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Abstract

Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal
responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as
varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a
dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In
MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states
in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response
latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response
probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We
demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white
noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain
areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous
estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus
response relationships that are subject to variable timing and involve diverse neural codes.
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Introduction

Neural response models are used to relate neural activity to

sensory stimuli and motor behavior. A very common type of

neural response model is comprised of a linear stage, at which one

or more linear filters (often referred to as receptive fields) are

applied to the stimulus, and a subsequent non-linear stage that

converts the filter outputs into a spiking probability that feeds into

a Poisson process generating the spikes [1]. More precisely, the

spiking probability (i.e., the instantaneous rate of the Poisson

process) of a neuron is modeled as P spike Sjð Þ~f BSð Þ, where the

column vector S represents the stimulus, f the nonlinearity, and B

is a row vector containing the linear filter or a matrix in case of

several filters. Variations of these linear-nonlinear Poisson cascade

models (LNP models) have been studied extensively [2–5].

Parameter estimation techniques range from spike triggered

averaging in case of one linear filter and white noise stimuli, to

spike triggered covariance [1,6] in case of several linear filters, and

maximally informative dimensions, in case of one or several linear

filters and no restrictions on the distribution of stimuli [2,4].

Although these techniques are effective in many domains, they fail

in others, where the neural code might be more intricate (detailed

below).

A crucial assumption about the relationship between stimulus

and response inherent in these techniques is that the response

latency of the cell, the filters (or receptive fields), and the non-

linearity all are assumed to be the same throughout the experiment

(Fig. 1A). This assumption of a fixed stimulus-response relationship is,

however, not necessarily valid. On the one hand, the relationship

between stimulus and response, the neural code, could vary in time

(Fig. 1C). On the other hand, the response latency could be noisy

or vary systematically (Fig. 1A).

The extent to which a fixed stimulus-response relationship applies to

neurophysiological data is unclear. In terms of spike timing, a fixed

relationship entails both constant response latency and an amount

of spike-time-jitter that is smaller than the relevant temporal

structure of the receptive field. However, noisy response latencies

(Fig. 1A) are observed in almost all electrophysiological studies

because neural systems are intrinsically noisy. Variations in

response latency to a repeated stimulus (measured as the standard

deviation of time of first spike after stimulus onset) in the range of

3–5 ms have been reported already at a very low stage of the visual

system, in retinal ganglion cells [7]. Variability in response latency

can be notably larger in cortical areas. For instance, variations in

first-spike latency (again measured as the standard deviation) of up

to 12.5 ms have been observed in single cells in ferret primary

visual cortex in response to flashed natural images [8]. Further-

more, systematically varying response latencies have been

demonstrated in various model systems, e.g., image contrast

modulates response latency both in retinal ganglion cells [9] and in

visual cortical neurons [10–12], fueling discussions about the role

of spike latency in neural coding [12,13]. In a recent study,

latencies of cells in macaque inferotemporal cortex were found to

systematically differ for primate and non-primate face stimuli, with

latency differences on the order of tens of milliseconds [14].

When latencies are strongly fluctuating or spike time-jitter is

large, many modeling techniques that assume a fixed stimulus-

response relationship, such as spike triggered averaging, yield
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suboptimal results [15,16]: The estimated receptive fields are

blurred and the accuracy of predicted responses to novel stimuli is

low (Fig. 1B).

Fixed stimulus-response relationships can also be violated in case of

changes in intrinsic or hidden brain states [17,18]. For example,

neurons in the primary somatosensory cortex of the rat undergo

up and down states given by two separate membrane potentials.

Spiking responses to whisker deflections in these cells are

dependent on whether neurons are in the up or the down state:

in the down state, a reliable response is observed, whereas in the

up state activity is largely stimulus independent [19]. Stimulus

context can also induce changes in internal states. For instance, in

an awake marmoset study of single-unit responses in the auditory

cortex to sequences of 2 sound stimuli, responses to the second

stimulus were not static but depended strongly on the first

stimulus. This modulation in second-stimulus responses can last

longer than 1.5 seconds [20]. We illustrate dependence of neural

computation on intrinsic states in a cartoon (Fig. 1C) in which the

simulated neuron switches between 2 static receptive fields.

Response switching has also been observed in the amphibian

retina. Ganglion-cell activity is typically dominated by OFF

responses. However, a large peripheral image shift (as occurs

during head saccades) can induce a switch (for a few hundred

milliseconds) from transmitting OFF signals to transmitting ON

signals [21]. One of the most compelling examples of response

switching has been observed in songbirds: many neurons in

cortical motor and auditory areas are responsive to playback of

sound stimuli except when birds are singing, at which times

responses are locked to the song but not influenced by sound

playback [22,23]. Hence, if such neural responses were to be

modeled across singing and non-singing states, anything but a two-

state model would be inadequate. Indeed, many classical models

fail in cases of response switching: the estimated classical receptive

fields contain superimposed structures derived from the switched

responses, which yields sub-optimal results (Fig. 1D).

To address variable response latencies and dynamic neural

codes we consider the problem of neural response modeling as an

alignment problem. We introduce mixed pair hidden Markov

models (MPHs) as novel neural response models allowing for

dynamic alignment of stimulus and response without fixed stimulus-

response assumptions. In the case of varying spike latencies (e.g. when

a neuron fires in response to a particular stimulus but with a

variable latency or lag, Fig. 1A, B), MPHs help to detect

corresponding stimulus-response parts by associating individual

spikes with particular stimulus time points; and, they help to

uncover stimulus-response relationships including the spike-jitter

statistics and the receptive field of the neuron. In case of switching

dynamics (e.g., when a neuron switches between being responsive

to either one stimulus or another depending on the behavioral

state of the animal or a cueing stimulus, Fig. 1C), MPHs help to

identify parameters such as the receptive-field switching probabil-

ities and the switching events. Our MPH approach to dynamic

alignment combines response switching (context dependency) and

spike-time jitter or systematically varying latencies (flexible timing) in

one unified framework. We show how to use stimuli and neural

responses to jointly estimate all model parameters including spike

time jitter, systematically varying latencies, and switching proba-

bilities. We demonstrate the benefits of dynamic alignment on

simulated data and on extracellular data recorded in cortical brain

areas of singing birds.

Results

Mixed Pair Hidden Markov Models
We solve the alignment problem by jointly modeling stimulus

and response by a mixed pair hidden Markov model (MPH),

which is a generative model for both the stimulus and neural

response. In MPHs, different neural codes, i.e. different relation-

ships between neural activity and sensory input, can coexist as

different states or groups of states in a Markov chain. MPHs are

unlike classical hidden Markov models because they dynamically

operate on pairs of sequences - neural activity and stimulus -

instead of single sequences (i.e. a joint sequence of neural activity

and stimulus). For a mathematically detailed introduction to

MPHs (and an introduction to HMMs), see the Materials and

Methods section.

We explain the workings of MPHs in intuitive terms by

considering first the special case of jittered spike times (Fig. 1A).

We assume spikes are associated with the stimulus (i.e. a time

window of the stimulus [1]) that precede the spikes by an average

time lag dT . Instead of associating spikes and stimuli at a constant

lag dT (such as is the case for standard spike triggered methods

including STA, STC, maximally informative dimensions, etc..),

MPHs associate an individual spike with a stimulus at the

individual lag dTze (in units of stimulus-response bins, e being an

integer, e can be different for each spike). MPHs achieve this

flexibility via three different types of hidden states and by keeping

track of the momentary lag dTze and its evolution. First, matching

states (M-states) associate a spike with a stimulus at the current lag

dTze by modeling the joint probability distribution of spike and

stimulus (Fig. 2A, middle). The simplest case are Gaussian stimulus

models comprising two Gaussians, one of which models stimuli

jointly occurring with spikes and the other models stimuli not

occurring with spikes (Fig. 2A, middle). A model with only a single

such M-state is bound to a fixed lag dT and is equivalent to an

LNP model (under appropriate parameter constraints, see also the

section on LNP equivalence below). To achieve a variable lag, we

introduce two more types of states: X-states (X stands for the

stimulus sequence) and R-states (R stands for response sequence).

These states can change the momentary lag dTze as follows. An

X-state models the stimulus (but not the response) via some

probability distribution, for instance a Gaussian (Fig. 2A, left). The

X-state changes the current lag from dTze to dTze{1.

Analogously, an R-state models only the spiking response (but not

the stimulus) via a discrete probability distribution (e.g. spike or

no-spike, Fig. 2A, right). An R-state changes the current lag from

dTze to dTzez1. An MPH consisting of an M, X, and R state

Author Summary

The brain computes using electrical discharges of nerve
cells, so called spikes. Specific sensory stimuli, for instance,
tones, often lead to specific spiking patterns. The same is
true for behavior: specific motor actions are generated by
specific spiking patterns. The relationship between neural
activity and stimuli or motor actions can be difficult to
infer, because of dynamic dependencies and hidden
nonlinearities. For instance, in a freely behaving animal a
neuron could exhibit variable levels of sensory and motor
involvements depending on the state of the animal and on
current motor plans—a situation that cannot be account-
ed for by many existing models. Here we present a new
type of model that is specifically designed to cope with
such changing regularities. We outline the mathematical
framework and show, through computer simulations and
application to recorded neural data, how MPHs can
advance our understanding of stimulus-response relation-
ships.
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Figure 1. Varying response latencies and context dependent neural coding. (A) Varying latencies. Sequence of 8 dimensional white noise
stimuli (e.g. successive frames on a one dimensional screen with 8 pixels). An LNP model generates spikes (black bars) if a chunk of stimulus (dashed
rectangles) is similar enough to its receptive field (dashed rectangles). Jitter-free or ideal spikes (vertical black bars, ‘ideal spiking’) are produced with
some fixed latency (dashed diagonal lines). Jittered spikes (black bars, ‘observed spiking’) are produced by randomly jittering ideal spikes (gray bars)
forward or backward in time (green arrows). The jitter of adjacent spikes can be independent or correlated. The jittered spikes are the basis for fitting
neural response models. (B) Receptive field (RF) estimates using spike triggered stimulus averaging (STA) on unjittered spikes (true RF), jittered spikes
(STA), and the MPH on jittered spikes (MPH). Noisy response latencies lead to blurring of STA RFs, but not of MPH RFs. (C) State-dependent coding. For
the same white noise stimulus, spikes are generated from one of two LNP models depending on hidden states I and II (green lines) determining
which model is used. (D) The true RFs are superimposed when estimated with STA. A two-states MPH can faithfully recover the two RFs.
doi:10.1371/journal.pcbi.1003508.g001

Dynamic Alignment Models for Neural Coding

PLOS Computational Biology | www.ploscompbiol.org 3 March 2014 | Volume 10 | Issue 3 | e1003508



can thus model a spike-stimulus pair via the M state or via the X

and the R state. In general fewer states are preferred as there is a

cost associated with switching from one state to another. Thus, an

MPH will try to keep the lag between stimulus and spike constant

unless there is evidence for changing the lag via X and R states.

Intuitively, one can think of an MPH as a finite state automaton

that processes symbols from two sequences at the same time, the

stimulus (X-sequence) and the response sequence (R-sequence).

Under this analogy, M-states process one symbol of each sequence

(they match a symbol pair from X and R), X-states process only a

stimulus symbol, and R-states process only a response-symbol. The

automaton keeps track of two pointers that indicate the current

position in the stimulus sequence as well as the current position in

the response sequence. The pointer difference corresponds to the

current lag dT+e (the ‘‘automaton’’ considers all possible lags,

weighted probabilistically).

A sequence of hidden states in an MXR-MPH (M, X, and R

states) can be depicted as a path in an alignment matrix that spans

all possible pairings between stimulus and response (Fig. 2B): An

M-State corresponds to diagonal movement along the matrix from

position (t,u), i.e. position t in the stimulus sequence and u in the

response sequence, to position (tz1,uz1). An X-State corre-

sponds to horizontal movement from position (t,u) to (tz1,u) and

an R-State corresponds to vertical movement from position (t,u)

Figure 2. Two minimal MPHs for flexible timing and context dependent coding. (A) Architecture of the minimal MPH that allows for neural
codes with varying latencies, i.e. flexible timing. This MPH has 3 hidden states, one X-state that models only the stimulus, one R-state that models
only the neural response, and one M-state that jointly models stimulus and response. The probability distributions over stimuli (bottom) are
illustrated as low dimensional projections (stimulus dimension 2 coincides with the receptive field of the M-state). (B) Hidden state sequences in that
model correspond to paths in the alignment matrix: a diagonal step leading into position (t,u) implies that stimulus and response at times t and u are
jointly modeled by an M-state, a horizontal step implies modeling of only the stimulus at time t, and a vertical step implies modeling of only the
response at time u (deviations from the diagonal reflect jittered spikes detected by the model). Depicted stimulus and spiking responses are from
figure 1A. (C) The minimal MPH for modeling state-dependent neural codes. The MPH can switch between several M-states, each of which represents
a different RF. The (projected) stimulus distributions given a spike (spike triggered stimulus ensemble) are centered on the respective RFs (indicated
by black arrows). (D) Adding states to the model turns the alignment matrix into an alignment tensor composed of several planes (strictly speaking, B
depicts a tensor as well; we just projected all the states onto one plane). The switch from state 1 to State 2 is indicated (green arrow).
doi:10.1371/journal.pcbi.1003508.g002
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to (t,uz1). A change in the temporal relationship between

stimulus and response (i.e. spike jitter) is reflected in non-diagonal

(horizontal or vertical) steps in the alignment matrix (with step size

provided by the discretization of stimulus and neural response

sequences, Fig. 2B). This 3-state model will be applied to simulated

and real data in the next section.

In order to handle state-dependent (switching) neural responses

(Fig. 1C), we consider MPHs with several M-states (Fig. 2C).

Multiple M states add another dimension to the alignment matrix,

which we henceforth call alignment tensor (Fig. 2D). The simplest

switching-enabling MPH has two M-states but no X or R states.

Each M-state is associated with a particular receptive field to be

estimated (here we use ‘receptive field’ in the most general way,

independent of linearity and related assumptions). With several M

states, spikes can be associated to stimuli via one of several joint

probability distributions over spike and stimulus. Probabilistic

transitions between M states allow the MPH to switch between

receptive fields, which is shown on simulated and real data below.

The general MPH has several M-, X-, and R-States and thus

simultaneously permits flexible timing and context dependency.

The parameters defining probabilistic transitions into and out of

hidden states are:

Aij : Transition probability of transiting from hidden

state i to hidden state j,

Ii: Initial probability of hidden state i,

Fi: Final probability of hidden state i.

The parameters defining emission probabilities are:

bi xtð Þ: Emission probability density of the stimulus xt

given hidden X-state i (xt is a vector and typically spans

a window of the stimulus around time t),

bi ruð Þ: Discrete emission probability distribution of the

response ru given hidden R-state i (ru is part of a discrete

set, e.g. {0, 1} for spike or no spike),

bi xt,ruð Þ: Mixed discrete-continuous emission probabil-

ity of stimulus-response pair xt,ruð Þ given hidden state i

As emission probability densities associated with X and M states

we use multivariate Gaussians or mixtures of Gaussians, respec-

tively. For hidden X-state i we write the emission probability

density as

bi xð Þ~
XK

k~1

cikN(x,mik,Sik),

where cik is the weight of the kth mixture component, K denotes

the total number of mixture components (which may vary for

different hidden states, i.e. some cik can be zero), and mik and Sik

denote the Gaussian mean and covariance matrix of the kth

mixture component. For M states we keep track of one such

multivariate Gaussian for each response state ru (each response

state is associated with a distinct stimulus emission).

Special Cases of MPHs
In the following we present detailed analyses of the spike-jitter

and response-switching MPH architectures. First, we discuss an

MPH with only one M-state (M-MPH) and multivariate Gaussian

stimulus models. We show that, under appropriate parameter

constraints, such a model is equivalent to a 1-dimensional LNP

model and describe its relation to linear regression and linear

discriminant analysis and the resulting strengths and limitations.

Second, we discuss an extension of that M-MPH to a model that

also possesses an X- and an R-state (MXR-MPH). We illustrate in

simulations how this model can account for spike time jitter and

varying latencies on white noise and on natural stimuli. Third, we

treat an extension of the M-MPH to multiple M-states (Mn-MPH)

and illustrate through simulations how this model can account for

switching dynamics and context dependency. All of these models

can be cascaded with an additional non-linearity so that they form

NNP cascades (as opposed to LNP cascades). In the chapter that

then follows, we apply these models to data recorded from single

units of cells in the behaving bird.

The M-MPH with multivariate Gaussian stimulus models

and equal covariances. An MPH characterized by one M-

state, multivariate Gaussian stimulus models with shared covari-

ance matrix, and no X and R states is equivalent to an LNP

model. In the following we calculate both the linear filter and the

LNP non-linearity. Let m0,S0,m1,S1,p0, and p1 be the parameters

of an MPH with one M-state and Gaussian stimulus models,

where m0,S0 are the mean and the covariance matrix of the

stimulus given no spike is emitted and m1,S1 are the mean and the

covariance matrix of the stimulus given emission of a spike. In this

section, we assume identical covariance matrices: S1~ S0~S.

p1,p0 are the marginal (or prior) probabilities of a spike and no

spike and X~x1,x2, . . . ,xT , xt[ n denotes the stimulus sequence

and R~r1,r2, . . . ,rU , ru[f0, . . . ,Bg the response sequence. In the

examples to follow, stimulus and response have the same length,

T~U (T=U can be useful too, for instance, when stimulus and

spiking response are differently binned).

In this simple MPH the posterior probability of a spike at time t
is given by

P(rt~1 Dxt~x)~
P(rt~1,xt~x)

P rt~1,xt~xð ÞzP(rt~0,xt~x)

~
p1e{0:5 x{m1ð ÞTS{1 x{m1ð Þ

p1e{0:5 x{m1ð ÞTS{1 x{m1ð Þzp0e{0:5 x{m0ð ÞTS{1 x{m0ð Þ

ð1Þ

By using p0zp1~1 and rearranging terms, we can transform

Eq. 1 to

1

P rt~1Dxt~xð Þ{1~
p0e{0:5 x{m0ð ÞTS{1 x{m0ð Þ

(1{p0)e{0:5 x{m1ð ÞTS{1 x{m1ð Þ
: ð2Þ

By taking the logarithm on both sides of Eq. 2 we find

log
1

P rt~1Dxt~xð Þ{1

� �
~log

p0

1{p0

� �

{0:5 m0zm1ð ÞTS{1 m0{m1ð ÞzxTS{1(m0{m1):

ð3Þ

Hence, log 1
P rt~1Dxt~xð Þ{1
� �

is affine-linear in x. Equivalence

between this simple MPH and linear non-linear neural response

models follows after applying the sigmoid function, w xð Þ~ 1

exz1
,

on both sides of (3) and assuming m0~0, which yields

Dynamic Alignment Models for Neural Coding
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P rt~1Dxt~xð Þ~w c{xTS{1m1

� �
, ð4Þ

where the constant c is given by c~log
p0

1{p0

� �
z0:5mT

1 S
{1m1.

Hence, the posterior spike probability P rt~1Dxt~xð Þ for this

MPH agrees with that of an LNP model with linear filter (or

receptive field) B~S{1m1 and non-linearity

w(c{z): ð5Þ

For non-white stimuli, i.e. S=I with I the identity matrix, the

receptive field B of the MPH is given by

B~S{1
XT

t~1

rt
:xt

 !
, ð6Þ

which is known as reverse correlation, corrected spike triggered

average [24,25], or simply as linear regression. Moreover, for

white stimuli, i.e. S~I , the receptive field B~m1 of the MPH is

the spike triggered average (STA) - the mean of the spike triggered

ensemble. Hence, the M-MPH performs a linear regression

cascaded with a sigmoid non-linearity and is equivalent to a one

dimensional LNP model with a sigmoid non-linearity (Eq. 5).

Note that the M-MPH’s receptive field (Eq. 6) always

corresponds to the linear regression solution. Consequently, the

M-MPH’s receptive field estimate is optimal whenever linear

regression is the correct model. In particular, it follows that the

MPH parameter estimates can be optimal even when the spike

triggered ensemble and its complement are non-Gaussian – for

instance in case of white noise stimuli and a threshold non-linearity

[1,26]. The same is true when the overall stimulus distribution is

non Gaussian – for instance for non-Gaussian natural stimuli and

a linear ‘‘non-linearity’’ [26]. However, although the receptive

field estimate does not depend on Gaussian assumptions, the non-

linearity (Eq. 5) does, see e.g. [26]. In [26], the authors suggest to

re-estimate the non-linearity (decision boundary) of a linear

discriminant model to obtain a non-linearity estimate not

corrupted by Gaussian assumptions.

Inspired by [26], we cascade the MPH with an additional non-

linearity that can be estimated from the data subsequent to the

estimation of the MPH (compare Materials and Methods for details of

the estimation). Such cascading is standard practice for neural response

models [1,27,28] and is also part of LNP models. The cascaded M-

MPH with shared covariance can fit any one-dimensional LNP model

on white-noise data (provided that the operation of the LNP model

leads to a change of mean of the spike triggered ensemble, which is the

case for all monotone non-linearities and for most others) [1].

However, for non-white data and certain nonlinearities, the linear

regression estimate can be biased [1,2], so that MPHs too will infer an

incorrect receptive field (see also below, where we apply MPHs to

natural stimuli). In these cases, using Gaussian mixtures as stimulus

models might be advisable (see discussion).

M-MPH with free covariance matrices and Gaussian

mixture models. One interesting extension of that simple MPH

results from assuming S1=S0. This case is analogous to quadratic

discriminant analysis [26]. The MPH implements a model

quadratic in x. One further extension is to use mixtures of

Gaussians as emission distributions instead of individual Gaussians

(see discussion), in which case g is generally not quadratic anymore.

The MXR-MPH and Its Application to Simulated Data with
Spike-Time-Jitter

In the following we demonstrate the ability of MXR-MPHs

(Fig. 2A) to recover the correct receptive field (RF) on simulated

data with noisy latencies, i.e. spike-time-jitter. When predicting

spiking probabilities on novel data, the MXR-MPH outperforms

purely spike-triggered methods.

For the MXR-MPH, we denote the stimulus means and

covariance matrices in the M-State by mM0,SM0 (non-spiking) and

mM1,SM1(spiking) and in the in the X-State by mX ,SX . In

accordance with the section on LNP equivalence and to simplify

this general MPH, we introduce the following parameter

constraints: First, we fix all covariance matrices to identity

matrices:

SM0~SM1~SX ~I :

Second, we fix the means mM0 and mX to zero (equal to the

mean of the stimulus ensemble). Third, we do not allow the R-

state to generate spikes (zero spike emission probability) because

we require that each spike is matched to a stimulus (note that if we

allowed the R-state to generate spikes, the model would distinguish

between spikes generated by the M-state and spikes generated by

the R-state — such distinction could be used for distinguishing

stimulus driven from spontaneous activity, which was not our

focus). Given these parameter constraints, the remaining free

parameters in the model are the receptive field mM1 (the mean of

the spike triggered stimulus ensemble, Fig. 2C), and the transition

probabilities among X, R, and M-state. After training the MPH,

the jitter statistics are implicit in the model’s parameters; below we

show how to explicitly compute the jitter statistics for natural

stimuli.

Application to white data. To test the model, we first

created artificial data by sampling spike trains from an LNP model

in response to a white noise stimulus consisting of 105 time bins

(arbitrary timescale), and 42 dimensions or stimulus channels (e.g.

pixels on a one dimensional screen or frequency bands in a

spectrogram). We split the stimulus into 500 sequences of equal

duration and generated 25 trials of LNP spiking responses for each

of those sequences (Fig. 3A). The LNP model was composed of

one linear filter that spanned 11 time bins (Fig. 3C) and a sigmoid

nonlinearity (red line in Fig. 3G). We generated a total of 28702

LNP spikes (,0.015 spikes/bin). We randomly jittered the

individual LNP spikes (Fig. 3A) with i.i.d. spike shifts drawn from

a discretized log-normal distribution with zero mean (Fig. 3B). The

variance of that distribution controls the total amount of jitter: As

variance increases, the distribution becomes more asymmetric

with a heavy right-side tail (we choose such an asymmetric jitter

distribution to increase the difficulty of the problem). To 450 of the

500 stimulus-response sequences we fitted both an MXR-MPH

and a reverse correlation model (resulting filters are depicted in

Fig. 3C). The remaining 50 sequences served as validation set.

The STA, which is the optimal solution in case of jitter-free

data, yielded a poor approximation of the true receptive field

(Fig. 3C). The main problem for STA was that the (jittered) spike-

triggered stimulus ensemble did not separate well from its

complement (Fig. 3D, middle) when projected onto the underlying

(true) RF. In contrast, the receptive field mM1 estimated using the

MXR-MPH (Fig. 3C) was very close to the true RF, and the

reconstructed spike-triggered ensemble (computed by aligning

stimulus and response through the generalized Viterbi algorithm,

see Materials and Methods) was well separated from the full

Dynamic Alignment Models for Neural Coding
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Figure 3. The MXR-MPH applied to white noise stimuli and spike-time-jitter. (A) A white noise stimulus (top) with spiking responses (black
bars) generated by an LNP-type model neuron (LNP output, the LNP RF size is indicated by the black rectangle). The jittered versions (jittered) of the
LNP spike trains with corresponding firing rate (thick gray line) are shown below. The MPH estimate of firing rate (black full line) is more accurate than
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stimulus ensemble (Fig. 3D, right). We ran the spiking-probability

inference algorithm outlined in Materials and Methods on the

independent validation set. The MPH-predicted spike responses

were in general much better than STA-predicted responses

(Fig. 3E, instead of using correlation coefficients, we could have

evaluated performance through the average likelihood of the

models given the data; we opted for CCs to ensure easy

interpretability and connect to existing literature). For small jitter,

MPH and STA responses were equally good; however, with

increasing jitter, the MXR-MPH performance dropped much less

than that of STA. Similar superiority of the MXR-MPH was also

seen in RF estimation, evaluated in terms of the angle between

estimated and true RFs (Fig. 3F, to discount for arbitrary shifts in

RF position that could be induced by the asymmetric jitter kernels

we also designed a shift-invariant measure by time-shifting the

estimated RF relative to the true RF and considering only the

minimal angles; this gave virtually identical results).

We elucidate the influence of various non-linearities, by having

evaluated MPHs and STA-models for various sigmoidal non-

linearities of the (true) LNP model (Fig. 3G, the non-linearities

were chosen such that the resulting models each yield an average

rate of about 0.015 spikes/bin). We found that RF estimation and

response prediction of the MPH was the better the steeper the

non-linearities (Fig. 3H). Furthermore, the difference between

cascaded and non-cascaded MPH is not large (Fig. 3H). The

improved performance for steep nonlinearities is to be expected

because the non-linearity is needed to separate the action of the

linear filter from the action of the jitter kernel in the underlying

LNP model (i.e. without non-linearity the linear kernel of the LNP

model and the jitter kernel simply act as two subsequent linear

operations which no longer can be uniquely disentangled).

Application to natural stimuli. We also tested the MXR-

MPH on jittered responses to natural stimuli (a problem that, to

our knowledge, has not yet been addressed in the literature). We

sampled spike trains from an LNP model in response to

spectrograms of birdsongs (Fig. 4A). We used 250 zebra finch

songs (50 of the songs served as a validation set), yielding a total of

66025 time bins (4 ms each) and 20332 generated spikes (mean

rate/bin ,0.012).

We fixed the model covariance matrices to the covariance S of

the stimulus ensemble:

SM0~SM1~SX ~S=I :

Furthermore, we fixed the means mM0 and mX to the actual

stimulus mean. As for white noise stimuli, the MPH performed

better than reverse correlation on RF estimation and response

prediction (Fig. 4E, 4F).

We computed the jitter statistics via the alignment kernel of the

MXR-MPH (the alignment kernel is a weighted average of spike

shift counts associated with each possible hidden state sequence

(i.e. each path in the alignment tensor, Fig. 2B) where the weights

correspond to the respective probabilities of the hidden state

sequences given model and data, see Materials and Methods). Our

simulations showed that the model did not over-fit the data by

detecting jitter when none was present (Fig. 4B, left) and that the

alignment kernel could be estimated quite well even when jitter

was large (Fig. 4B, right).

The MPH allows for stimulus-response modeling both for

correlated and uncorrelated jitter: Correlated jitter can be

accounted for by decreasing the transition probabilities onto X

and R-states, which in turn decreases the probability of non-

diagonal movement in the alignment tensor (thus leading to

correlated stimulus-response lags across successive spikes). To

model uncorrelated jitter, the transition probabilities can be

chosen such that the likelihood of a chunk of the stimulus-response

pair being modeled with only X- and R-states equals the likelihood

of modeling it with M-states only. In that case, constant time lags

and changing time lags between successive spikes are equally likely

and jitter is uncorrelated (provided that successive spikes are

further apart than the jitter size).

The M2-MPH and Its Application to Simulated Data with
Switching Dynamics

MPHs with several M states support context dependency. They can

model multiple stimulus-response relationships associated, for

instance, with distinct behavioral states of an animal. To

demonstrate this flexibility of MPHs, we simulated a neuron that

randomly switches (according to a Markov process with equal

probabilities) between two linear-nonlinear models (each defined

as in the previous section), i.e., neural responses were governed by

a hidden state sequence that determined which receptive field was

active at any given time (Fig. 5A). We generated responses of this

artificial neuron to 100 white noise sequences, each spanning 1000

time bins (arbitrary timescale), and 21 dimensions or stimulus

channels. For each sequence, spike responses were generated using

the switching LNP model, resulting in a total of 4374 spikes on

average (mean 0.044 spikes/bin). We generated and tested data for

different RF combinations, characterized by different rotations in

the plane of one of the RFs (Fig. 5B, left). To uncover the hidden

switching dynamics and the two RFs, we trained a Gaussian M2-

MPH with two M-states A and B (Fig. 2C). Gaussian parameters

were constrained in the following way: First, we imposed zero

means: mA0~mB0~0; and second, we fixed all covariance matrices

to the identity matrix. The remaining free parameters of the model

were the means mA1 and mB1 of the spike-triggered ensembles (i.e.,

the STA estimate (dashed line). (B) Applied spike jitter is i.i.d. among spikes and log-normally distributed with zero mean (3 different jitter
distributions are shown; they differ in terms of variance v and symmetric/asymmetric shape). Results for the jitter kernel with variance v~16 are
shown in panels A, C and D. (C) RFs estimated through STA on unjittered spikes (true RF), STA on jittered spikes (STA), and MPH on jittered spikes
(MPH). The STA RF is blurred whereas the MPH RF closely resembles the true RF. Dotted black lines indicate the midpoints of the RFs. (D) Projections
of all stimuli (gray lines) and the spike triggered stimulus ensembles (black lines) onto the underlying (true) RF for the unjittered spikes (left), the
jittered spikes (middle), and the MPH reconstruction (right, obtained via dynamic alignment using the generalized Viterbi algorithm). (E) Response
prediction. To evaluate the models we computed correlation coefficients (CCs) between predicted and actual firing rates on the validation set and for
different jitter variances. For small spike jitter, performances of STA and MPH are comparable. As the jitter magnitude increases, STA performance
drops much more severely than does MPH performance. Also shown is an upper bound for the CC computed by sampling and cross-correlating
jittered responses. (F) MPH robustness to jitter is demonstrated also when assessed as similarity between the estimated RF and the true RF (similarity
computed as normalized scalar product, i.e. cosine of angle between RFs). (G) We assessed the influence of different non-linearities (labeled A–E,
ordered by steepness) on prediction quality for both the MPH as well as the cascaded MPH (cMPH). (H) Shallow non-linearities decrease the upper
bound of prediction quality (black line) as well as the MPH (red lines) and STA (green line) performance for the unjittered (left) and the jittered case
(right). The cascaded MPH (red line) shows slight improvements over the non-cascaded one (dotted red line).
doi:10.1371/journal.pcbi.1003508.g003
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Figure 4. The MPH applied to natural stimuli and jittered spike responses. (A) An example log-spectrogram of zebra finch song (top, high
sound amplitudes in red and low amplitudes in blue), spiking responses generated by an LNP-type model (middle, LNP output), their jittered versions
(below), and the corresponding jittered firing rate (bottom, gray line). The MPH-predicted response (MPH, full line) of the jittered firing rate is more
accurate than the reverse correlation prediction (RC, dashed line). (B) Applied spike jitter is i.i.d. among spikes and log-normally distributed with zero
mean. Two different jitter distributions are shown, they differ in terms of variance v and symmetric/asymmetric shape (gray curves v~0:5 left, and
v~32 right). The MPH-estimated jitter kernels are shown in black. The MPH misses some jittered spikes (right), as revealed by the excessive peak at
zero time lag. Results for the jitter kernel with variance v~32 are shown in panels A, C, and D. (C) RFs estimated through reverse correlation for
unjittered data (true RF), jittered data (RC) as well as the MPH receptive field estimate (MPH). The STA RF is blurred whereas the MPH RF closely
resembles the true RF. Dotted black lines indicate the midpoints of the RFs. (D) Projections of all stimuli (gray lines) and the spike triggered stimulus
ensembles (black lines) onto the underlying (true) RF for the unjittered spikes (left), the jittered spikes (middle), as well the MPH reconstruction (right,
obtained via dynamic alignment using the generalized Viterbi algorithm). (E) Correlation coefficients (CCs) between predicted and true firing rates on
the validation set for different jitter variances. Also shown is an upper bound for the CC computed by sampling and cross-correlating jittered
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the receptive fields) and the transition probabilities between the

two states (which reflect the switching statistics).

We compared the MPH with STA and STC [1,6] models. For

all three models, we computed RF estimates and the response

prediction performance. The trained MPH faithfully recovered

both RFs, whereas the (single) RF estimated of STA consisted of a

superposition of the two RFs, and the RFs estimated using STC

were severely corrupted by noise in most cases (Fig. 5B). As a

result, the MPH predicted responses better on an independent

validation set than did STA and STC (Fig. 5C, averaged over 10

runs). We assessed the quality of the recovered RFs of all three

methods and all 37 tested rotations by matching each original RF

to the recovered RF with smallest distance and by averaging the

two distances. The MPH recovers the RF much better then STA

or STC (Fig. 5D, average over 10 runs; drops in MPH-

reconstruction quality are due to local minima, compare figure

text).

The degraded performance of the STC model has two reasons.

First, the covariance of the spike triggered ensemble needs to be

reliably estimated (with quadratically many degrees of freedom as

there are stimulus dimensions compared to a linear number of

degrees of freedom for the M2-MPH). Second, the linear filters

uncovered by STC are orthogonal [1], whereas the M2-MPH is

not constrained in this way.

It is possible to show that the M2-MPH firing rate pt to a

stimulus is given by

pt~lAwA XtRFAð ÞzlBwB(XtRFB),

where w1,w2 : ? 0,1½ � are two non-linearities and lA and lB are

the prior probabilities of hidden states A and B, respectively. The

STA model, on the other hand, is bound to model firing rates as

pt~w(Xt(lARFAzlBRFB)):

An extreme example that illustrates the failure of RF estimation

with STAs is a neural response model that pools over two filters

RFA~{RFB and lA~lB~0:5. In that case the estimated RF

using STA is uniform and has no predictive power at all, unlike the

MPH (e.g. Fig. 5C, rotation angle 180u). A less extreme but

potentially more relevant case is that of complex cells in primary

visual cortex with overlapping excitatory and inhibitory oriented

receptive subfields (such cells are often modeled by pooling over

four oriented filters that are phase shifted 00, 900, 1800, and 2700,
respectively [29–31]). A switching M4-MPH with four M-states

can recover these phase shifted filters, whereas STA yields only a

blurred RF.

Application to Songbird Spike Data
To demonstrate that MPHs work well in practice even when the

amount of available data is small and the true spike generating

process is unknown, we apply the MXR- and the Mn-MPH to

extracellular spike data recorded in the forebrain nucleus interface

of the nidopallium (NIf) of songbirds (Fig. 6A). NIf is a higher-

order song-control nucleus; lesion and inactivation studies have

shown that NIf exhibits both sensory and motor functions [32–35].

Multi-unit NIf activity is generally strongest shortly before and

during syllable production and weakest during the times corre-

sponding to silent intervals between syllables [36,37]. These

findings suggest a pre-vocal role of NIf spikes during song,

prompting us to expect in singing birds a negative latency of NIf

spikes relative to song (spikes precede sounds, as opposed to a

positive latency that would result if NIf firing was sensory during

vocal production). Due to the difficulty of recording in singing

animals, available spike trains are relatively short (the average total

spike train duration was 73 s per cell) and contain few spikes

(,1500 spikes per cell).

To investigate latencies of NIf single-unit spikes relative to song,

we first fitted an LNP model using reverse correlation (RC,

Fig. 6C, left). To overcome problems of over-fitting (due to the

limited amount of data available) we used a regularized version of

the stimulus covariance matrix:

S
0
~SzaI , a~

Tr Sð Þ
n

, ð7Þ

where n denotes the number of stimulus dimensions, S denotes the

unregularized stimulus covariance matrix and a denotes its

normalized trace (such regularization yielded better generalization

performance). Next, we trained a MXR-MPH on large 0.25 s song

spectrogram windows (with covariance matrices in M and X states

fixed to the regularized stimulus covariance matrix S
0

in Eq. 7).

The MPH RF was similar to the reverse correlation RF (Fig. 6B),

but it reflected more clearly that the cell fired before sounds and

not thereafter (consider for example the stronger inhibitory band

near 10 ms). MPH and reverse correlation encoding performances

on a test set were comparable (Fig. 6D, left data points). Note that

by construction, differences between MXR-MPH and reverse

correlation RFs arise from spike-time-jitter.

To characterize response latencies (and jitter) we estimated

probability distributions of the temporal offset t between stimulus

and response in M-states via the alignment kernel (Fig. 6B, left).

Negative lags in the alignment kernel imply that spikes occur before

corresponding events in the stimulus, whereas positive lags imply

that spikes occur thereafter. The alignment kernel was centered at a

small negative time lag and exhibited a small temporal spread,

revealing high temporal precision of NIf spike trains. Predicted

responses (5-fold cross validation) for the reverse correlation model

and the MXR-MPH were equally good (Fig. 6D, left data points),

confirming high temporal precision of NIf spike trains.

The MPH allowed us to strongly reduce model complexity by

shrinking linear filters (RF sizes) down to less than 30 ms. For such

short RFs, the cell latency is reflected entirely in the alignment

kernel. Based on the RF estimate in Fig. 6B and 6C, we expected

the jitter kernel to be centered near 230 to 240 ms. Indeed, the

kernel peaked near 240 ms (Fig. 6C, right), implying that the

MPH aligned spikes to portions of the stimulus occuring about

40 ms after the spike, suggesting a premotor function of this cell

and thus agreeing with the hypothesized premotor function of NIf.

Additionally we trained an Mn-MPH with various numbers of

states on the same NIf cell (unlike for the M2-MPH applied in the

section on switching dynamics we did not constrain the means). The

Mn-MPH showed modest improvements over reverse correlation,

its peak validation CC occurred at 8 states (Fig. 6D), suggesting that

this NIf cell fires prior to several distinct song features.

responses. For small overall jitter, performances of reverse correlation and MPH are comparable. As the overall jitter magnitude increases, reverse
correlation performance drops much more severely than does MPH performance. (F) RC performance drops even stronger when assessed in terms of
similarity between the estimated and the true RFs.
doi:10.1371/journal.pcbi.1003508.g004
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We also analyzed data for another recording site in NIf,

composed of 54 s of singing with concurrent spiking (1659 spikes,

about 60 stereotyped song motifs). The RF estimated using reverse

correlation (Fig 6E, left) revealed diffuse spectrotemporal tuning,

making it difficult to decide whether this cell is sensory or motor in

function. By contrast, the MPH alignment kernel (Fig. 6E, right)

quite clearly revealed a motor function in this cell, evidenced by the

predominance of negative alignment shifts. The MPH RF showed a

rather narrow frequency tuning near 2,6 kHz (Fig. 6E, middle).

Encoding performance for the MXR-MPH with large RF was again

similar to reverse correlation (Fig. 6H, left data points), yet an Mn-

MPH yielded slightly superior performance (Fig. 6H, right data points).

Discussion

We introduced a novel technique for neural response modeling

and receptive field estimation that overcomes limitations of fixed

stimulus-response relationships. We proposed to view neural

coding as an alignment problem that can be tackled by mixed

pair hidden Markov models (MPHs), which jointly model

Figure 5. The MPH applied to white noise stimuli and switched responses. (A) A white noise stimulus (top), the randomly switched states of
a switching LNP model (middle, black curve), and the observed spike train (middle, black rasters) and firing rate (bottom, gray line). The MPH-
predicted firing rate (bottom, black line) to a test stimulus is closer to the observed firing rate than is the STA prediction (blue line) or the STC
prediction (dotted green line). (B) The MPH RF estimates (MPH, 2nd column) capture well the underlying true RFs (True RFs, 1st column) for all relative
angles, unlike the STA RF estimates (STA, 3rd column) or the STC RF estimates (STC, 4th column). (C) We evaluated the models by computing CCs
between predicted and observed firing rates on a validation set and for different pairs of LNP filters that were generated by rotating one of the RFs.
The cascaded MPH (black line) performs slightly better than the non-cascaded MPH (gray line). Both MPHs perform better than STC (green line) and
STA (blue line). (D) Quality of RF reconstruction, shown is the cosine angle between true and model RFs (compare main text). The MPH reconstructed
the true RFs more faithfully (black line) than did STA (blue line) and STC (green line). The occasional drops in MPH performance (larger error bars) are
due to local optima that can be circumvented by starting the MPH-parameter optimization from different initial conditions (the orange line is from
the best model – in terms of likelihood on the training set – out of 3 initial conditions). Both, panels (C) and (D) show average results from 10
simulations (with standard errors indicated).
doi:10.1371/journal.pcbi.1003508.g005
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stimulus and response and can naturally account for noisy or

systematically varying latencies as well as for context dependent

neural codes that depend on internal (hidden) states. Discrete

pair HMMs have been used in the context of gene alignment

to find corresponding parts in related gene sequences [38]. To

our knowledge they have not yet been applied to response

modeling.

We demonstrated that simple MPHs with Gaussian stimulus

models and a fixed shared covariance matrix are equivalent to one

dimensional LNP models with sigmoid non-linearity and we

Figure 6. The MXR- and Mn-MPH applied to single-unit activity in NIF of a singing zebra finch. (A) Raw extracellular voltage trace time-
aligned to a log-power sound spectrogram of a zebra finch song (high sound amplitudes in red and low amplitudes in blue). (B) The MXR-MPH’s RF
estimate (left, high and low sound amplitudes in red and blue respectively). The red blob at about +30 ms is an indication that this cell is premotor.
The width of the window is ,0.25 s. The MXR-MPH’s alignment kernel (right) is concentrated near 210 ms, yielding a total lead of NIf spikes on song
of about 40 ms. (C) The RF estimated with reverse correlation (left) is similar to the MXR-MPH’s RF. Middle: RF and jitter kernel of an MXR-MPH with
much narrower RF window (about 10 ms wide). The total dimension of the RF is 605 (5 columns times 121 rows). Because the RF is so narrow, the
spike latency is now clearly reflected in the alignment kernel (right), centered around a negative alignment shift of about 40 ms, implying that the
model aligns spikes to portions of the song that occur about 40 ms after the spike. Hence, the alignment kernel strongly suggests a premotor
function of this cell. (D) Predictions (5-fold cross validation) of the MXR-MPH (left, red bar) are similar to reverse correlation (blue bar). Using the non
cascaded version (green bar) yields a slight drop in performance. An Mn-MPH yields a modest improvement in prediction performance (right, peaking
at 8 states) in both the cascaded (cMPH) and non-cascaded forms (MPH, error bars depict 95% confidence intervals). (E) Results for a different data set
(a different cell producing 1659 spikes during about 54 s of song data containing about 60 song motifs). The RF estimated using RC reveals diffuse
spectrotemporal tuning, making it nearly impossible to decide whether this cell is sensory or motor in function. By contrast, the MPH alignment
kernel (right) quite clearly reveals a motor function in this cell, evidenced by the predominance of negative alignment shifts. Also, the MPH RF shows
a rather narrow frequency tuning near 2.6 kHz (middle). (F) The MXR-MPH firing-rate predictions for this cell were comparable to reverse correlation
predictions; Mn-MPHs again yield a modest improvement in prediction performance.
doi:10.1371/journal.pcbi.1003508.g006
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extended these basic MPHs to allow flexible timing and context

dependency. Thereby MPHs endow standard RF estimation

techniques such as spike triggered averaging (STA) and reverse

correlation with flexible timing and context dependency. We tested our

approach on simulated and real data and demonstrated the

benefits of alignment in terms of improved predictability of

simulated and real neural responses, improved receptive field

estimates as well as the capability of estimating jitter latency

statistics and switching states.

Key properties of MPHs are: 1) X- and R-states that model

stimulus or response alone and allow for flexible timing via dynamic

temporal alignment, and 2) M-states that allow for context dependency

via model switching. Using our estimation techniques, these three

types of states can be freely combined in a highly flexible approach

to neural coding and decoding without the need to develop

additional algorithms.

We derived MPH parameters estimation updates for Gaussian

mixture models with unrestricted covariance matrices (Materials

and Methods). The (non-mixture) Gaussian MPHs we studied

performed well in simulations (including natural stimuli), even

though the assumption of Gaussian stimulus models can be

violated by natural stimuli [24,39]. In these cases, mixtures of

Gaussians can be useful to approximate arbitrary stimulus

distributions and overcome problems of receptive field biases

[27]. Beyond mixtures of Gaussians, EM update equations for

other mixture families are known as well [40] and could be

adapted to MPHs.

Other modeling approaches have been pursued to estimate

neural responses in the presence of spike time jitter [15,16,41].

One approach is to simultaneously estimate the jitter distribution

and the RF using the EM algorithm [16]. This technique has been

successfully applied to white noise stimuli (identity covariance)

[16], but not to stimuli with non-identity covariance, i.e. natural

stimuli. Furthermore, in [16] the jitter of adjacent spikes is

assumed to be independent – an assumption that might be violated

in cases where jitter depends on slowly varying internal states or is

correlated for other reasons. The dynamic alignment technique we

present here generalizes these approaches in two ways. First, in

MPHs there is no need to constrain the stimulus covariance

matrix, so that natural stimuli can be readily processed. Second,

MPHs can account for correlated as well as uncorrelated jitter

among adjacent or nearby spikes and thus allow modeling of both

systematically and slowly varying spike latencies. Furthermore, in

[16] the jitter distribution is explicitly assumed to be of Gaussian

form whereas the jitter distribution of the MPH is implicit in the

transition probabilities and has degrees of freedom commensurate

with the number of hidden states and their transitions.

The ability of MPHs to emulate switching models is particularly

useful given that switching dynamics are important in many neural

systems. A number of other approaches have been introduced to

handle response switching and context dependency. Several of

them are based on hidden Markov models [42–48]. The hidden

states in these models typically reflect neural activity but not the

stimulus. Models with hidden states that reflect both stimulus and

response, such as switching Kalman filters [49] or generalized

linear models with hidden states [50,51], have also been proposed.

These models are similar to MPHs with only M-states but no X-

and R-states. Furthermore, our approach extends these models in

that stimulus-response relationships within each hidden state can

be quadratic (single Gaussians, unconstrained covariance matrices)

or formed by Gaussian mixtures. Another way of modeling context

dependencies are ‘‘multi-linear’’ models encompassing a multipli-

cative context term (by itself modeled through a ‘‘multi-linear’’

model) that depends on the projection of the stimulus (in some

time window) onto a set of basis functions [52]. MPHs

complement such approaches by allowing more complex types

of contextual influence via the underlying Markov structure. This

is also an advantage over techniques like spike triggered

covariance that can recover multiple filters [1,6,53–55] but cannot

attribute Markovian dynamics to the individual filters. For

instance, MPHs allow for context effects over very long time

scales, context effects depending on hidden neural states such as up

and down states (in this case MPHs also allow to infer the up and

down states, for instance through the generalized Viterbi

algorithm), and left-to-right HMMs [40] can incorporate behav-

ioral context in stereotyped motor actions such as birdsong.

MPHs can bridge between data analysis and theories of neural

function. Some theories of cortical function assume discrete

modules of computation and representation [56,57], for example

synfire chains [47,58] or, more generally, cell assemblies. In these

theories, the role of neural activity does not only depend on the

identity of the neuron but also on the (hidden) identity of modules

the neuron belongs to at a certain time.

The MPHs we developed to align stimulus and neural response

are based on stimuli represented with continuous probability

densities and neural activity represented with discrete probabili-

ties. It is noteworthy that both fully continuous pair HMMs that

align two continuous sequences and fully discrete pair HMMs also

have interesting applications. For instance, we have shown

previously that a fully continuous pair HMM can be used to

align the songs of a juvenile bird to the song of the bird’s tutor in

order to identify the parts of the song that were copied and

the locations where insertions were made [59]. We have also

demonstrated how fully discrete pair HMMs can be used to align

spike trains [59]: by learning a discrete pair HMM on pairs of

related spike trains, we obtained a ‘‘distance’’ measure between

spike-trains, thereby generalizing state of the art spike train metrics

[60].

MPHs are useful for both neural encoding and decoding. We

presented algorithms for inferring neural responses and their

probabilities given the stimulus (encoding). However, by symmetry

of MPHs, the inference algorithms we designed can in principle be

‘‘inverted’’ to estimate the stimulus given neural activity (decoding)

so that decoding and encoding of brain activity essentially have

become the same problem.

MPHs are based on classical hidden Markov models and

learning and inference algorithms other than the EM algorithm

are readily available. For instance, for model parameter estimation

we could have used (much faster) Viterbi training [38] or we could

have optimized criteria other than data likelihood [61]. Also, there

exists a large variety of very powerful analytical and computational

tools developed for classical hidden Markov models that can be

adapted to MPHs [61–63].

We will make a code package for fitting MPHs available

through our website (www.ini.ch/,skollmor).

Materials and Methods

Ethics Statement
All experiments were carried out in accordance with protocols

approved by the Veterinary Office of the Canton of Zurich,

Switzerland.

Short Introduction to Hidden Markov Models
We provide a short introduction to ‘‘normal’’ hidden Markov

models and the associated terminology for readers unfamiliar with

them.
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Consider two dies at a game of chance, one with equal

probabilities for its six faces (fair die) and the other with unequal

probabilities (loaded die). Suppose that their holders can exchange

dies for one another without you knowing. Suppose furthermore

that these die switches occur randomly. All you observe is the

sequence of faces without knowing whether the fair or loaded die is

in place: the identity of the die is hidden from you. Hidden

Markov models (HMMs) account for exactly these kinds of

situations involving hidden variables. In the die example we can

use an HMM with two states, L (loaded) and F (fair), for the two

dies. At any point in time the HMM is in one of the two states

corresponding to the die that is in use. Associated with each of the

two states are the probabilities for the different faces to come up.

These emission probabilities are unknown and can be learned from

observations (the distribution is uniform for the fair die and non-

uniform for the loaded one). Transitions between states (dies) are

governed by unknown transitions probabilities that model how likely

the die holders switch dies at any time. For two states, transitions

are modeled by an unknown 2 by 2 transition matrix that can also be

learned from observations.

An HMM can produce observations by randomly choosing

transitions (die switches) and observations or emissions (faces that

come up) which results in an observation sequence and an underlying

hidden state sequence. However, HMMs are so useful because they

can be applied in reverse: given an observation sequence, we can

estimate good parameters (emission and transition probabilities)

for the underlying HMM as well as the underlying hidden state

sequence, which we never directly observed.

In a classical HMM (applied to stimulus-response modeling) the

time lag between the stimulus and the response is fixed and

together stimulus and response probabilistically depend on some

hidden (non-observed) variable with Markov dynamics.

In an MPH, spike and stimuli also probabilistically depend on

some hidden variable, but rather than being paired at a fixed time

lag, spike and stimulus pairing is dynamic, governed by a pro-

babilistic process. Note that MPHs are different from factorial

hidden Markov models which employ a distributed state represen-

tation but model a single (possibly multidimensional) observation

sequence [64].

Formal Definition of the MPH
In the following, we present a precise definition of the MPH

architecture and its learning and inference algorithms.

We denote the stimulus sequence by X~x1,x2, . . . ,xT and the

spiking response by R~r1,r2, . . . ,rU where T and U are their

respective durations (typically T~U ). xt[ n are real vectors (e.g.

sound spectrograms) and ru[f0, . . . ,Bg are integers (e.g., number

of spikes, typically ru[f0,1g in small time bins with zero or one

spike). We denote a position in the combined stimulus-response

alignment matrix as t,uð Þ, Fig. 2c. The model has three types of

hidden states: X-states, which model only the stimulus, R-States

which model only the response, and M-States which jointly model

stimulus and response (Fig. 2c). We denote the sets of these states

by XS , RS , and MS . Additionally we define the union of states

ZS~XS | RS | MS . We denote sequences of hidden states

by C~c1,c2, . . . ,cH with ci[ZS and use the notation c(t,u) to refer

to the hidden state occupied at sequence position (t,u). Note that

in general T=U=H because all of stimulus, response, and

hidden state sequences may be of different length. The parameters

of the MPH are defined in the following.

A: Matrix of transition probabilities. Aij denotes the probability

of transiting from hidden state i to hidden state j[ZS

Ii: Initial probability of hidden state i[ZS

Fi: Final probability of hidden state i[ZS

bi xtð Þ for i[XS : Emission probability density of the stimulus xt

given hidden X-state i[XS

bi ruð Þ for i[RS : Discrete emission probability distribution of the

response ru given hidden R-state i[RS

bi xt,ruð Þ for i[MS : Mixed discrete-continuous emission prob-

ability of stimulus-response pair xt,ruð Þ given hidden state i[MS

As emission probability densities associated with X and M

states we use multivariate Gaussians or mixtures of Gaussians,

respectively:

bi xð Þ~
XK

k~1

cikN(x,mik,Sik), i[XS,

where cik is the weight of the kth mixture component, K denotes

the total number of mixture components (which may vary for

different hidden states but this freedom is not reflected in our

notation), and mik and Sik denote Gaussian mean and covariance

matrix of the kth mixture component. For M states we keep track

of one such density for each possible value of ru (distinct stimulus

emission for each spiking state).

In the following, we define algorithms for inference in MPHs.

Some of them are generalizations of well-known algorithms for

normal HMMs. To infer the spiking response for a given stimulus,

we derive new algorithms. In the following we denote conditional

probabilities of the form P Data D Model Paramtersð Þ simply by

P Datað Þ, i.e., for readability we will omit the dependence on

model parameters.

Generalized Viterbi Algorithm
Assume that we have trained MPH model parameters on some

data and now would like to apply the MPH to novel stimulus-

response pairs. In a switching model (Fig. 2e), we would like to

estimate the most likely hidden state sequence given the data to

identify the switching events. In a flexible timing model (Fig. 2b)

we would like to determine the optimal alignment between

stimulus and response to estimate the jitter of individual spikes. In

that latter case, the alignment consists of temporal offsets between

stimulus and response on a moment-to-moment basis.

The generalized Viterbi algorithm for MPHs can be applied in

both situations to efficiently compute the most likely hidden state

sequence C� for a given stimulus-response sequence (X ,R):

C�~argmaxC P(CDX ,R)~argmaxCP C,X ,Rð Þ:

We apply an extension of the Viterbi algorithm for classical

HMMs [38]. First, let vj(t,u) be the probability of the most likely

sequence that models the stimulus up to (and including) time t,
the response up to time u, and that ends in hidden state j.
Additionally, for any state j and sequence position (t,u), we keep

track of the most likely precursor state in gj(t,u). vj(t,u) and gj t,uð Þ
can be computed recursively (Table 1).

A good way to visualize the generalized Viterbi algorithm is to

think of it as filling up an T|U|DZS D alignment tensor (Fig. 2f).

The final state of the most likely hidden state sequence is then

given by c�H~argmaxj[ZS
v�j (T ,U) and the complete state

sequence can be obtained by iteratively back-tracking the most

likely precursor states gj t,uð Þ:

Generalized Forward Algorithm
In many cases, we are interested in computing statistics over all

possible sequences. For instance, to compute the probability
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P(X ,R) of generating a sequence pair (X ,R) given a particular

MPH (for example to compare different MPHs), we need to

consider the overall probability of (X ,R) independent of the

alignment. Hence we have to consider all possible hidden state

sequences and not just the one with maximal likelihood. First, let

aj t,uð Þ be the probability of observing the stimulus up to (and

including) time t, the response up to time u, and of ending in

hidden state j. The computation of aj t,uð Þ is very similar to the

computation of vj t,uð Þ, except that the max operation is replaced

with a summation (to take all hidden state sequences into account,

Table 2).

Generalized Backward Algorithm
The backward algorithm is analogues to the forward algorithm.

We present it here because it is an integral part of the EM

algorithm for MPHs and the computation of posterior probabil-

ities (see below). The backward probability bj(t,u) is the

probability of observing the stimulus from time t to the end and

the response from time u to the end (excluding xt,ru), beginning at

position (t,u) and in hidden state j (c(t,u)~j). bj(t,u) is computed

recursively (Table 3).

Computing Posterior Probabilities
Assume we have trained an MPH on some data and want to

determine the probability distribution over hidden states for a

given stimulus-response pair and sequence position (t,u). Building

on the definitions of aj t,uð Þ and bj t,uð Þ (Table 2 and 3), the

posterior probability P(c t,uð Þ~jDX ,R) of being in hidden state j at

sequence position (t,u) given sequence-pair (X ,R) can be

expressed in terms of forward and backward probabilities:

P c t,uð Þ~j D X ,R
� �

~
aj t,uð Þbj(t,u)

P(X ,R)
: ð8Þ

Computing Alignment Kernels
Intuitively, the alignment kernel FA tð Þ is a histogram of spike

shifts over all possible state paths weighted by their respective

probability.

FA tð Þ ! P(t~u{t,c t,uð Þ[MS,ru~1DX ,R)

The alignment kernel is easily computed using posterior

probabilities (Eq. 8) in M- and R-States at all sequence positions

(t,u) which fulfill ru~1:

FA tð Þ !
X

u{t~t

j [ MS| RS

ru~1

P(c t,uð Þ~jDX ,R):

Negative lags t in the alignment kernel imply that spikes occur

before corresponding events in the stimulus, whereas positive lags

imply that spikes occur thereafter.

Table 1. The generalized Viterbi algorithm.

Initialization: vj 0,0ð Þ~Ij

Recursion: j[MS : vj t,uð Þ~bj xt,ruð Þmax
i[ZS

½Aijvi(t{1,u{1)�

gj t,uð Þ~arg max
i[ZS

½Aijvi(t{1,u{1)�

j[XS : vj t,uð Þ~bj xtð Þmax
i[ZS

½Aijvi(t{1,u)�

gj t,uð Þ~arg max
i[ZS

½Aijvi(t{1,u)�

j[YS : vj t,uð Þ~bj ruð Þmax
i[ZS

½Aijvi(t,u{1)�

gj t,uð Þ~arg max
i[ZS

½Aijvi(t,u{1)�

Termination: v�j T ,Uð Þ~vj T ,Uð ÞFj

doi:10.1371/journal.pcbi.1003508.t001

Table 2. The generalized forward algorithm.

Initialization: aj 0,0ð Þ~Ij

Recursion: j[MS : aj t,uð Þ~bj xt,ruð Þ
P

i[ZS

½Aijai(t{1,u{1)�

j[XS : aj t,uð Þ~bj xtð Þ
P

i[ZS

½Aijai(t{1,u)�

j[YS : aj t,uð Þ~bj ruð Þ
P

i[ZS

½Aijai(t,u{1)�

Termination: P(X ,R)~
P

j[ZS

aj (T ,U)Fj

doi:10.1371/journal.pcbi.1003508.t002
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Learning Model Parameters
To train an MPH on a set of stimulus-response pairs, we apply a

generalization of the EM algorithm. That algorithm is analogous

to its normal HMM counterpart [38,40]. In the expectation step,

the aj t,uð Þ and bj(t,u) (Table 2 and 3) are used to compute the

probability of each state at each sequence position, as well as the

expected number of transitions between hidden state pairs. The

model parameters are then re-estimated in such a way as to locally

maximize the likelihood of the stimulus-response pair. For

simplicity of notation we define fi,j t,uð Þ as the probability of

transiting from state j to state i at sequence position (t,u):

fi,j t,uð Þ ~

ai t,uð ÞAijbj t,uð Þbj(tz1,uz1)=P(X ,R) if j[MS

ai t,uð ÞAijbj tð Þbj(tz1,u)=P(X ,R) if j[XS

ai t,uð ÞAijbj uð Þbj(t,uz1)=P(X ,R) if j[YS

8><
>:

Based on fi,j t,uð Þ, the new transition probabilities are given by

ÂAij ~

P
t

P
u fij t,uð ÞP

t

P
u

P
j fij(t,u)

:

Initial probabilities are updated similarly:

ÎIi
0
!

P
j

fij(1,1) if j[MSP
j

fij(1,0) if j[XSP
j

fij(0,1) if j[YS

8>>>>><
>>>>>:

:

The new discrete emission probabilities for R-States are given

by

b̂bi rð Þ ~

P
t

P
uDru~r

P
j fij(t,u)P

t

P
u

P
j fij(t,u)

,

where i[YS and r[f0, . . . ,Bg.
The update of emission density parameters for X states depends

on the type of continuous probability distribution used. For

Gaussian mixtures with K mixture components, new means and

covariance matrices for the components can be computed as

follows. For simplicity, we first define ck
i (t,u), where i[XS and

k[f1::Kg:

ck
i t,uð Þ ~

ai t,uð Þbi t,uð ÞP
j aj t,uð Þbj t,uð Þ

 !
cikn Xt, mik, Sikð ÞP

l ciln Xt, mil, Silð Þ

� �

The updated mixture weights, ĉcik, the means, m̂mik, and the

covariance matrices ŜSik are then computed as follows:

ĉcik~

P
t

P
u ck

i t,uð ÞP
l

P
t

P
u cl

i t,uð Þ
,

m̂mik~

P
t

P
u ck

i t,uð Þ
� �

XtP
t

P
u ck

i t,uð Þ
,

ŜSik~

P
t (½
P

u ck
i t,uð Þ�½Xt{m̂mik�½Xt{m̂mik�T )P

t

P
u ck

i t,uð Þ
:

The updates for M-states are analogous. To compute the

updated parameters of the mixture associated with r[f0,::Bg
(where Bz1 is the number of possible neural responses, i.e. B is

the maximum number of spikes per time bin), we sum only over

those sequence positions u that fulfill ru~r.

Most Likely Pair of Response and Hidden State
Sequences

Given an MPH that was trained on some stimulus-response

pairs, we can predict spiking responses to novel stimuli. This is

known as encoding. Conversely, we can reconstruct stimuli from

spiking responses, known as decoding. In the following, we derive

two encoding algorithms for MPHs. First, we show how to

compute the most likely pair of hidden-state and neural response

sequences, C,Rð Þ�, for a given stimulus X . This algorithm is an

extension of the generalized Viterbi algorithm (Table 1). We only

present the algorithm for encoding. By symmetry, a decoding

algorithm can be derived analogously.

Let again vj(t,u) be the probability of the most likely hidden

state sequence that models the stimulus up to time t and the

response up to time u and ends in state j. We want to compute a

neural response R�~r�1,r�2, . . . ,r�U such that P(R�,C�½R�,X �) is

maximized, where C�½R�,X � denotes the most likely state path for

the sequence pair ½R�,X � (Table 1). This is accomplished by

Table 3. The generalized backward algorithm.

Initialization: bj T ,Uð Þ~Fj

Recursion: j[MS : bj t,uð Þ~
P

i[ZS

½Ajibj xtz1,ruz1ð Þbi(tz1,uz1)�

j[XS bj t,uð Þ~
X
i[ZS

½Ajibj xtz1ð Þbi(tz1,u)�

j[YS bj t,uð Þ~
P

i[ZS

½Ajibj ruz1ð Þbi(t,uz1)�

Termination: P(X ,R)~
P

j[ZS

bj (0,0)Ij

doi:10.1371/journal.pcbi.1003508.t003
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always choosing the instantaneous neural response r�u, u~1::U
such that it maximizes the emission probability in the recursion

equations (Table 4).

As in the generalized Viterbi algorithm (Table 1), we keep track

of the most likely precursor states in gj t,uð Þ. Additionally, we store

the emissions that maximize the first factor on the right hand side

of the recursion equations as r�j t,uð Þ. We recover the most likely

pair of hidden state sequence and neural response by considering

the r�j t,uð Þ associated with the most likely state at that position (we

assume that U~T ; generalization to unknown U is possible, but

irrelevant for our purposes).

This encoding strategy yields a spike train which depends on the

most likely hidden state sequence. Such dependence can be a

problem if many pairs of hidden state sequences exist with

similarly high probability. Also, another caveat is that this

algorithm does not provide spiking probabilities. Ideally, we

would like to account for all possible hidden state sequences and

compute an overall spiking or response probability for each point

in time. Such improvement can be done through an extension of

the forward algorithm, presented next.

Computing the Response Probability Distribution as a
Function of Time

Here we compute the probability distribution P(rtDX ) of the

response rt at time t given a stimulus sequence X : We can retrieve

this probability as a posterior (using Eq. 8) after rewriting our

model in the following way.

1. Replace each M-State by X- and R-states. If the response is

encoded using the two symbols 0 and 1 (ru[f0,1g), an M-State

is replaced by two X-states, X 0 and X 1, representing

P(xtDru~0) and P(xtDru~1) respectively and two R-states:

R0 which never generates a spike, and R1 which always

generates a spike. X 0 is connected to R0 and X 1 is connected

to R1 (with probability 1 in both cases). Each connection onto

the former M-state is now replaced by a pair of connections to

X 0 and X 1, with transition probabilities each given by the

product of the original transition probability and the marginal

probability of a non-spike (X 0) or spike (X 1) (computed by

integrating the emission density of the M-state). By construc-

tion the model that results from applying this step is equivalent

to the original model as far as inference is concerned.

2. Replace each of the R states in the model (except those that

have been generated in step 1) by two R-states:R0 that never

emits a spike and R1 that always emits a spike. As in Step 1, the

probability of spiking is encoded in the new transitions onto R0

and R1
. By construction, the resulting model is equivalent as far

as inference is concerned.

With this reformulation, we can now easily express P(rtDX )

using sums over posterior probabilities of the R0 and R1 states:

P rt~1 D Xð Þ ~

P
u~1...U , j[fR1g PP(c t,uð Þ~jDX )P

u~1...U , j[fR1 | R0g PP(c t,uð Þ~jDX )
,

where PP(c t,uð Þ~jDX ) denotes the posterior probability of hidden

state j in the rewritten model, fR1g and fR0g denote the sets of all

‘spiking’ and non-spiking R-states, respectively. Note that by

construction PP(c t,uð Þ~jDX ) is independent of the response R. In

this paper we always use this algorithm for inferring spiking

probabilities in MPHs.

Cascaded MPHs. Inspired by [26] and the standard practice

of forming model cascades in neural response modeling [1,27,28],

we cascade the MPH, forming an NNP (non-linear-non-linear)

model. For the M-MPH (section on LNP equivalence), we can

realize arbitrary LNP non-linearities h : . . Given h we define

a mapping z : z(p)~h({w{1(p)zc) operating on the posterior

spike probability p in Eq. 4. Applying this mapping z to Eq. 4

yields the desired spike probability pspike~z(p)~h(xT m1).

Alternatively, we can estimate the optimal mapping z(p) that

yields the nonlinearity h that best describes the data. We estimate

this mapping from the data using the conditional probability

z(p)~P(rt~1Dp)~
P(rt~1, p)

P(p)
: ð9Þ

Thus, the optimal (discretized) mapping z corresponds to point-

wise division of two histograms, the histogram of posterior spiking

probabilities given an actual spike in the numerator and the

histogram of all posterior spiking probabilities in the denominator

(see also [1]).

In practice, we first estimate the MPH parameters and then re-

estimate the non-linearity via the mapping z in (Eq. 9). When

applying this cascaded MPH, we first compute the posterior

spiking probabilities and then remap these using z. These response

predictions are bound to give better results on the training set and

will also improve validation performance (unless the mapping z is

over-fitted).

Table 4. Extended Viterbi algorithm to compute most likely pair of hidden state and neural response sequences for a given
stimulus.

Initialization: vj 0,0ð Þ~Ij

Recursion: j[MS : vj t,uð Þ~ max
ru

½bj xt,ruð Þ�max
i[ZS

½Aijvi(t{1,u{1)�

r�j t,uð Þ~ max
ru

½bj xt,ruð Þ�

j[XS : vj t,uð Þ~bj xtð Þmax
i[ZS

½Aijvi(t{1,u)�

j[YS : vj t,uð Þ~ max
ru

bj ruð Þmax
i[ZS

½Aijvi(t,u{1)�

r�j t,uð Þ~ max
ru

½bj ruð Þ�

Termination: v�j T ,Uð Þ~vj T ,Uð ÞFj

doi:10.1371/journal.pcbi.1003508.t004
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Computational Complexity and Optimization of the
Algorithms

Filling out the alignment tensor used to compute forward and

backward probabilities (Fig. 2f) in a fully connected model requires

O TUS2
� �

computations and additional O(TS) computations for

emission probabilities in M and X states (as before, T denotes the

length of the X sequence (stimulus), U the length of the R
sequence (response); and S is the number of hidden states). We

usually reduce this complexity by limiting the allowed temporal

offset between stimulus and response to a maximal lag set by a

parameter w. In that case, we compute only the part of the

alignment tensor within a band of width w around the diagonal.

Hence, the complexity reduces to O(TwS2). In the EM algorithm,

the computational complexity is O(TwS2).
The MPHs we studied had mostly constrained parameters, in

particular constrained covariance matrices and means. We have

found that free covariance matrices tend to make the models prone

to over fitting and slow down training as more iterations of the EM

algorithm are required (for instance, the M-MPH discussed in the

section on LNP equivalence reaches the optimum in one iteration.

Using free covariance matrices, convergence is gradual and it takes

many more steps for the likelihood change to drop below a

predefined threshold).

The EM algorithm only converges to local optima; we found

that this problem can be alleviated by running the training several

times from different initializations (compare Fig. 5D and the

accompanying text).

Subjects and Electrophysiology
All experiments were carried out in accordance with protocols

approved by the Veterinary Office of the Canton of Zurich,

Switzerland. Data were collected from juvenile male zebra finches

(60–92 days old). The electrophysiological procedures are

explained in detail elsewhere [65]. Briefly, microdrives were

implanted using methods previously described [65]. After each

experiment, the brain was removed for histological examination of

unstained slices to verify the location of reference lesions. Cells

were recorded during singing. During recording sessions, birds

were housed in a sound isolation chamber equipped with a

microphone. Extracellular voltage traces were digitized at 33 kHz

and recorded for offline spike sorting.
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45. Radons G, Becker JD, Dülfer B, Krüger J (1994) Analysis, classification, and

coding of multielectrode spike trains with hidden Markov models. Biol Cybern
71: 359–373. Available: http://www.ncbi.nlm.nih.gov/pubmed/7948227.

46. Rainer G, Miller EK (2000) Neural ensemble states in prefrontal cortex

identified using a hidden Markov model with a modified EM algorithm.

Neurocomputing 32–33: 961–966. Available: http://dx.doi.org/10.1016/

S0925-2312(00)00266-6. Accessed 20 November 2012.

47. Weber AP, Hahnloser RHR (2007) Spike correlations in a songbird agree with a

simple markov population model. PLoS Comput Biol 3: e249. Available: http://

dx.plos.org/10.1371/journal.pcbi.0030249. Accessed 20 November 2012.

48. Dan G (2006) Efficient estimation of hidden state dynamics from spike trains.

Adv Neural Inf Process Syst 18 18: 227–234. Available: http://citeseerx.ist.psu.

edu/viewdoc/download?doi = 10.1.1.67.7313&rep = rep1&type = pdf.

49. Ghahramani Z, Hinton GE (2000) Variational Learning for Switching State-

Space Models. Neural Comput 12: 831–864. Available: http://www.

mitpressjournals.org/doi/abs/10.1162/089976600300015619. Accessed 20

April 2012.

50. Wu W, Kulkarni JE, Hatsopoulos NG, Paninski L (2009) Neural Decoding of

Hand Motion Using a Linear State-Space Model With Hidden States. IEEE

Trans Neural Syst Rehabil Eng 17: 370–378. Available: http://www.ncbi.nlm.

nih.gov/pubmed/19497822.

51. Lawhern V, Wu W, Hatsopoulos N, Paninski L (2010) Population decoding of

motor cortical activity using a generalized linear model with hidden states.

J Neurosci Methods 189: 267–280. Available: http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid = 2921213&tool = pmcentrez&rendertype = abstract.

52. Ahrens MB, Linden JF, Sahani M (2008) Nonlinearities and contextual

influences in auditory cortical responses modeled with multilinear spectro-

temporal methods. J Neurosci 28: 1929–1942. Available: http://www.jneurosci.

org/content/28/8/1929.short. Accessed 22 May 2013.

53. Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal

elements of macaque v1 receptive fields. Neuron 46: 945–956. Available: http://

www.cell.com/neuron/fulltext/S0896-6273(05)00468-X. Accessed 21 May

2013.

54. Touryan J, Lau B, Dan Y (2002) Isolation of Relevant Visual Features from

Random Stimuli for Cortical Complex Cells. J Neurosci 22: 10811–10818.

Available: http://www.jneurosci.org/content/22/24/10811.abstract?ijkey =

75844c6092d5d53a05a047a1aa8a909ce7691529&keytype2 = tf_ipsecsha. Ac-

cessed 17 December 2012.

55. Eickenberg M, Rowekamp RJ, Kouh M, Sharpee TO (2012) Characterizing

Responses of Translation-Invariant Neurons to Natural Stimuli: Maximally

Informative Invariant Dimensions. Neural Comput 24: 2384–23421. Available:

h t tp ://www .mi tp re s s j ou rna l s .o r g / d o i / ab s / 1 0 .1 1 6 2/ NE C O _ a _

00330?journalCode = neco. Accessed 7 July 2013.

56. Bienenstock E (1995) A model of neocortex. Network: Comput Neural Syst 6:

179–224. Available: http://informahealthcare.com/doi/abs/10.1088/0954-

898X_6_2_004. Accessed 3 November 2011.

57. Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, et al. (2004) Synfire chains

and cortical songs: temporal modules of cortical activity. Science 304: 559–564.

Available: http://www.sciencemag.org/content/304/5670/559.abstract. Ac-

cessed 5 July 2011.

58. Abeles M, Hayon G, Lehmann D (2004) Modeling compositionality by dynamic

binding of synfire chains. J Comput Neurosci 17: 179–201. Available: http://

www.springerlink.com/content/t565584112517216/. Accessed 15 July 2011.

59. Blaettler F, Kollmorgen S, Herbst J, Hahnloser R (2011) Hidden Markov

Models in the Neurosciences. In: Dymarski P, editor. Hidden Markov Models,

Theory And Applications. InTech. pp. 169–186.

60. Victor JD, Purpura KP (1998) Metric-space analysis of spike trains: theory,

algorithms, and application. Netw Comput Neural Syst 8: 127–164. Available:

http://arxiv.org/abs/q-bio/0309031.

61. Ephraim Y, Dembo A, Rabiner L (1987) A minimum discrimination information

approach for hidden Markov modeling. ICASSP ’87. IEEE International

Conference on Acoustics, Speech, and Signal Processing. Institute of Electrical

and Electronics Engineers, Vol. 12. pp. 25–28. Available: http://ieeexplore.ieee.

org/articleDetails.jsp?arnumber = 1169727&contentType = Conference+
Publications. Accessed 25 September 2012.

62. Fine S, Singer Y, Tishby N (1998) The Hierarchical Hidden Markov Model:

Analysis and Applications. Computer (Long Beach Calif) 32: 41–62. Available:

http://www.springerlink.com/index/H7630R4U78J0XHU1.pdf.

63. Stolcke A, Omohundro S (1993) Hidden Markov Model Induction by Bayesian

Model Merging. Adv Neural Inf Process Syst 5: 11–18. Available: http://citeseerx.

ist.psu.edu/viewdoc/download?doi = 10.1.1.43.470&rep = rep1&type = pdf.

64. Ghahramani Z, Jordan MI (1997) Factorial Hidden Markov Models. Mach

Learn 29: 245–273. Available: http://www.ncbi.nlm.nih.gov/pubmed/

16204097.

65. Fee MS, Leonardo A (2001) Miniature motorized microdrive and commutator

system for chronic neural recording in small animals. J Neurosci Methods 112:

83–94. Available: http://www.ncbi.nlm.nih.gov/pubmed/11716944. Accessed

22 January 2013.

Dynamic Alignment Models for Neural Coding

PLOS Computational Biology | www.ploscompbiol.org 19 March 2014 | Volume 10 | Issue 3 | e1003508

http://www.springerlink.com/index/10.1007/b94608
http://www.springerlink.com/index/10.1007/b94608
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003356#pcbi.1003356.e057
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003356#pcbi.1003356.e057
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003356#pcbi.1003356.e057
http://www.ncbi.nlm.nih.gov/pubmed/16889478
http://www.ncbi.nlm.nih.gov/pubmed/16889478
http://jp.physoc.org/content/283/1/79.abstract?ijkey=17f32190a8f456a0d4124f1439738b91a9d161ff&keytype2=tf_ipsecsha
http://jp.physoc.org/content/283/1/79.abstract?ijkey=17f32190a8f456a0d4124f1439738b91a9d161ff&keytype2=tf_ipsecsha
http://jp.physoc.org/content/283/1/79.abstract?ijkey=17f32190a8f456a0d4124f1439738b91a9d161ff&keytype2=tf_ipsecsha
http://www.ncbi.nlm.nih.gov/pubmed/3973762
http://www.ncbi.nlm.nih.gov/pubmed/3973762
http://www.ncbi.nlm.nih.gov/pubmed/15748852
http://www.ncbi.nlm.nih.gov/pubmed/15748852
http://jn.physiology.org/content/93/4/2157.short
http://jn.physiology.org/content/93/4/2157.short
http://www.ncbi.nlm.nih.gov/pubmed/10923650
http://www.ncbi.nlm.nih.gov/pubmed/15313802
http://www.jneurosci.org/content/31/39/13936.short
http://www.jneurosci.org/content/7/1/23.short
http://link.aip.org/link/?JASMAN/114/3394/1
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=18626
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=18626
http://www.ncbi.nlm.nih.gov/pubmed/15930380
http://www.ncbi.nlm.nih.gov/pubmed/15930380
http://informahealthcare.com/doi/abs/10.1088/0954-898X_8_3_005
http://informahealthcare.com/doi/abs/10.1088/0954-898X_8_3_005
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=41017&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=41017&tool=pmcentrez&rendertype=abstract
http://linkinghub.elsevier.com/retrieve/pii/S0006349596794341
http://linkinghub.elsevier.com/retrieve/pii/S0006349596794341
http://www.ncbi.nlm.nih.gov/pubmed/7948227
http://dx.doi.org/10.1016/S0925-2312(00)00266-6
http://dx.doi.org/10.1016/S0925-2312(00)00266-6
http://dx.plos.org/10.1371/journal.pcbi.0030249
http://dx.plos.org/10.1371/journal.pcbi.0030249
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.7313&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.7313&rep=rep1&type=pdf
http://www.mitpressjournals.org/doi/abs/10.1162/089976600300015619
http://www.mitpressjournals.org/doi/abs/10.1162/089976600300015619
http://www.ncbi.nlm.nih.gov/pubmed/19497822
http://www.ncbi.nlm.nih.gov/pubmed/19497822
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2921213&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2921213&tool=pmcentrez&rendertype=abstract
http://www.jneurosci.org/content/28/8/1929.short
http://www.jneurosci.org/content/28/8/1929.short
http://www.cell.com/neuron/fulltext/S0896-6273(05)00468-X
http://www.cell.com/neuron/fulltext/S0896-6273(05)00468-X
http://www.jneurosci.org/content/22/24/10811.abstract?ijkey=75844c6092d5d53a05a047a1aa8a909ce7691529&keytype2=tf_ipsecsha
http://www.jneurosci.org/content/22/24/10811.abstract?ijkey=75844c6092d5d53a05a047a1aa8a909ce7691529&keytype2=tf_ipsecsha
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00330?journalCode=neco
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00330?journalCode=neco
http://informahealthcare.com/doi/abs/10.1088/0954-898X_6_2_004
http://informahealthcare.com/doi/abs/10.1088/0954-898X_6_2_004
http://www.sciencemag.org/content/304/5670/559.abstract
http://www.springerlink.com/content/t565584112517216/
http://www.springerlink.com/content/t565584112517216/
http://arxiv.org/abs/q-bio/0309031
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1169727&contentType=Conference+ublications
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1169727&contentType=Conference+ublications
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1169727&contentType=Conference+ublications
http://www.springerlink.com/index/H7630R4U78J0XHU1.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.470&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.470&rep=rep1&type=pdf
http://www.ncbi.nlm.nih.gov/pubmed/16204097
http://www.ncbi.nlm.nih.gov/pubmed/16204097
http://www.ncbi.nlm.nih.gov/pubmed/11716944

