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Abstract: Natural and/or human-caused salinization of soils has become a growing problem in the
world, and salinization endangers agro-ecosystems by causing salt stress in most cultivated plants,
which has a direct effect on food quality and quantity. Several techniques, as well as numerous
strategies, have been developed in recent years to help plants cope with the negative consequences
of salt stress and mitigate the impacts of salt stress on agricultural plants. Some of them are not
environmentally friendly. In this regard, it is crucial to develop long-term solutions that boost saline
soil productivity while also protecting the ecosystem. Organic amendments, such as vermicompost
(VC), vermiwash (VW), biochar (BC), bio-fertilizer (BF), and plant growth promoting rhizobacteria
(PGPR) are gaining attention in research. The organic amendment reduces salt stress and improves
crops growth, development and yield. The literature shows that organic amendment enhances
salinity tolerance and improves the growth and yield of plants by modifying ionic homeostasis,
photosynthetic apparatus, antioxidant machineries, and reducing oxidative damages. However, the
positive regulatory role of organic amendments in plants and their stress mitigation mechanisms is
not reviewed adequately. Therefore, the present review discusses the recent reports of organic amend-
ments in plants under salt stress and how stress is mitigated by organic amendments. The current
assessment also analyzes the limitations of applying organic amendments and their future potential.

Keywords: bio-fertilizer; ionic homeostasis; organic amendments; salinity; vermicompost

1. Introduction

Soil salinity is a key abiotic stress that interferes with crop growth, development, and
yield through altering morphological, physio-biochemical, and molecular processes [1–6].
Every year, 1–2% of cultivable land is reduced due to soil salinity and worldwide, about 800
million hectares (23%) of total arable lands are affected by soil salinity [7,8]. It is predicted
that salinity will affect 50% of the world’s arable land by 2050 [9]. It has been reported that
the rise in groundwater levels with high salt content, inefficient drainage and irrigation
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systems, and the overuse of fertilizers are responsible for soil salinity [10]. Plants use
a number of methods to counteract salt stress in order to survive in an ever changing
environment. Metabolic adjustments, increasing Na+ efflux or Na+ compartmentalization
to vacuoles, scavenging of free radicals, the safeguarding of cellular machinery, ionic home-
ostasis maintenance, certain proteins expression and the up-regulation of their genes and so
on are the plant adaptation mechanisms to salinity stress [11–14]. Additionally, it is widely
recognized that using microRNAs (miRNAs) is a significant tactic that can affect post-
transcriptional gene regulation under a variety of environmental conditions, including salt.
Salt stress interaction is strongly controlled by post-translational gene regulations because
various gene transcripts are differentially regulated by miRNAs during salt stress [15].
Furthermore, microRNAs serve important roles in embryogenesis, morphogenesis, life
cycle stage transformation, flower formation, increases fruit ripening, boosts anthocyanin
production, vegetative and reproductive stage transitions, tillering and branching, and
enhances salinity stress tolerance in plants [15–18].

To reduce excess soil salinity, plant scientists are employing techniques such as sub-
soiling, mixing sand, seed bed preparation, and salt scraping, as well as modern agronomic
practices, hydrophilic polymer, gypsum, sulfur acids, green manuring, humic substance,
farm yard manures, irrigation system, and salt-tolerant crops [19–22]. Recently, different
organic amendments such as the application of vermi-compost (VC), vermi-wash (VW),
biochar (BC), plant growth promoting rhizobacteria (PGPR), and bio-fertilizers (BF) are
being used widely to ameliorate the negative consequences of soil salinity [5,6,23–26].
For instance, VC enhances morphological traits, chlorophyll content, antioxidant enzyme
activities, and improves salinity tolerance of maize plants [27]. Several studies showed
that BF and BC enhance plant growth progressions under salinity stress by improving
antioxidant enzyme activities, and reduces oxidative damage in different plants [5,28,29].
In addition, the inoculation of PGPR under salt stress accelerates microbial population
and gene expression in the rhizosphere, boosts biomass production and enhances the salt
tolerance of different plants [6,30,31]. The organic amendments mitigate salt stress via
a wide range of mechanisms, including the regulation of ionic homeostasis, antioxidant
enzyme activities, and the reduction of oxidative damage. Several studies described that
PGPR and BC relieved the negative effects of salinity by increasing the photosynthetic rate,
antioxidant enzyme functions, secondary metabolites accumulation, and decreasing ROS
in plants [6,32–34]. Organic amendments such as VC and VW include a variety of plant
growth-regulating components such as micro and macro elements, vitamins, enzymes,
and hormones that have been shown to reduce the harmful effects of salts on plants [25].
Furthermore, several studies have stated that VC and VW have been shown to reduce soil
salinity through the enhancement of antioxidant enzymes and to lessen electrolyte leakage
and oxidative stress [35,36]. Similar to other organic supplements, BF has been shown to
attain a better environment through fixing atmospheric nitrogen, phosphate and potassium
solubilization or mineralization, releasing o plant growth regulating materials, producing
antibiotics, and degrading organic matter in the soil, all of which contribute to increased
plant salinity stress tolerance [37–39].

The world’s population grows significantly every day. To feed the increasing mil-
lions, researchers are attempting to develop modern, effective agronomic and eco-friendly
organic ways to reduce salinity stress and boost crop yields. Furthermore, investigating
environmentally safe and sustainable methods to lessen the negative consequences of
salinity is necessary due to the ongoing environmental degradation. The literature suggests
that organic approaches can alter biochemical and molecular systems to enable plants to
withstand salinity stress, and these strategies are proving to be quite effective. As a result,
this report highlighted the recent findings about organic amendments like VC, VW, BC, BF,
and PGPR used for salinity stress mitigation. Correspondingly, keeping in view the role of
organic amendments during saline conditions, this review explores the potentiality of the
modern and widely used organic amendments for the alleviation of salt stress and their
regulatory mechanisms. Despite the fact that other reviews of organic amendments for re-
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ducing salt stress have been published independently, this study offers a thorough analysis
of all commonly used organic amendments for reducing salt stress in a single frame.

2. Organic Amendments for Salinity Stress Mitigation
2.1. Vermicompost and Vermiwash

The VC is an organic fertilizer that is prepared through the conversion of organic
wastes by worms [40], and is rich in different enzymes including humic and fulvic acids [41].
It contains a number of plant growth regulating substances (micro and macro elements,
vitamins, enzymes, and hormones) and has anti-stress effects [42,43]. Earthworms in VC
have beneficial effects on soil qualities such as physical, chemical, and biological prop-
erties [44], as well as increasing plant development and production by making nutrients
available to the plant [45].

The VW and vermicompost leachate (VCL) are two important derivatives prepared
from vermicompost. The VW is a clear, translucent, pale-yellow fluid obtained by passing
water through a column of the vermi-worms’ excreta, which contains mucus secretions as
well as micronutrients from decomposed organic sources [46]. Khan et al. [47] reported
that VW has been utilized as an organic fertilizer for plants, and is a rich source of amino
acids, vitamins, N, P, Mg, Zn, Fe, Cu, auxins and cytokinins. The VCL is a liquid that is
collected when water drains over decomposing solids [48]. This liquid may drain out from
a traditional compost bin or a worm bin. Leachate is used as soil drench after dilution.
VCL appears to be an effective and environmental friendly VC derivative for lowering
salt’s harmful impact on bean seedlings [49]. It was demonstrated that vermicompost
promoted seed germination, root and shoot growth, proline accumulation, and oxidative
stress management (Figure 1, [50–52]). In addition, VCL alleviates salt stress by enhancing
photosynthetic efficiency, promoting antioxidant enzyme activity, and reducing electrolyte
leakage [42]. Among the various organic amendments practices, VC and VW are low-cost
techniques to reduce the detrimental impact of salts on plants (Table 1, [53]). The VC has
been shown to reduce salt toxicity and enhance the emergence rate and seedling growth
of different plants [54,55]. The VC enhances soil organic matter in salt soils by decreasing
electrical conductivity (EC), bulk density and increasing field capacity, saturated hydraulic
conductivity, and cation exchange capacity [56].
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A number of studies show that VC enhanced salinity tolerance and improved the
morphological characteristics such as stem and root length, fresh and dry weight of root-
shoot, vigor index, leaf area, and dry weight per plant [54,57–59]. It has been reported that
VC boosted Na+ exclusion and K+ accumulation, alleviated stomatal restriction, raised leaf
pigment concentrations, improved root activity, decreased oxidative damage in Fountain
Grass, and improved salt tolerance [60]. In addition, VC application in maize and tomato
plants under salt stress improved Chl a, Chl b, Total Chl, carotenoids, CAT, POD, and SOD
and lowered H2O2 and MDA [27,61]. The addition of VC and VW to potato improved
growth metrics, plant height, stem diameter, and tuber features, reducing the impact of
salt stress [35]. Liu et al. [62] found that in coastal saline soil, VC application in maize
increased nutrient availability and soil macro-aggregates by up to 91.02 percent. The soil
amendment of VC increased exchangeable K+, Ca2+, and Mg2+, plant height, total dry
matter content, and decreased exchangeable Na+ in the saline soil [63–65]. In addition,
VC application reduced salt-induced injuries of plants grown in saline soil by increasing
relative water content, stomatal conductance, chlorophyll-a, superoxide dismutase (SOD),
ascorbate peroxidase (APX), and catalase (CAT) activities and decreased electrolyte leakage
and malondialdehyde (MDA) levels [55,66–68].

Table 1. Application of vermi-compost (VC) and its derivatives for minimizing soil salinity.

Plant Species Stress Level Treatment and
Application Methods Effects of Amendments References

Tomato (Solanum
lycopersicum L.)

NaCl @ 150 mM VC @ 6 mL/L

Improved foliar growth, increased water
content of the leaves, reduced osmotic

potential at the root level and Na content
of the leaves; promoted the accumulation

of proline and total sugars.

[69]

NaCl @ 125 mM VCL @ 18 mLL−1
Improved plant growth and lowered Na+

deposition in salt-stressed plants; delayed
young leaf senescence.

[70]

NaCl @ 0, 50 and
150 mM VC @ 10, and 20%

Increased shoot length, stem diameter,
leaves number, root length, shoot and root

fresh, dry weight, Chl a, Chl b and
carotenoid; increased Cat; decreased
MDA; improved salinity tolerance.

[61]

Potato (Solanum
tuberosum L.)

NaCl @ 15, 20,
and 25 mM

VC @ 300, 580, and 860
g plant−1; VW @ 5-, 10-,

and 15-mL plant−1

The addition of VC and VW increased the
height of the plant and the diameter of the

stem. VC reduced salinity effects on
the plant.

[35]

2.85 dSm−1 Exogenous VC, proline
and glycine betaine

Increased growth, yield, bio-constituents
and antioxidant enzymatic activity.
Improved salt tolerance of potatoes

[71]

Maize (Zea mays L.)

NaCl @ 0, 50, 100,
150 and 200 mM

VC with bacteria
having ACC deaminase

activity

Improved seed germination and the
growth of seedlings; increased proline,
chlorophyll content and alleviated the

salt stress.

[72]

Coastal saline soil VC with humic acid
fertilizer

Increased soil macro-aggregates,
improved soil nutrient availability and

maize nutrient uptake.
[62]

NaCl @ 6, and 12
dS m−1 VC @ 5, and 10%

Increased root, shoot fresh and dry
weight; increased Chl a, Chl b, total Chl,
carotenoids; increased CAT, SOD, POD

activities; decreased H2O2, MDA content;
increased salinity tolerance.

[27]
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Table 1. Cont.

Plant Species Stress Level Treatment and
Application Methods Effects of Amendments References

Moldavian
dragonhead

(Dracocephalum
moldavica L.)

NaCl @ 0,50, 100
and 150 mM

VC @ 0, 5, 10 and 15%
(v/v)

Increased plant biomass, chlorophyll
content and proline accumulation.

Reduced the effects of high sodium
chloride concentrations.

[59]

Lemon verbena
(Lippia citriodora) NaCl @70 mM VC @ 0%, 10% and 30%

of pot volume

Alleviated salt stress by improving the
growth and phenolic compounds of the

plants.
[73]

Basil (Ocimum
basilicum L.)

NaCl @ 0, 50 and
100 mM

Humates VC @ 0 and
1/60 v/v

Enhanced shoots and roots length, fresh
and dry biomass of root, stem, leaf and

leaf area. Reduced salinity.
[74]

Smoke tree (Cotinus
coggygria Scop.)

NaCl @ 1, 4 and 7
dS.m−1

VC @ 80% v/v soil +
20% v/v

Increased fresh and dry weight of shoots,
increased leaf area; Reduced sodium and
chloride of leaf and increased potassium.

Increased salt tolerance of plant.

[58]

Fenugreek
(Trigonellafoenum-

graecum
L.)

NaCl @ 0, 100 and
200 mM

VC @ 0, 5 and 10
weight%

Increased number of seed per pod,
number of pods, number of sub branch

and plant height. Reduced salinity effects.
[57]

Wheat (Triticum
durum Desf. cv.

Yelken)

High salt stress VC and fish flour (1:1)

Enhanced growth, seed vigor and total
phenolic-flavonoids,

chlorophyl-carotenoids contents, and
increased phenylalanine ammonialyase
(PAL), peroxidase (POD) activities. VC

decreased salinity effects.

[75]

Coastal salinity Soil amendment of VC

Increased soil macro-aggregates;
Improved shoot biomass, grain yield, soil

physical, chemical and biological
properties. Ameliorated

salt-induced stress.

[76]

Saline soil VC @ 10.0-ton ha−1;
Biochar @ 10-ton ha−1

Improved relative water content, total
chlorophyll, stomatal conductance, leaf K+

concentration; Reduced oxidative stress,
leaf Na+ concentration, and proline

content; improved yield related traits,
productivity, soil water level and chemical

properties. Eliminated the detrimental
effects of soil salinity.

[68]

Rice (Oryza sativa) Soil salinity VC and rice husk ash @
1000 kg per Rai for both

Increased exchangeable K+, Ca2+ and
Mg2+ in soil; reduced electrical

conductivity and risen tillers per clump;
improved the physiological and

biochemical responses. Increased the rice
growth in salt affected area.

[44]
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Table 1. Cont.

Plant Species Stress Level Treatment and
Application Methods Effects of Amendments References

Lettuce (Lactuca
sativa)

NaCl @ 0, 4 and 8
dS m−1

VC @ 0, 2.5 and 5%
(w/w)

Enhanced soil organic matter, available P,
total N, available K and the cation

exchange capacity of the soils; Increased
field capacity, available water capacity,
saturated hydraulic conductivity, total

porosity, and aggregate stability;
Decreased EC values and the bulk density

of the soils.

[56]

NaCl @ 8.32
dS/m

VC 50% and pulverized
eggshell 12.5%

Decreased soil salinity for about 77%;
fasten the seed germination and

seedling growth.
[77]

NaCl @ 4, 8
dSm−1 VC 5% (w/w)

Increased P, K, Mg, Fe, Mn and Zn
concentrations; decreased Na contents.

Reduced toxic effects of salinity on
the plant.

[65]

NaCl @ 4 and 8
dSm–1

VC @ 0, 2.5 and 5%
(w/w)

Increased relative water content, stomatal
conductance, chlorophyll a content;

decreased electrolyte leakage,
malondialdehyde (MDA) contents;

increased superoxide dismutase (SOD)
and catalase (CAT) activities. Alleviated

the salt stress.

[67]

Pot marigold
(Calendula

officinalis L.)

NaCl @ 0, 50, 100,
150 and 200 mM

VC @ 0%, 5%, 10%, 15%
and 20%

Increased the activity of the antioxidant
system; increased proline and chlorophyll

content. Reduced salinity impacts and
boost-up yield.

[78]

Noni (Morinda
citrifolia L.)

Salinity stress @
0.5, 1.5, 3.0 and

4.5 dS m−1

Substrates with humus;
33.33 and 66.66% of

humus

Decreased the intensification of electrical
conductivity of irrigation water; mitigated

the negative effects of salts on plants.
[79]

Bean (Phaseolus
vulgaris L.)

NaCl @ 20, 40, 60
and 80 mmol l−1

VC: Sand = 0:100; 10:90;
25:75; 50:50 and 75:25

Increased photosynthetic rate and
potassium (K+) and calcium (Ca2+)

concentration in leaf and root; improved
the growth of bean plants. Alleviated

negative effects of salinity.

[49]

Pomegranate
(Punica granatum L.)

NaCl @ 0, 30, and
60 mM

Vermicompost leachate
(VCL) foliar spray

Leaf area, photosynthetic efficiency, and
shoot and root fresh and dry weight
significantly increased; improved the

activity of antioxidant enzymes; reduced
oxidative stress and electrolyte leakage.

VCL alleviated the damage caused by salt
stress

[42]

Tall fescue turfgrass
(Festuca arundinacea

cv Queen)

NaCl @ 0, 3, 6 and
12 dS/m

VC @ 0, 100, 200 and
300 g

Activities of CAT and APX were
increased; leaf area, shoot length and dry
shoot weight were highest. Reduced the
effects of high concentrations of sodium

chloride in saline soils.

[66]

Onion (Allium cepa
L. cv. Metan)

NaCl @ 50 and
100 mM Seed Priming with VC

Higher germination, seedling growth,
CAT, SOD and APX activities were found
in VC treated seeds. VC mitigated salinity

effects

[55]

Bell pepper
(Capsicum annuum

L.)
NaCl @ 160 mM Addition of 7 mL/L

VCL

Increased sugar concentration in roots and
proline content in leaves; increased leaf

fresh weight. VCL enhanced the property
of salt-stress resistance in bell peppers.

[52]
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Table 1. Cont.

Plant Species Stress Level Treatment and
Application Methods Effects of Amendments References

Medicago (Medicago
rigidula L.)

NaCl @ 0, 50 and
100 mM VC @ 0, 10, 20 and 30%.

Increased plant survival capacity,
chlorophyll contents, shoot dry weight;

maximize leaf area values.
[80]

Sunflower
(Helianthus
annuus L.)

EC: 0.5, 4.8 and
8.6 dS/m VC @ 1 kg/pot

Increased plant growth, yield, nitrate and
protein content; decreased sodium (Na+),

chloride (Cl−), ammonium; Increased
N-assimilation.

[64]

Borage (Borago
officinalis)

NaCl @ 0, 4, 8 and
12 dSm−1

VC @ 0, 6, 12 and 18%
(w/w) of soil

Increased chlorophyll b, carotenoids and
MDA contents and reduced the negative

effects of salinity.
[81]

Milk thistle
(Silybum

marianum L.)

NaCl @ 0, −2, −4,
−6, and −8 bar

Superabsorbent
polymers with VC coats

Increased seedlings emergence rate, plant
vigor index, shoot dry weight, leaf area,
specific leaf area, relative water content,

and total chlorophyll.

[54]

Sugarcane
commercial variety

of ‘Bululawang
(BL)’

NaCl @
4.12 dS/m

VC @ 0, 10, 20 t/ha)
and nitrogen fertilizer

@ 50, 75 and 100 kg
N/ha

Increased N, K uptakes and the growth of
sugarcane and alleviated salinity effects. [82]

Rapeseed
(Brassica napus L.) NaCl @ 100 mM VCL (1:10, v/v)

VCL was shown to improve seed
germination and management of

oxidative stress.
[51]

Fountain Grass
(Pennisetum

alopecuroides)

NaCl @ 5.0 g per
kg soil VC

Enhanced Na+ exclusion and K+

accumulation, relieved stomatal
limitation, increased leaf pigment

contents, enhanced electron transport
efficiency and net photosynthesis,

improved root activity, and minimized the
oxidative damage.

[60]

2.2. Biochar

BC is a carbon-rich organic substance with a porous structure, a wide surface area, and
a high ion exchange ability that improves the physical qualities of agricultural soil [83,84].
A number of studies found that BC application improves the different physio-biochemical
processes such as photosynthesis, hormonal and enzymatic activity in plants and decreases
the harmful effects of salt stress on plants (Figure 1 and Table 2, [5,22,83–85]).

Morphological attributes such as seedling emergence, plant height, shoot biomass,
root biomass, leaf area, dry matter, and yield of plants under salinity stress have been
shown to be improved by BC incorporation [32,86,87]. Moreover, BC application boosted
photosynthetic rate, stomatal conductance, and transcription rate under salinity stress
conditions in wheat [84], sorghum [87], quinoa [83], and eggplant [32]. On the other hand,
the availability and uptake of different nutrients such as N, P, K in maize [88] and P, K,
Fe, Mn, Zn, and Cu in tomato [89] improved by the utilization of BC as amendment to
saline soil.

Furthermore, in saline conditions, BC traps excess Na+ in soil, releasing mineral
nutrients and decreasing osmotic stress [86]. Studies showed that the use of BC lowered the
concentration of Na+ and decreased the Na+/K+ ratio in a variety of plants, assisting in the
reduction of the negative effects of salt on plants [84,90]. Moreover, under salinity stress,
BC application improves osmotic balance by increasing water holding capacity and CO2
assimilation, which ultimately results in a better photosynthetic rate, stomatal conductance,
and transcription rate [32,83,86]. It has been reported that the leaf photosynthesis and net
assimilation rate of the rice population was greatly aided by biochar’s potential positive
effects on chlorophyll content, leaf N content, leaf area index, photosynthetic potential,
stomatal conductance, and transpiration rates [91,92]. Additionally, the biochar treatment
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greatly enhanced the salt tolerance of cabbage seedlings and dramatically raised LRWC, Chl
a, Chl b, and total Chl while reducing sucrose, proline, H2O2, and MDA [29]. In addition, BC
application reduced the effects of salt by lowering the levels of phytohormones such ABA,
ACC, and JA, as well as increasing the amount of IAA in beans [93]. Similarly, Nikpour-
Rashidabad et al. [94] reported that BC improved the vascular cylinder, parenchyma,
IAA/ABA and IAA/ACC ratios to ameliorate the effects of salinity. Furthermore, under
salt stress, the treatment with BC enhanced nodulation, nitrogen content, rubisco activity,
GDH, GS, GOGAT, and NR activities in various parts of the soybean plant [85]. Given
the findings of the preceding investigations, BC appears to be a promising strategy for
reducing salt stress and increasing plant growth and biomass in a variety of plants.

Table 2. Application of biochar (BC) for minimizing soil salinity.

Plant Species Stress Level Treatment and
Application Methods Effects of Amendments References

Wheat (Triticum
aestivum L.)

Saline water
irrigation @ 10

dSm−1
BC @ 10, 20, 30 t/ha

Increased and relative water content,
photosynthesis. Decreased Na+/K+,

and leaf senescence.
[84]

NaCl @ 3000 ppm Soybean straw
BC

Increased plant growth, grain yield and
biomass production; increased leaf

chlorophyll content, water use efficiency,
PSII efficiency, and net photosynthesis rate;
decreased electrolyte leakage, H2O2, MDA;

increased CAT, APX, SOD, GR activities;
improved salinity tolerance.

[95]

Quinoa
(Chenopodium quinoa

L.)

Saline water
irrigation @ 400

mM
BC@ 5% (w/w)

Increased photosynthesis, stomatal
conductance, WUE and K+ content.
Decreased ABA and Na+ content.

[83]

Eggplant (Solanum
melongena L.)

Saline water
irrigation @ 2 and

4 dSm−1

Hardwood BC @ 5%,
Softwood BC @ 5%

Increased biomass, photosynthesis and
stomatal conductance. Decreased leaf

temperature and electrolyte leakage in leaf
tissue.

[32]

Maize (Zea mays L.) Saline soil Wheat straw BC @
12 t/ha

Increased LAI, Chlorophyll content, K, P
and N content. Reduced MDA, soluble

sugar, ascorbic acid and proline content.
[88]

Saline soil BC @ 5% (w/w)
Increased photosynthesis and stomatal
conductance, K+ content and K+/Na+.

Decreased ABA and Na+ content.
[96]

Soybean (Glycine
max L.)

NaCl @ 5 and
10 dSm−1

BC @ 50 and 100 g kg−1

soil

Improved nodulation, chlorophyll content,
N content, rubisco activity, GDH, GS,

GOGAT, and NR activities.
[85]

Bean (Phaseolus
vulgaris L.)

NaCl @ 6 and
12 dSm−1

BC @ 10% and 20%
w/w

Decreased Na+ concentration, PAO activity,
polyamines, ABA, ACC and JA; enhanced

IAA content.
[93]

Mungbean (Vigna
radiata L.)

NaCl @ 5 and
10 dS m−1 BC @ 50 and 100 g kg−1

Increased and relative water content, IAA
content, vascular cylinder, cortical
parenchyma areas, IAA/ABA and

IAA/ACC ratios; decreased ABA and ACC.

[94]

Sorghum (Sorghum
bicolor L.)

NaCl @ 0.26, 5.8
and 12.6 dSm−1

Soil mixer @ 2.5%, 5%
and 10% (w/w) of total

mass

Increased photosynthesis, stomatal
conductance, transpiration rate CAT, POD,

and SOD activity.
[87]

NaCl @ 0.8, 4.1,
and 7.7 dS m−1

BC @ 0, 2.5, 5, and 10%
(w/w)

Increased saddling emergence percentage,
dry matter accumulation, and relative water

content. Mitigated salinity stress.
[86]
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Table 2. Cont.

Plant Species Stress Level Treatment and
Application Methods Effects of Amendments References

Potato (Solanum
tuberosum L.)

NaCl @ 25 and 50
mM

BC @ 5% w/w of total
mass

Increased photosynthesis, stomatal
conductance, leaf water potential, K+

content; decreased Na+, Na+/K+ ratio and
ABA concentration.

[97]

Rice (Oryza sativa)

Saline soil BC @ 0%, 1.5%, 3.0%
and 4.5% w/w

Increased biomass, grain yield; decreased in
leaf Na+

concentration and Na+/K+ ratio; increased
in leaf K+ concentration; decreased ABA,

MDA content; increased leaf photosynthesis
rates (Pn), transpiration rates (Tr), stomatal

conductance (Gs); improved
salinity tolerance.

[91]

NaCl @ 3 g
per kg soil BC application

Decreased the value of EC, soluble Na+ and
Cl− contents; increased CEC, SOM, HA,

total nitrogen, and total phosphorus
contents in the soil; increased soil

microbial community.

[92]

Cabbage (Brassica
oleracea)

NaCl @ 0 and
150 mM BC @ 0%, 2.5%, and 5%

Increased stem diameter,
leaf area, shoot fresh weight, root fresh
weight, shoot dry weight, and root dry

weight; decreased malondialdehyde (MDA),
hydrogen peroxide

(H2O2), proline, and sucrose content;
reduced Cl and Na concentration, and

reactive oxygen species (ROS) production;
increased CAT and SOD activities.

[29]

Borage (Borago
officinalis)

NaCl @ 1250,
2500, 5000, and
7500 mg per kg

soil

BC @ 5%

Decreased leaf water potential (Yw),
osmotic potential (Ys), water saturation
deficit (WSD); increased relative water

content (RWC), water content (WC), and
water retention capacity (WTC); increased

K+, and K+/Na+ ratio; decreased MDA,
H2O2; increased POD, SOD activities;

improved salinity tolerance.

[98]

2.3. Bio-Fertilizer

BFs are one kind of fertilizer that contains living cells from various microorganisms
and can transform via biological mechanisms; nutrients are converted from the inaccessible
to the accessible form [99,100]. Recently, many studies have described the potential of
BF in salt tolerance enhancement (Table 3). The application of BF in wheat seedlings
lessened the negative effects of salinity by increasing chlorophyll content and decreasing
proline content, and improved plant growth and yield [28,37]. Under salt stress, amaranth
enhanced plant height and biomass production [101]. It has also been reported that the
application of BF to lavender enhanced its capacity to withstand salt stress by increasing
morphological attributes and RWC, Chl a, Chl b, and total Chl content as well as its essential
oil output [102]. Similarly, BF application on wheat (Triticum aestivum L.), okra (Abelmoschus
esculentus L.), yellow passion fruit (Passiflora edulis), cowpea (Vigna unguiculata L.), corn (Zea
mays L.), and olive plants (Olea europaea L.) enhanced growth and yield metrics, micro and
macronutrient content, and relieved salinity-related detrimental effects [28,37,38,103–106].
Souza et al. [104] showed that in yellow passion fruit, BF application reduced the salt
stress and enhanced the absolute growth rate, side branches, and yield. In addition, BF
application to olive and papaya plants increased growth and plant biomass, improved
osmotic adjustments between root and soil, increased microbial activity in the rhizosphere
zone, and reduced the toxic effects of salts [106,107].
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BF application increased antioxidant activity through the up-regulating of POX, SOD,
and CAT, and reduced MDA and H2O2 production in lettuce (Lactuca sativa L.), safflower
(Carthamus tinctorius L.) and cowpea (Vigna unguiculata L.) [105,108,109]. Al-Taey and
Majid [108] found that the functions of POD, CAT, SOD, and MDA were increased as a
result of the increased salinity stress in lettuce (Lactuca sativa L.). It has been reported that
BF ameliorates the effects of salt stress via the production of phytohormones (IAA, CK, and
ABA) and secondary metabolites (proline) in plants [109–111].

Overall, the discussion concluded that BFs increased plant growth and production
while also inducing salt tolerance by enhancing antioxidant enzyme activities, secondary
metabolite accumulation and phytohormone synthesis.

Table 3. Bio-fertilizer used for mitigating soil salinity.

Plant Species Stress Level Treatment and Application
Methods Effects of Amendments References

Wheat (Triticum
aestivum L.)

NaCl @ 0, 3000,
6000, 9000 ppm

Cerealien, Phosphorien and
Cerealien + Phosphorien in

addition mix-up with
wheat grains.

Increased growth, dry matter
accumulation, and yields. Decreased
proline content. Improved salinity

tolerance.

[37]

NaCl @ 0, 2.76,
5.53, and

8.3 dSm−1

Four (04) biofertilizer treatments
were applied: not at all

biofertilizer; seed injection by
Azotobacter chroococcum

Beijerinck strain 5; Pseudomonas
putida (Trevisan) Migula strain

186; joint inoculation of
Azotobacter + Pseudomonas

Increased chlorophyll index, relative
water content, and grain yield.
Concentrated dry matter, stem

reserve mobilizations to grain yield
and decreased proline content.

[28]

Lettuce (Lactuca
sativa L.)

Irrigated with
saline water @

1.2 dSm−1
Biofertilizer @ 5 kg/ha

Increased POD, CAT, MDA, SOD
activities. Decreased disruption of
endohormones, osmotic stress and

mitigates salinity stress.

[108]

Geranium plant
(Pelargonium
graveolens L.)

Irrigated with
saline water

NaCl1: NaC12
(1:1)

(Half dose of compost + Bio) &
(full dose of peanut compost +

Bio) added to the pot.

Increased oil percentage but N, P, K
contents remained unchanged.
Improved yield and mitigated

salinity stress.

[112]

Okra (Abelmoschus
esculentus L.)

Irrigated with
saline water with
3 levels 0.47, 2, &

4 dSm−1

Biofertilizers + Ascorbic acid @
100 & 200 mgL−1 was applied.

Increased chlorophyll content,
growth and yield but deceased

ascorbic acid and proline content in
okra plants.

[38]

Barley (Hordeum
vulgare) & Broad
beans (Vicia faba)

Irrigated with
saline water @ 0,
−1, −3, −5 Mpa

Seeds were presoaked with
biofertilizer (2 mL of

nanomaterial + 10 mL
cyanobacterial (algal culture) +
10 mL rhizobacterial strain + 10
mL MeSA) for one day and 12 h
and then added to the saline soil.

Increased bioavailability of
nutrients, production of growth
hormones and bio-stimulants.

Decreased Na+, Cl−, and proline
concentrations ultimately

reduced salinity.

[113]

Yellow passion fruit
(Passiflora edulis)

Irrigated with
saline water (EC
0.35 & 4 dSm−1)

Soil applied biofertilizer @ 0
and 50%

Increased absolute growth rate,
period for pruning the side branches,

and yield, and decreased the
adverse effect of salinity.

[104]

Soybean (Glycine
max L.)

Saline water @
3.13, 6.25, 9.38

dSm−1

Seeds were inoculated with
bio-fertilizers and applied on the

field.

Increased ascorbic acid, total indoles,
a- amylase activity and polyphenol

oxidase, decreased total soluble
phenols, total soluble sugars and

free proline. Decreased the
salinity effects.

[114]
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Table 3. Cont.

Plant Species Stress Level Treatment and Application
Methods Effects of Amendments References

Safflower
(Carthamus

tinctorius L.)
NaCl @ 250 mM Coated seeds with biofertilizers

& sugars were applied to the pot.

Increased antioxidant enzymes
(SOD, CAT, POD, and APX),

decreased proline and
malondialdehyde (MDA). Improved

salinity tolerance

[109]

Peanut (Arachis
hypogaea L.)

Irrigated with
saline water @ 0.5,

1.5, 2.5, 3.5, 4.5
and 5.5 dSm−1

Biofertilizer @ 15, 30 and 45

In the peanut, it promoted higher
vegetative growth and improved

photosynthesis rate. Decreased soil
salinity and improved yield.

[115]

Cowpea (Vigna
unguiculata L.)

NaCl @ 25, 50,
100, 200, and

300 mM

Biofertilizers mixed with sand @
0.8 g/Kg

Increased growth parameters, total
pigments, protein, proline contents

and activities of SOD and CAT.
Reduced H2O2 production and

alleviated salinity stress.

[105]

Pitombeira
seedlings (Talisia

esculenta)

NaCl @ 0.8, 2, 4, 6,
8 dSm−1

Biofertilizer @ 10% of the
total volume

Increased plant height, stem
diameter, number of leaves, leaf

area, total leaf area, Dickson quality
index, dry mass of root and stem.

Mitigated the harmful effects
of salinity.

[116]

Cotton (Gossypium
hirsutum L.) NaCl @ 15 dSm−1 Seeds were coated with

biofertilizers.

Increased shoot growth, root growth
and yield. Decreased leaf gas

exchange characteristics.
[117]

Corn (Zea mays L.)

Irrigated with
saline water @
0.47, 2.50, and

3.90 dSm−1

Biofertilizer “Halix” was applied
as an inoculum to corn seeds

before cultivation.

Increased the concentrations of
macro and micronutrients, total
chlorophyll, and ascorbic acid in

maize plants, as well as mitigated
the negative effects of salinity

on corn.

[104]

Olive (Olea
europaea L.)

Irrigated with
saline water @
2000, 3000 and

4000 ppm

Biofertilization treatments
control, Azotobacter chroococcum,

Mycorrhizae (Glomus
macrocarbium) and mix of
Azotobacter chroococcum +

Mycorrhizae

Enhanced growth and plant biomass,
improved microbial activity in the

rhizosphere zone. Decreased
intensity of salt toxic effects.

[106]

Papaya (Carica
papaya L.)

Irrigated with
saline water @ 0.5,

1, 2, 3 and 4
dSm−1

Biofertilizer applied @ 10% of
the substrate volume.

Enhanced growth and plant
biomass, provided greater osmotic
adjustments between root and soil

solution, increased absorption
efficiency of water and essential

nutrients stimulating plants to grow.
Decreased intensity of salt toxic

effects on growth.

[107]

Amaranth
(Amaranthus tricolor

L.)

NaCl @ 0, 2500,
5000, 7500, and

10,000 ppm

Bacillus sp., Lactobacillus sp.,
Saccharomyces sp., Streptomyces

sp., Azospirillum sp., Pseudomonas
sp., Azotobacter sp., Rhizobium sp.

Increased plant height, number of
leaves, and stem metaxylem

diameter.
[101]

Lavender
(Lavandula
angustifolia)

NaCl @ 0, 50, and
100 mM

Azotobacter, Azospirillum, and a
combination of Azotobacter and

Azospirillum

Increased plant height, stem length,
root length, fresh weight, dry
weight, relative water content,

chlorophyll a, chlorophyll b, total
chlorophyll, and essential oil yield;

improved salinity tolerance.

[102]



Life 2022, 12, 1632 12 of 22

2.4. PGPR

Plant-growth-promoting rhizobacteria (PGPR) are microorganisms that colonize plant
roots and are used as chemical alternatives in agricultural fields for crop production and
protection [6,118]. PGPR, which are resistant to salinity, help the plants to endure salty
conditions. These plant-associated rhizobacteria can synthesize a variety of substances, in-
cluding extracellular polymeric substance, 1-aminocyclopropane-1-carboxylate deaminase,
phytohormones, antioxidants and volatile chemical compounds [6,30]. Gao et al. [119]
reported that rhizosphere bacteria reduce salt stress while promoting plant development
by supplying nitrogen, phosphate, potassium, auxin, cytokinin, and abscisic acid to plants.
During several field tests, crops grown under saline soil conditions responded favorably to
the utilization of PGPR in terms of growth and yield (Table 4). Kumawat et al. [120] in his
study revealed that PGPR increased seed germination, height of the plant, biomass, and
chlorophyll contents under salt stress that ameliorate the negative effects of soil salinity. Wa-
ter potential and stomatal opening is a crucial plant physiological activity for their survival
which even salinity-stressed condition were found to be modified by PGPR to compensate
salt stress [121,122]. For example, Enterobacter cloacae, Pseudomonas fluorescence, Bacillus
pumilus, and Exiguobacterium aurantiacum were found to greatly alleviate the toxic effect
of salt stress in Triticum aestivum plants [122,123]. Moreover, Ali et al. [124] reported that
under salt stress circumstances, Enterobacter cloacae PM23 boosted maize growth, biomass,
photosynthetic pigment contents, carotenoids, and relative water content compared to
control treatment. Similar effects were observed when co-inoculation of Rhizobium sp. and
Enterococcus mundtii in Vigna radiata were carried out and obtained the grain production
was improved under saline stress by regulating ion homeostasis [120]. Additionally, when
infected with B. megaterium, Solanum lycopersicum and Arabidopsis thaliana both grew roots,
shoots, and more leaves under salt stress [125,126]. Furthermore, S. marcescens inoculation
enhanced Triticum aestivum shoot length, fresh weight, and chlorophyll (Chl) content [127].
Under saline stress conditions, the Enterobacter cloacae in Brassica napus enhanced seedling
development [128]. Inoculating Triticum aestivum with Pseudomonas fluorescens led to similar
outcomes, as did inoculating Oryza sativa with Alcaligenes faecalis, B. pumilus, and Ochrobac-
trum sp. [129]. In addition, the application of some PGPR has been shown to improve
nodule formation and fix nitrogen in plants under salt stress [130]. For example, Rhizobium
sp. and Bradyrhizobium japonicum’s co-inoculation improved root nodule formation in
Glycine max compared to control conditions, resulting in increased stress tolerance, plant
growth, and higher yield [130]. Likewise, Bacillus aryabhattai and Azotobacter vinelandii
inoculation enhanced root nodule numbers and N-contents in Trifolium repens compared
with the non-inoculated plants [131]. However, PGPR not only increased nodule numbers
but also increased plant dry weight, shoot dry weight, the extent of nitrogen yield and
protein content in some applications [132].

Many studies described that PGPR can alleviate the salt-induced growth inhibition
of plants by positively regulating ion homeostasis and antioxidant enzyme activity, im-
proving photosynthetic attributes, secondary metabolite accumulation, and oxidative stress
reduction (Figure 1 and Table 4, [6,118,133,134]). For instance, the use of PGPR reduced
the negative effects of salinity in pea (Pisum sativum) by enhancing the plants’ proline
and soluble sugar contents while lowering sodium (Na+) contents, which in turn reduced
the amount of electrolyte leakage and H2O2 content [135,136]. In addition, the harmful
effects of salinity are reduced by PGPR via declining lipid peroxidation and ROS in wheat
plants [137]. Singh et al. [125] and Kumawat et al. [120] reported that PGPR alters the
selectivity of Na+, K+, and Ca2+ under salt stress and thus maintains ionic balance due
to ion homeostasis. Moreover, inoculating Pseudomonas sp. or Glutamicibacter sp. with
the halophte Suaeda fruticosa led to noticeably greater shoot dry weight and decreased
buildup of Na+ and Cl− in shoots of salt-treated plants [138]. Similarly, the Piriformospora
indica inoculation in Zea mays decreased K+ flow from roots while increasing K+ concen-
tration in shoots under saline condition; this effect may be linked to a high-affinity K+

transporter where PGPR produced a proton-driven force through H+-ATPase [139]. More-
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over, Azotobacter isolates under salinity stress had greater K+/Na+ proportions in shoots
and decreased Na+ and Cl− amounts in maize leaves [140]. Additionally, some PGPR
lowered Cl2 and NO2 concentrations and increased the K+/Na+ ratio, which contributed
to enhanced stomatal conductance, and maintained hormonal balance and photosynthesis
under salt stress [6,141]. It has also been reported that PGPR incorporation enhances the
synthesis of the phytohormone that improves salt stress tolerance [6]. Such as, Some PGPR
i.e., Thalassobacillus denorans, Oceanobacillus kapialis, Pseudomonas strains, Bacillus tequilensis
and Bacillus aryabhattai synthesized more auxin and ABA, accumulated osmolytes in cell
cytoplasm that sustain their cell turgor to make ensure plant growth under osmotic stress
in Oryza sativa to endure high saline conditions [142]. In addition to the mechanisms
mentioned above, in order to survive under salt stress, PGPR may alter salt tolerant gene
expressions. The expression of TaABARE, TaOPR1, TaMYB, TaWRKY, TaST, SOS1, SOS4,
TaNHX1, TaHAK, and TaHKT1 genes were up-regulated in PGPR inoculated plants lead-
ing to the expression of stress related genes [143,144]. According to the findings, salinity
tolerance genes ZmNHX1, ZmNHX2, ZmN HX3, ZmWRKY58, and ZmDREB2A were
up-regulated, as well as the antioxidants ZmGR1 (Zea mays glutathione reductase) and
ZmAPX1’s (Zea mays ascorbate peroxidase) transcript levels [145,146]. Moreover, salin-
ity tolerance was increased when PGPR enhanced antioxidant enzymes’ gene expression
such as CAT, POD, APX, MnSOD, GR and GPX in inoculated plants [143]. Furthermore,
according to Ali et al. [124], the inoculation of maize with Enterobacter cloacae PM23 in-
creased APX, SOD, POD, total soluble sugars, and proteins while decreasing flavonoids
and phenolic contents under salt stress. Additionally, in Suaeda fruticosa under high salinity,
Glutamicibacter sp. inoculation dramatically decreased MDA levels while enhancing the
activities of SOD, CAT, APX, and GR. Habib et al. [147] reported that salinity circumstances
in the okra plant led to greater synthesis of APX and CAT by B. megaterium and Enterobacter
sp. It has also been found that the treatment of Arabidopsis seedlings with Enterobacter sp.
increased APX function and boosted salt tolerance [148]. Thus, from the reports of the
studies it is apparent that the exogenous application PGPR could bring positive growth and
yield results within the plants under saline condition and can be considered as a promising
modern agronomic tactic to develop the plants survival under a saline environment. In
future, dealing with extensive molecular research may reveal the efficacy of PGPR isolates
and mechanisms to improve its stress responsive capability within the short duration in a
wide area for sustainable agricultural production.

Table 4. Effects of PGPR on plant growth enhancement and salinity stress mitigation.

Plant Species PGPR Inoculation Salinity Stress Effects of Inoculation References

Wheat (Triticum
aestivum)

Pseudomonas fluorescence, Bacillus
pumilus, and Exiguobacterium

aurantiacum
10% NaCl solution

Maximum root growth and dry
biomass was observed; higher in
proline and total soluble proteins

contents; antioxidant activity
improved; improved water and

osmotic potential.

[122]

Enterobacter cloacae 10% and 15% NaCl
solution

Decreased the accumulation of Na+

and increased K+ uptake in shoots and
roots; higher K+/Na+ ratios; improved

antioxidant activity.

[123]

Bacillus subtilis and
Arthrobacter sp. 2–6 dSm−1

Improved antioxidant activity;
increased in dry biomass, total soluble

sugars and proline content.
[135]

Dietzia natronolimnaea 100 and 150 mM
NaCl

Modulated the expression of stress
responsive genes; improved ion

transporters TaNHX1, TaHAK, and
TaHKT1; improved the activities of

antioxidant enzymes.

[143]
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Table 4. Cont.

Plant Species PGPR Inoculation Salinity Stress Effects of Inoculation References

Serratia marcescens 150–200 mM NaCl

Higher osmo-protectants and growth
parameters; higher K+/Na+ ratios;

increased SOD, APX, and
CAT activity.

[127]

Maize (Zea
mays)

Kocuria rhizophila 100 and 200 mM
NaCl

Improved IAA and the ABA activity;
upregulation of salt tolerant genes
ZmNHX1, ZmNHX2, ZmNHX3,

ZmWRKY58 and ZmDREB2A; higher
K+/Na+ ratios; improved the growth

parameters; higher chlorophyll,
proline, and total soluble

sugar content.

[146]

Azotobacter chroococcum 0, 2.93 and 5.85 g
NaCl/kg soil

Increased in biomass and stomatal
conductance; higher K+/Na+ ratios;

improved antioxidant enzyme activity.
[140]

Enterobacter cloacae 0, 300, 600, and
900 mM NaCl

Enhanced plant growth, biomass, and
photosynthetic pigments under
salinity stress; enhanced radical

scavenging capacity, RWC, soluble
sugars, proteins, secondary

metabolite content.

[124]

Piriformospora indica 500 µM KCl and
100 µM CaCl2

Higher biomass and stomatal
conductance; lower K+ efflux from
roots and higher potassium content

in shoots.

[139]

Soybean
(Glycine max)

Rhizobium sp. Bradyrhizobium
japonicum and Hydrogenophaga

sp.

100, 250, and
500 mM NaCl

solution

Higher shoot biomass at the
vegetative stage, reproductive stages;

improved seed weight and shoot
K+/Na+ ratio.

[130]

Methylobacterium aminovorans
and Methylobacterium rhodinum;
Bradyrhizobium japonicum and

Bacillus megaterium

0.170 dSm−1

Increased nodule numbers and dry
weight of nodules; significantly
increased in N, P and K; higher
number of pods, seed index and

seed yield.

[132]

Rice (Oryza
sativa)

Pseudomonas pseudoalcaligenes and
Bacillus pumilus

5, 10, 15, 20, and 25
g NaCl L−1

Reduced lipid peroxidation and
superoxide dismutase activity;

reduced plant cell membrane index
cell caspase-like protease activity, and

programmed cell death.

[137]

Bacillus amyloliquefaciens 120 and 250 mM
NaCl

Higher synthesis of amino acids;
improved endogenous SA and ABA;

improved plant physiology.
[142]

Mung bean
(Vigna radiate)

Rhizobium sp. and
Enterococcus mundtii 10% NaCl solution

Higher seed germination and seedling
growth and biomass; enhanced

chlorophyll content and
macro-micronutrient uptake;

improved soil physical, chemical and
biological parameters.

[120]

Barley (Hordeum
vulgare)

Bacillus megatherium,
Pseudomonas fluorescens,

Bacillus circulans, Paenibacillus
polymyxa, Azotobacter

chroococcum, Azospirillum sp.
Paenibacillus polymyxa2,
Azospirillum brasilense,

Hyderella sp.

250, 500 or 1000
mM NaCl

Alleviated the deleterious effect of
salinity; higher dry masses and

relative water content.
[133]
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Table 4. Cont.

Plant Species PGPR Inoculation Salinity Stress Effects of Inoculation References

Pea (Pisum
sativum)

Acinetobacter bereziniae,
Enterobacter ludwigii, and

Alcaligenes faecalis

75 mM, 100 mM
and 150 mM NaCl

Improved the growth parameters;
higher chlorophyll, proline, and total

soluble sugar content; improved
electrolyte leakage; improved the
activities of antioxidant enzymes.

[136]

Pepper
(Capsicum
annuum)

Azospirillum brasilense and
Pantoea dispersa

40, 80 and 120 mM
NaCl

Higher K+ /Na+ ratio; improved leaf
photosynthesis and stomatal

conductance.
[141]

Burclover
(Medicago sp.)

Bacillus megaterium, E. medicae,
Ensifer Medicae and B. megaterium 0–2000 mM NaCl

Improved IAA and the ACC
deaminase activity; higher

chlorophyll, proline, and total soluble
sugar content.

[125]

Okra
(Abelmoschus

esculentus)

Bacillus megaterium and
Enterobacter sp. 75 mM NaCl

Enhanced ROS-scavenging enzyme
activity; increased antioxidant enzyme
SOD, APX, and CAT; upregulation of
ROS pathway genes CAT, APX, GR,

and DHAR.

[147]

Suaeda fruticosa Glutamicibacter sp. and
Pseudomonas sp. 600 mM NaCl

Increased shoot K+ and Ca2+ content;
lowered shoot MDA concentration

and less accumulation of Na+ and Cl−

in shoots.

[138]

Rapeseed
(Brassica napus) Enterobacter cloacae 50 and 100 mM

NaCl

Promoted seed germination and
seedling growth; improved

chlorophyll, water potential and other
physiological activity.

[128]

Avena sativa,
Medicago sativa,

and Cucumis
sativus

Advenella incenata, Providencia re-
Ttgeri, Acinetobacter calcoaceticus,

and Serratia plymuthica
Salinity stress

Enhanced ROS-scavenging enzyme
activity; increased SOD, APX, and

CAT activity; enhanced plant growth,
and photosynthetic pigments.

enhanced RWC and proteins, content

[145]

Tomato
(Solanum

lycopersicum)
Bacillus megaterium 200 mM NaCl

Improved the growth parameters and
biomass; higher chlorophyll, proline,

and total soluble sugar content.
[126]

3. Limitation of Organic Amendments and Future Perspectives

The organic amendments have particular physiochemical features and their applica-
tion in soil has a great influence on soil properties as well as plant growth and development.
It has been apparent from the above discussion that external organic activities operate as a
powerful growth regulator, enhancing plant growth performance in salt-stressed environ-
ments. Although organic farming approaches are particularly beneficial for agricultural
production in salt, they do have certain drawbacks.

• Its preparations, which are organically altered as natural weathering processes, need
more labor, time, space, and raw resources.

• More experienced and skilled people, as well as scientific understanding, are required
to maintain environmental conditions such as temperature, moisture, and respiration.

• Some organic methods, such as vermicomposting, biochar, and bio-fertilizer, emit
a foul stench and attract flies. On the worm-feeding materials, harmful molds and
bacteria are frequently produced in some cases.

Regardless of the fact that organic amendments take longer to prepare and require
additional forms of management. In order to increase plant nutrition in salt-stressed
agroecosystems, numerous proactive and preventive strategies have been used over time,
with well-defined adverse effects. Numerous methods, such as organic amendments,
have shown to be highly efficient in easing different agricultural restrictions, such as salt
stress. Multidisciplinary approaches and solutions, driven not only by plant and agri-
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environmental scientists but also by experts from other fields (remote sensing, artificial
intelligence, machine learning, big data analyses, etc.), can produce very helpful tools for
detecting, guarding against, and controlling salinization, thereby minimizing the harm
brought on by salt stress. However, many reports have been published about the role of
organic amendments in the alterations of physio-biochemical reactions to plants under salt
stress. To counteract salt stress, however, additional approaches and strategies based on
breeding assisted by genetic markers, genome editing, and advanced biotechnological pro-
cedures can be applied in addition to all standard treatments. In addition, there is currently
a paucity of knowledge regarding how secondary metabolites, distinct stress-responsive
genes, and the primary metabolic pathways that govern due to salinity. More studies are
required to better understand the morphological, physio-biochemical, transcriptomics,
and proteomics of organic amendment application in a saline environment to improve
crop productivity.

4. Conclusions

Abiotic stressors are significant barriers that reduce agricultural yields around the
world. One of the most damaging environmental variables limiting agricultural produc-
tivity is salinity. Salinity-induced oxidative stress and Na+ ion absorption lead to cellular
damage including ionic instability, which inhibits growth and has detrimental effects on the
morphological and biochemical characteristics of plants. It is absolutely necessary to look
for environmentally sound and long-term solutions to reduce the negative effects of salt on
plants. However, these negative impacts of salinity were lessened by the applications of VC,
VW, BC, BF, and PGPR. It is clear from the discussion that VC, VW, BC, BF, and PGPR pro-
mote plant growth and increase salt tolerance by maintaining ionic homeostasis, enhancing
antioxidant enzyme activities, lowering osmotic and oxidative stress, and regulating gene
expression, all of which lead to improved plant growth and productivity. Although several
studies on the regulatory functions of VC, VW, BC, BF, and PGPR in various crops under
salt stress have been carried out, there is still much that needs to be investigated at the
molecular, biochemical, and physiological level.
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