B) Transcripts of rpoS extracted from CG43S, Dhfq, and
Dhfq-C1 were detected by Northern blotting with an rpoS-specific biotin-labeled riboprobe. (C) RpoS proteins isolated from the LB-grown stationary-
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RNA, Hfq may have a role in functional coordination between

transcription and translation [50]. Taken together, the impact of

Hfq on global gene expression that controls the physiological

fitness and virulence potential of K. pneumoniae shown by this work

emphasizes the role of Hfq as a pivotal coordinator for

integrating a diversity of regulatory circuits and also the potential

that Hfq may serve as a scaffold molecule for the design of novel

antimicrobial drugs.

Materials and Methods

Ethics Statement
All animal experiments were performed in strict accordance

with the recommendation in the Guide for the Care and Use of

Laboratory Animals of the National Laboratory Animal Center

(Taiwan), and the protocol was approved by the Animal

Experimental Center of Chung-Shan Medical University (Permit

number: 694). All surgery was performed under anesthesia, and

all efforts were made to minimize suffering.

Strains, plasmids, and primers
Bacterial strains, plasmids, and primers used in this study are

listed in Table 1. E. coli and K. pneumoniae CG43 and its derivatives

were propagated in Luria-Bertani (LB) broth. Gene-specific deletion

mutants were generated with an allelic exchange technique as

described previously [51]. In general, approximately 1,200-bp DNA

fragments flanking the coding region of genes to be deleted (hfq or

rpoE) were amplified with specific primer sets, p239/p240 and

p241/p242 for hfq deletion; p251/p252 and p253/p254 for rpoE

deletion and cloned into the suicide vector, pKAS46 [52]. To

facilitate the positive selection of transconjugants, a chloramphen-

icol-resistant or a tetracycline-resistant cassette which was amplified

from pACYC184, cloned into the inserts on pKAS46 constructs to

replace the deletion region, and the resulting plasmids for

homologous recombination of hfq and rpoE were pYC324 (Cmr)

and pYC445 (Tcr), respectively. After the occurrence of double

crossover, the chloramphenicol-resistant or tetracycline-resistant

colonies were selected, and the deletions of hfq or rpoE were verified

by PCR and Southern blot analysis. The rpoS deletion mutant

(DrpoS) which was generated as described [53] was kindly provided

by Dr. Lin, G.T. (China Medical University, Taiwan).

The entire 309 bp hfq coding sequence and 745 bp of upstream

sequence were amplified from CG43 chromosomal DNA with

primer set p403/p285 and cloned into pACYC184 to generate

pYC457. The coding sequences of hfq, rpoS, and rpoE were

amplified with primer sets, p284/p285, p903/p904, and p909/

p910, respectively, and cloned into pBAD202 (Invitrogen) to

generate pYC343, pYC351, and pYC413. The protein of Hfq,

RpoS, or RpoE with a C-terminally fused His6-tag was induced by

addition of 0.02% arabinose and verified using Western blot

analysis with anti-His antibodies (Santa-Cruz). All these constructs

were introduced into K. pneumoniae CG43S and its mutants through

electroporation.

Mouse infections
Eight-week-old male BALB/c mice (National Laboratory

Animal Center, Taiwan) were injected intraperitoneally with

100 ml of bacterial suspension containing 104 or 26103 CFU of

mid-log K. pneumoniae CG43S or mutants. The survival rate of the

infected mice was monitored daily for 2 weeks. Mortality rate and

mean number of days to death (MDD) were determined by

Kaplan-Meier analysis using Prism4 for Windows (GraphPad); P

values of ,0.05 were considered statistically significant. To further

examine virulence attenuation of the Dhfq strain, a competitive

assay was performed as described previously [54]. One hundred

microliters of bacterial suspension containing equal amounts of K.

pneumoniae CG43S and Dhfq was used to infect 8-week-old male

BALB/c mice through an oral or an intraperitoneal route with

inoculums of 16109 or 26103 CFU, respectively. At indicative

time points after inoculation, viable counts of CG43S and Dhfq in a

particular mouse tissue were determined using M9 agar supple-

mented with or without chloramphenicol (10 mg/ml). Competitive

index (CI) values were calculated as described [54].

Microarray construction
K. pneumoniae microarray was customized using Agilent eArray

5.0 program according to the manufacturer’s recommendations.

The customized microarray (4644K) contained spots in eight

duplicates with 5,076 gene-specific oligonucleotides (45–60 mers in

length) representing 5,024 genes in K. pneumoniae NTHU-K2044

genome (NCBI accession no. NC_012731)[24], 33 sRNA-coding

candidates in K. pneumoniae (as predicted by homologues of E. coli

K12), and 19 K2 cps genes (NCBI accession no. D21242.1).

RNA isolation, labeling, hybridization, and scanning
Total RNA was isolated from 20 ml of log K. pneumoniae culture

by using Tri-reagent (Molecular Research Center), and purified by

QIAGEN RNeasy cleanup kit. The total RNA yield was

quantified by nanodrop UV spectroscopy (Ocean Optics) and

the quantity was verified by gel electrophoresis and analyzed on a

RNA 6000 Nano LabChip (Agilent Technologies) using a 2100

bioanalyzer (Agilent Technologies). cDNA was synthesized from

1 mg of enriched mRNA with Cyscribe 1st-strand cDNA labeling

kit, (GE Healthcare) and labeled with Cy3 or Cy5 (CyDye,

PerkinElmer). The fluorescently labeled cDNA was purified with

QIAGEN RNeasy cleanup kit and fragmented in fragmentation

buffer (Agilent). The correspondingly labeled cDNA was mixed in

GEx Hybridization Buffer HI-RPM (Agilent). Hybridization was

performed in an Agilent microarray Hybridization Chamber for

17 h at 60uC. After hybridization, the slides were washed in Gene

Expression Wash Buffer (Agilent) and dried by nitrogen gun

blowing. Microarrays were scanned using an Agilent microarray

scanner at 535 nm for Cy3 and 625 nm for Cy5. Feature

extraction 9.5.3 and image analysis software (Agilent Technolo-

gies) was used to locate and delineate every spot in the array, to

integrate each spot’s intensity, and to normalize data using the

rank-consistency-filtering Lowess method. The data points which

had flag value of non-zero or a signal-to-noise ratio smaller than

2.6 were masked. The remaining data were log2 transformed and

averaged for each gene. All microarray data reported in the study

is described in accordance with MIAME guidelines and has been

deposited in NCBI’s Gene Expression Omnibus (GSE 29448). For

selection of genes which were significantly regulated by Hfq,

phase cultures of CG43S, Dhfq, and Dhfq-C2 with or without the induction of 0.02% arabinose were detected by Western blotting with rabbit anti-
RpoS antibody. The levels of OmpA were detected with rabbit anti-OmpA antibody as a loading control. (D) RpoE proteins isolated from the LB-
grown cultures of CG43S, Dhfq, and Dhfq-C1 at indicated time points were detected by Western blotting with rabbit anti-RpoE antibody. (E)
Transcripts of MicF extracted from the LB-grown cultures of CG43S and Dhfq at indicated time points were detected by Northern blotting with a
MicF-specific biotin-labeled riboprobe.
doi:10.1371/journal.pone.0022248.g007
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Figure 8. Schematic representation of possible mechanisms of Hfq-mediated regulation. (A) sRNA-dependent negative regulation.
Hfq-dependent sRNAs bind their target mRNAs with partial complementarity that occlude the ribosome binding sites, prevents ribosome association
and thus represses translation. In many cases, translation inhibition can be coupled to RNA degradation. Hfq recruits RNA degradosome and RNA
degradation will be achieved at distal sites from the paring region. (B) Positive regulation of rpoS translation. Hfq-dependent sRNAs, such as
DsrA, RprA, and RyhA, relieve an inhibitory secondary structure formed by the rpoS mRNA leader sequence. Derepression of rpoS translation increases
the availability of RpoS (sS) and thus activates the expression of genes belonging to the rpoS regulon. (C) Regulation through protein-protein
interactions. Hfq may contact with proteins to affect cellular processes. Hfq can recruit RNA degradosome, consisting of RNaseE, RhlB helicase,
enolase, and PNPase, to stimulate the RNA degradation of sRNA-mRNA duplex. Hfq may alter mRNA stability by promoting PAP I-mediated
polyadenylation. In the presence of S1 protein, Hfq may interact with RNA polymerase to modulate transcriptional activities. A minor fraction of Hfq,
which was found to associate with the nucleoid, may bind curved DNA, affect negative supercoiling, and then coordinate the transcription and
translation activities.
doi:10.1371/journal.pone.0022248.g008
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RpoE, or RpoS, a 1.56log2 fold change (approximately 2.83-fold)

and pValueLogRatio ,0.05 were used as thresholds.

Primer design and Real-time PCR
To prepare a cDNA pool from each RNA sample, total RNA

(5 mg) was reverse transcribed using MMLV reverse transcriptase

(Promega). Each cDNA pool was stored at 220uC until further

real-time PCR analysis. Specific oligonucleotide primer pairs were

selected from Roche Universal ProbeLibrary for real-time PCR

assays. The specificity of each primer pair was validated by

performing a RT-PCR reaction using pooled K. pneumoniae CG43S

cDNA template, and the size of the PCR product was checked by

a DNA 1000 chip (Agilent Technologies) run on Bioanalyzer 2100

(Agilent Technologies). Primer pairs of generating predicted

product size and no other side-product were chosen to conduct

the following real-time RT-PCR reaction.

Real-time PCR reactions were performed on the Roche

LightCycler Instrument 1.5 using LightCycler&reg FastStart

DNA MasterPLUS SYBR Green I kit (Roche). Briefly, 10 ml

reactions contained 2 ml Master Mix, 2 ml of 3.75 mM or 2 ml of

Table 1. Strains, plasmids, and primers used in this study.

Description Source

Strains

K. pneumoniae

CG43 Wild type bacteremia isolates [58]

CG43S CG43 Smr [25]

Dhfq CG43S Dhfq::Cmr This study

Dhfq -C1 Dhfq complemented with pYC343 This study

Dhfq -C2 Dhfq complemented with pYC457 This study

DrpoS CG43S DrpoS C.T. Lin

DrpoE CG43S DrpoE::Tcr This study

E. coli

S17-1lpir hsdR recA pro RP4-2 (Tc::Mu; Kan::Tn7) [52]

TOP10 F2 mcrA D(mrr-hsdRMS-mcrBC) lacZDM15 rpsL (Smr) endA1 Invitrogen

Plasmids

pKAS46 Homologous recombination vector, rpsL couterselection [52]

pBAD-202 Arabinose-inducible TOPO expression vector Invitrogen

pACYC184 Low-copy-no. vector containing Apr and Kanr cassettes New England Biolabs

pYC324 2.4-kb fragment containing a 309-bp deletion in hfq locus cloned into pKAS46 This study

pYC343 hfq coding region cloned from CG43 into pBAD-202 This study

pYC351 rpoS coding region cloned from CG43 into pBAD-202 This study

pYC413 rpoE coding region cloned from CG43 into pBAD-202 This study

pYC457 Full length hfq with native promoter ligated into pACYC184 backbone This study

pYC445 2.4-kb fragment containing a 609-bp deletion in rpoE locus cloned into pKAS46 This study

Primers This study

p239 TgCTCTAgATTCCTgAACTgATAggCT This study

p240 CggggTACCTgTACACgTTCAgTTCTgg This study

p241 CggggTACCTgTCTCACCACAgCAACA This study

p242 gCCgAgCTCTTTCATCgTCgCgATCgA This study

P403 ggCgAATTCCgCTgTTAgTC This study

p284 CACCATggCTAAggggCAATCT This study

p285 TTCggCgTCgTCgCTgTC This study

p251 TAgCTATAgTTCTAgAgCTTCATTTCATggTCgA This study

p252 CgCCAgCTgCAggCggCCgCCTgCATTATgAgCAAgCTg This study

p253 AggATgCATATggCggCCgCTgACgATAgCggAATACTg This study

p254 TgTggAATTCCCgggAgAgCTCTgACgTTATCgCCAACg This study

p903 CACCATgAgCgAgCAgTTAACg This study

p904 ACgCCTgATAAgCggTTg This study

p909 CACCATgAgTCAgAATACgCTg This study

p910 TTCgCggAAgAgCgCTTC This study

doi:10.1371/journal.pone.0022248.t001
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2.5 mM with 5% DMSO, forward primer and reversed primer,

and 6 ml cDNA sample. Each sample was run in triplicate. The

RT-PCR program were 95uC for 10 min, 50 cycles of 95uC for

10 sec, 60uC for 15 sec, and 72uC for 10 sec. At the end of the

program a melt curve analysis was done. At the end of each RT-

PCR run, the data were automatically analyzed by the system

and an amplification plot was generated for each cDNA sample.

From each of these plots, the LightCycler3 Data analysis

software automatically calculates CP value (crossing point, the

turning point corresponds to the first maximum of the second

derivative curve), which imply as the beginning of exponential

amplification. The fold expression or repression of the target

gene relative to internal control gene rfaH in each sample was

calculated by the formula: 22ggCP where gCp = Cp target

gene – Cp internal control and ggCp = gCp test sample -

gCp control sample.

Two-dimensional (2D) proteomic analysis
Extracytoplasmic proteins were extracted as described [55] with

modifications. Briefly, 40 ml of K. pneumoniae CG43S or Dhfq

cultures were harvested at late-log phase by centrifugation at

13,000 rpm for 10 min at 4uC. The bacterial pellets were lysed

with 4 ml of B-PER reagent (Pierce) containing DNaseI (0.5 mg/

ml) and lysozyme (15 mg/ml). After 10-min incubation at room

temperature, unbroken cells and cellular debris were removed by

centrifugation at 8,000 rpm for 10 min at 4uC. Supernatant was

collected and was further centrifuged at 35,000 rpm for 60 min at

4uC. The pellet was resuspended in 100 ml of 3% (w/v) sodium

Table 2. Hfq-dependent changes in transcript abundances of sRNAs in K. pneumoniae.

No. Homologues in E. coli Alternative name Length (bp)
Fold change by
the absence of hfqa

Sr0006 DsrA 85 22.2060.27

Sr0008 GcvB 207 28.40±0.06

Sr0009 IstR-1 76 21.4860.06

Sr0011 MicC 112 1.0360.12

Sr0012 MicF 93 29.45±0.04

Sr0013 OxyS 109 21.7460.21

Sr0015 RprA 105 22.5760.11

Sr0017 RybA 89 2.3660.10

Sr0018 RybB 80 21.3960.16

Sr0019 RydB 68 22.6960.12

Sr0020 RyeA SraC 253 3.0760.15

Sr0021 RyeB 124 29.71±0.07

Sr0022 RyeE CyaR 84 214.52±0.09

Sr0023 RyfA 338 21.1060.15

Sr0024 RygA OmrA 88 21.1660.06

Sr0025 RygB OmrB 76 25.21±0.11

Sr0026 RyhA SraH, ArcZ 115 216.11±0.12

Sr0027 RyhB RhyB 96 21.2260.09

Sr0028 RyiA GlmZ 177 23.47±0.06

Sr0029 RyjA 147 22.1860.04

Sr0030 SgrS RyaA 242 22.1160.13

Sr0032 SraA 158 21.0260.21

Sr0033 SraB 173 24.47±0.12

Sr0034 MicA 77 2.5160.09

Sr0035 SraF 188 2.4160.04

Sr0036 SraG 167 1.2260.58

Sr0037 SroA 100 1.8560.05

Sr0038 MicM SroB, RybC 84 26.36±0.13

Sr0039 SroC 159 24.56±0.09

Sr0040 SroD 87 1.2760.15

Sr0041 SroE 97 21.7560.08

Sr0042 SroF 183 21.9360.08

Sr0043 SroG 152 26.02±0.16

Note. The transcript abundance of 33 K. pneumoniae sRNAs was determined by microarray analysis as described in Materials and Methods.
aFold change by the absence of hfq represents the transcript abundance in Dhfq compared to that in CG43S. Positive numbers indicate increases; negative numbers
indicate decreases. Bold represents .3-fold change.

doi:10.1371/journal.pone.0022248.t002
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lauryl sarcosinate (Sigma) and incubated at room temperature for

30 min. The concentration of resulting suspensions was quantified

with the BCA protein assay kit (Thermal). Two hundred

micrograms of extracytoplasmic proteins were dissolved in solution

(8M urea; 2M thiourea; 4% CHAPS and 80 mM DTT) and

subjected to isoelectric focusing (IEF) electrophoresis with pH 4–7

carrier ampholyte for 8000 Vh. After equilibration for 15 min, the

gels were transferred to the second dimension electrophoresis

using 12% polyacrylamide gel and stained with the Silver Stain

Plus kit (BioRad). Gel image was analyzed with ImageMasterTM

2D Platinum version 5.0 (Amersham Biosciences).

Extraction and quantification of capsular polysaccharides
(CPS)

CPS was extracted by the method described previously [56].

Five hundred microliters of bacterial culture was mixed with

100 ml of 1% Zwittergent 3–14 detergent (Sigma-Aldrich) in

100 mM citric acid (pH 2.0), and then the mixture was incubated

at 50uC for 20 min. After centrifugation, 250 ml of the supernatant

was transferred to a new tube, and CPS was precipitated with 1 ml

of absolute ethanol. The pellet was then dissolved in 200 ml of

distilled water, and a 1,200-ml volume of 12.5 mM borax (Sigma-

Aldrich) in H2SO4 was added. The mixture was vigorously

vortexed, boiled for 5 min, and cooled, and then 20 ml of 0.15% 3-

hydroxydiphenol (Sigma-Aldrich) was added and the absorbance

at 520 nm was measured. The uronic acid content was determined

by the method described [57] from a standard curve of glucuronic

acid (Sigma-Aldrich) and expressed as micrograms per 109 CFU.

Stress resistance assays
The K. pneumoniae strains to be tested were grown in LB medium

at 37uC for 16 hours (86108 CFU). The stationary-phase-cultures

containing 107 CFU of bacteria were inoculated into LB medium

or M9–0.2% glucose medium (Difco). Bacterial growth at 37uC
was monitored every 1 h by measuring CFU per ml of culture with

a plate counting method. For heat, H2O2, and UV treatment,

approximately 56108 CFU of bacterial cells were transferred to

50uC for 10 min or to LB medium containing 200 mM H2O2 for

10 min, or exposed to UV irradiation (1 J/cm2), respectively.

Dilutions of bacteria were spread on LB agar to determine the

number of viable bacteria. Survival rates upon different stresses

were expressed as the formula: (CFU after treatment/CFU before

treatment) 6100%.

Northern blotting
For Northern detection of the rpoS or the MicF transcript, 40 mg

of total RNA isolated from K. pneumoniae CG43, Dhfq, or Dhfq-C1

was glyoxal denatured, separated on a 1% agarose gel, and then

transferred onto a BrightStar Plus nylon membrane (Ambion).

After UV cross-linking, the membrane was blotted with ULTRA-

hyb hybridization buffer (Ambion) overnight at 42uC against a

rpoS- or MicF-specific biotin-labeled riboprobe, which was

prepared using a BrightStar psoralen-biotin kit (Ambion). After a

stringent wash, signals were detected with a BrightStar BioDetect

kit (Ambion).

Western blotting
Thirty micrograms of K. pneumoniae total proteins which were

extracted from CG43S, Dhfq, Dhfq-C1, or Dhfq-C2 with or without

the induction of 0.02% arabinose were resolved by 12% of SDS-

polyacrylamide gel and transferred onto a polyvinylidene difluor-

ide (PVDF) membrane (Millipore). After blocking with 2% (w/v)

skim milk at room temperature for 1 h and washes with 16PBST,

the membrane was hybridized with rabbit anti-RpoE antibody

(1:1000 dilution), rabbit anti-RpoS antibody (1:1000 dilution), or

rabbit anti-OmpA antibody (1:1000 dilution) at 4uC for 16 hours

and 5000-fold diluted HRP-conjugated anti-rabbit IgG secondary

antibody was subsequently used. After stringent washes with

16PBST, signals were detected with ECL reagent (Thermal).

Supporting Information

Table S1 K. pneumoniae genes down-regulated by the absence of hfq.

(PDF)

Table S2 K. pneumoniae genes up-regulated by the absence of hfq.

(PDF)
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