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Abstract

Objective: To diagnose and explore the genetic aetiology of Simpson–Golabi–Behmel syndrome

type 1 (SGBS1) in two male fetuses.

Methods: Prenatal ultrasound scans and further genetic analysis using karyotype analysis, chro-

mosomal microarray analysis, whole exome sequencing (WES) and Sanger sequencing

were conducted.

Results: Prenatal ultrasound scans of two fetuses showed multiple congenital anomalies and

hydramnios. Subsequent to termination of the pregnancies, a novel nonsense variant (c.892G>T,

p.E298*) in the glypican 3 (GPC3) gene of the two fetuses was identified by WES and further

confirmed by Sanger sequencing. The two fetuses were diagnosed with SGBS1. The mother was

heterozygous for the c.892G>T variant.

Conclusion: This study describes the prenatal sonographic features of SGBS1, emphasizes the

role of WES in the diagnosis of SGBS1 and expands the known mutation spectrum of the

GPC3 gene.
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Introduction

Simpson–Golabi–Behmel syndrome type 1
(SGBS1, OMIM entry no. 312870) is a rare
X-linked overgrowth disorder first reported
in 1975.1 SGBS1 is characterized by pre-
and postnatal macrosomia, multiple
congenital anomalies, and distinctive cra-
niofacial features including macrocephaly,
coarse faces, macrostomia, macroglossia
and palatal abnormalities.2–4 Other clinical
findings of SGBS1 include supernumerary
nipples, congenital heart defects, diaphrag-
matic hernia, genitourinary defects, skeletal
and hand anomalies, mild-to-severe intel-
lectual disability and an increased risk for
embryonal tumours.2–4 In addition, female
carriers may have manifestations of SBGS1
such as tall stature and coarse face because
of skewed X-chromosome inactivation.5–7

Glypican 3 (GPC3, OMIM* 300037) was
the first gene reported to be associated with
SGBS1 in 1996.8 GPC3 is located on chro-
mosome Xq26.2, comprises eight exons and
seven introns, and encodes a membrane-
associated heparan sulphate proteoglycan
of 580 amino acid residues belonging to
the glypican family.9 To date, 86 different
mutations of the GPC3 gene have been
reported in patients with SGBS1, including
large deletions (34.9%), frameshift muta-
tions (24.4%), nonsense mutations
(16.3%), missense mutations (8.1%), large
duplications (8.1%), splice site mutations
(4.7%), translocations (2.3%) and one in-
frame mutation (1.2%).9 In 2010, a dupli-
cation of exons 1–9 of the glypican 4
(GPC4) gene, which encodes another
member of the glypican family, was identi-
fied in a family with SGBS1.10

Simpson–Golabi–Behmel syndrome type
1 belongs to a group of overgrowth syn-
dromes and has overlapping clinical fea-
tures with other overgrowth syndromes,
such as Beckwith–Wiedemann syndrome,
Weaver syndrome and Perlman syn-
drome.4,11 Therefore, diagnosis of SGBS1

based on clinical features alone is difficult.

However, this problem could be solved by

molecular analysis, which could help to

identify the underlying genetic causes,

understand genotype–phenotype correla-

tions and aid in diagnosis and treatment.
This current study describes the prenatal

ultrasound findings and clinical features of

two male fetuses. Further genetic analysis

using chromosomal microarray analysis

(CMA) and whole exome sequencing

(WES) assisted the diagnosis of SGBS1

and revealed a novel nonsense variant in

the GPC3 gene that might be responsible

for this disorder.

Patients and methods

Patients

This study undertook comprehensive phys-

ical examinations and full medical history

evaluations in all available members of a

family related to two male fetuses that

were investigated by the Centre for

Reproduction and Genetics, The Affiliated

Suzhou Hospital of Nanjing Medical

University, Suzhou, China between June

2016 and December 2018. This study was

approved by the Institutional Ethics

Committee of the Affiliated Suzhou

Hospital of Nanjing Medical University

(no. 2016009). Written informed consent

was obtained from the parents of the

fetuses. A pedigree of the family was creat-

ed after clinical examination and genet-

ic testing.

Karyotype analysis

G-banded karyotyping was performed

according to the principle of ‘An

International System for Human

Cytogenetic Nomenclature, ISCN2013’ as

described previously.12
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Chromosomal microarray analysis

Chromosomal microarray analysis was per-
formed on an Affymetrix CytoScanVR plat-
form (Affymetrix, Santa Clara, CA, USA)
according to the manufacturer’s instruc-
tions. Briefly, 250 ng of genomic DNA
was digested, ligated, amplified using poly-
merase chain reaction (PCR), purified, frag-
mented, labelled and hybridized to the
Affymetrix CytoScanVR HD array. After
washing, staining and scanning, raw data
were analysed using Chromosome
Analysis Suite version 3.2 (Affymetrix).

Whole exome sequencing and
data analysis

Genomic DNA was extracted from fetal cord
blood and the peripheral blood of the parents
collected in 6 ml ethylenediaminetetra-acetic
acid tubes (BD Biosciences, San Jose, CA,
USA) and stored at 4�C prior to use.
Whole exome sequencing was performed by
the WuXi NextCODE Genomics Company
(Wuxi, China) using the SureSelectXT All
Exon Target Enrichment System (Agilent
Human All Exon 50-Mb kit; Agilent, Santa
Clara, CA, USA) and an Illumina HiSeq X
Ten System (Illumina, San Diego, CA, USA).
A mean coverage of 87X was obtained. Data
analysis was performed using Sentieon
Genomics tools version 201611 (Sentieon,
Mountain View, CA, USA) and variants
were screened by the Clinic Sequence
Analyser from WuXi NextCODE. The iden-
tified variants were classified according to the
Standards and Guidelines for the
Interpretation of Sequence Variants released
by the American College of Medical Genetics
and Genomics and the Association for
Molecular Pathology.13

PCR amplification and Sanger sequencing

To confirm the identified variants, exon 3 of
the GPC3 gene was amplified by PCR using
the following primers: forward,

50-TGCTCTTACTGCCAGGGACT-30;
and reverse, 5’- GCTTTCCTGCATTCTT
CTGG-30 (Shanghai Generay Biotech
Company, Shanghai, China). The PCR
reaction was conducted in a total volume
of 20 ml containing 0.5 mM each primer,
0.2 mM each dNTP, 1 U FastStartTM Taq
DNA polymerase (Roche, Basel,
Switzerland) and 1 � FastStartTM Taq
PCR reaction buffer with 2 mM MgCl2.
The PCR cycling was performed in a
GeneAmp 9700 Thermal Cycler (Applied
Biosystems, Foster City, CA, USA) with a
preliminary denaturation at 94�C for 5 min,
followed by 30 cycles of denaturation at
94�C for 45 s, annealing at 56�C for 30 s,
and elongation at 72�C for 30 s, followed by
a final elongation step at 72�C for 7 min
and holding at 4�C. The amplified DNA
fragments were purified and sequenced in
both directions using an ABI 3130 Genetic
Analyzer (Applied Biosystems). The result-
ing sequences were compared with the ref-
erence sequence of GPC3 (NM_004484.3)
in the NCBI database.14

In silico analysis of variants

The identified variant was searched against
the dbSNP database,15 the Exome
Aggregation Consortium database,16 the
Genome Aggregation Database,16 the 1000
Genomes Project database17 and the data-
base of Chinese genomes in diseaseDX.18

The pathogenicity of the variant was pre-
dicted by Mutation Taster.19

Results

The two parents investigated in this current
study were a healthy, non-consanguineous
couple. The woman (‘gravida 4, para 0’,
G4P0) had four pregnancies. Her first preg-
nancy at the age of 25 was terminated at 24
weeks of gestation due to sonographic evi-
dence of fetal renal anomaly. Her second
pregnancy at the age of 26 resulted in a
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spontaneous abortion at 4 weeks of gesta-

tion. No specific analysis was performed at

that time. At the age of 27, she was referred

to the Centre for Reproduction and

Genetics, The Affiliated Suzhou Hospital

of Nanjing Medical University, Suzhou,

China during her third pregnancy. A rou-

tine mid-trimester fetal ultrasound scan at

25 weeks of gestation suggested complete

atrioventricular septal defect, aortic valvu-

lar stenosis, hydrops abdominis, hyperecho-

genic kidneys and hydramnios. The

pregnancy was electively terminated and

the karyotype of the fetal cord blood was

46,XY. In her fourth pregnancy at the age

of 29, cytogenetic analysis of the amniotic

fluid was performed at 21 weeks of gesta-

tion and revealed a 46, XY karyotype. At

29 weeks of gestation, a fetal ultrasound

scan detected cleft lip and palate, small

stomach bubble, bilateral hydronephrosis

and hydramnios. The pregnancy was

terminated again and a postmortem exami-

nation revealed macrosomia with a head

circumference of 25 cm and an abdominal

circumference of 26 cm, a square face, wide

and high forehead, cleft lip and palate,

broad nose and alar collapse, and hypopla-

sia of the external genitalia (Figure 1).

Chromosomal microarray analysis of the

fetal DNA using an Affymetrix

CytoScanVR HD array revealed a normal

male profile.
As the two affected fetuses were males,

X-linked recessive inheritance was sus-

pected and WES was performed with

DNA from the two probands and their

parents. Ultimately, a heterozygous variant

(c.892G>T, p.E298*) in exon 3 of the

GPC3 gene was identified. Direct Sanger

sequencing validated the variant in both

fetuses and revealed that the mother was

heterozygous for the c.892G>T variant

(Figure 2). A pedigree of this family is

Figure 1. Clinical features of a male fetus after termination of the woman’s fourth pregnancy at 29 weeks of
gestation due to fetal abnormalities identified on a routine ultrasound scan. (a) A frontal photograph shows
fetal macrosomia, cleft lip and palate and hypoplasia of external genitalia. (b) Close-up view of the facial
phenotype. Note the square face, wide and high forehead, cleft lip and palate, broad nose and alar collapse.

4 Journal of International Medical Research



shown in Figure 2. The c.892G>T variant

was not recorded in the dbSNP database,

the Exome Aggregation Consortium data-

base, the Genome Aggregation Database,

the 1000 Genomes Project database or the

database of Chinese genomes in diseaseDX.

The c.892G>T variant causes a premature

stop codon (p.E298*) and was predicted to

be disease causing by Mutation Taster with

a probability value of 1.0. According to the

American College of Medical Genetics and

Genomics and the Association for

Molecular Pathology variant classification

guideline,13 the c.892G>T variant could

be classified as pathogenic (i) with 1 very

strong (PVS1), 1 moderate (PM2) and 1

supporting (PP1) evidence.

Discussion

Previously, most patients with SGBS1 were

diagnosed postnatally and mutations of the

GPC3 gene were identified by a targeted

analysis after diagnosis of SGBS1.9 With

the recent advent of chromosomal microar-

ray analysis and next-generation

sequencing, GPC3 variants can be detected

prenatally in fetuses with abnormal ultra-

sound findings before the diagnosis of

SGBS1.20–25 Recently, four GPC3 variants

were identified by WES in four families

without a preliminary clinical diagnosis of

SGBS1.11,21,25 Among these, three variants

were detected in fetuses with abnormal pre-

natal ultrasound findings such as fetal over-

growth, diaphragmatic hernia, enlarged

kidneys and hydramnios, which are not

pathognomonic for SGBS1.21,25 One vari-

ant was detected postnatally in a 6-year

old male patient with unknown overgrowth

syndrome.11 In this current study, two male

fetuses were diagnosed with SGBS1 after

identification of a loss-of-function mutation

in the GPC3 gene by WES.
Prenatal abnormal findings among

fetuses diagnosed with SGBS1 include ele-

vated maternal serum alpha-fetoprotein,

increased nuchal translucency, craniofacial

anomalies, macrosomia, polyhydramnios,

renal anomaly and cardiac malforma-

tion.20–27 In this current study, the woman

missed the maternal serum screening and

Figure 2. Genetic analysis of the family related to the male fetus shown in Figure 1. (a) The pedigree of the
family showing the father (I-1) and mother (I-2) with their four offspring numbered II-1–4. Individuals marked
with a question mark (?) were not analysed for the glypican 3 (GPC3) gene. (b) Sanger sequencing chro-
matographs of the GPC3 gene in available family members revealed a mutation in the two probands and their
mother. Mutations are indicated by black arrows. The colour version of this figure is available at: http://imr.
sagepub.com.

Xiang et al. 5

http://imr.sagepub.com
http://imr.sagepub.com


first-trimester ultrasound screening, hence

the data for maternal serum alpha-

fetoprotein level and fetal nuchal translu-

cency thickness were unavailable. A

mid-trimester ultrasound examination of

the two affected fetuses revealed cleft lip

and palate, congenital heart defect, renal

anomaly, and hydramnios, which was con-

sistent with previous reports.20–26

As a member of the glypican family, the

human GPC3 protein is attached to the exo-

cytoplasmic surface of the plasma membrane

through a covalent glycosylphosphatidylino-

sitol anchor.9 GPC3 was reported to regu-

late cell proliferation negatively by inhibiting

soluble hedgehog activity 28 and promote the

growth of hepatocellular carcinoma by stim-

ulating Wnt signaling.29 Until now, 86 dif-

ferent GPC3 mutations have been identified,

which are dispersed along all the coding

regions with no obvious mutation hotspots,

and the majority of GPC3 mutations lead to

a premature stop codon (49/86).9 In this cur-

rent study, a novel c.892G>T variant was

identified in the GPC3 gene of the two

fetuses, which was inherited from the

mother. The c.892G>T variant created a

premature stop codon and resulted in a trun-

cated protein (p.E298*), which is predicted

to be disease causing.
In conclusion, this current report

describes the diagnosis of two male fetuses

with SGBS1 by a combination of ultrasound

scan and genetic analysis; and the identifica-

tion of a novel nonsense variant in the GPC3

gene of the two fetuses. These current find-

ings demonstrated the potential of WES in

the diagnosis of SGBS1 and broaden the

mutation spectrum of GPC3 in SGBS1.
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