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Abstract 1 

Robust neural encoding of speech in noise is influenced by several factors, including signal-to-2 

noise ratio (SNR), speech intelligibility (SI), and attentional effort (AE). Yet, the interaction and 3 

distinct role of these factors remain unclear. In this study, fourteen native English speakers 4 

performed selective speech listening tasks at various SNR levels while EEG responses were 5 

recorded. Attentional performance was assessed using a repeated word detection task, and 6 

attentional effort was inferred from subjects’ gaze velocity. Results indicate that both SNR and SI 7 

enhance neural tracking of target speech, with distinct effects influenced by the previously 8 

overlooked role of attentional effort. Specifically, at high levels of SI, increasing SNR leads to 9 

reduced attentional effort, which in turn decreases neural speech tracking. Our findings highlight 10 

the importance of differentiating the roles of SNR, SI, and AE in neural speech processing and 11 

advance our understanding of how noisy speech is processed in the auditory pathway.  12 

Keywords  13 

Neural speech tracking, SNR, speech intelligibility, attentional effort 14 

1. Introduction 15 

The neural encoding of speech in noise is an essential process that enables speech 16 

comprehension in complex auditory scenes. Various objective and subjective factors influence 17 

how the auditory cortex processes noisy speech. Objective factors include the signal-to-noise 18 

ratio (SNR), representing the physical properties of the acoustic signal and its masking by 19 

background noise. Speech intelligibility (SI), on the other hand, is a subjective measure that 20 

reflects the listener's ability to recognize spoken words and depends not only on SNR but also on 21 

the listener’s auditory processing capabilities  (Nilsson et al., 1994; Sharma et al., 2013). 22 

Attentional performance (AP) is another subjective factor that pertains to the listener's ability to 23 
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selectively concentrate on one speech stream among many and filter out unwanted sounds in 24 

complex auditory scenes. Another related yet distinct factor is attentional effort (AE) (Sarter et al., 25 

2006), which involves the cognitive resources expended to focus on the attended talker while 26 

ignoring distractions and is influenced by listener’s engagement, fatigue, and overall task difficulty 27 

(Bruya and Tang, 2018; Sarter et al., 2006; Strauss and Francis, 2017). While these factors are 28 

interconnected, they are mechanistically distinct. SNR is an external, quantifiable measure, 29 

whereas intelligibility and attention are subjective experiences that vary across individuals, even 30 

in identical acoustic settings. This differentiation underscores the complexity of auditory 31 

processing and the gaps in our understanding of how these elements collectively influence neural 32 

speech encoding. 33 

 34 

Past research has extensively studied the neural encoding of speech in noise, emphasizing the 35 

role of SNR and speech intelligibility. Studies demonstrated that increasing SNR generally 36 

enhances intelligibility and neural speech encoding (Das et al., 2018; Decruy et al., 2020a; Ding 37 

and Simon, 2013; Lesenfants et al., 2019; Vanthornhout et al., 2018). Others have used varying 38 

degrees of visual congruency to modulate intelligibility and examined its impact on neural speech 39 

encoding (Crosse et al., 2015; Iotzov and Parra, 2019). Further work has identified different 40 

response components that differentially reflect SNR or intelligibility, such as frequency bands 41 

(Etard and Reichenbach, 2019; Vanthornhout et al., 2018), temporal components (Decruy et al., 42 

2020a; Ding and Simon, 2013; Yasmin et al., 2023), and response latency (Yasmin et al., 2023). 43 

However, these findings often imply a monotonic relationship between SNR, intelligibility, and 44 

neural encoding, which oversimplifies the dynamic interaction among these features (Krueger et 45 

al., 2017). For instance, increasing noise levels under specific conditions can enhance neural 46 

tracking (Das et al., 2018; Lesenfants et al., 2019), and higher intelligibility does not always 47 

correlate with increased neural encoding (Etard and Reichenbach, 2019). Moreover, past 48 

research typically used standard speech-in-noise tasks to measure intelligibility, often separating 49 
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this assessment from the task used to evaluate neural responses. Such intelligibility tasks typically 50 

involve asking subjects to repeat short sentences heard in noisy environments (Feng and Chen, 51 

2022; Nilsson et al., 1994; Sharma et al., 2013), a method that may only partially capture the 52 

complexities of real-world listening due to its limited engagement with challenging factors such as 53 

attention span and effort. It has been shown that attentional performance significantly modulates 54 

neural speech encoding (Ding and Simon, 2013; Mesgarani and Chang, 2012; O’Sullivan et al., 55 

2015), where SNR can considerably change target speech intelligibility (Brungart et al., 2001) and 56 

the attentional effort required to maintain focus on a talker (Cui and Herrmann, 2023; Dimitrijevic 57 

et al., 2019; Zekveld et al., 2006). These findings suggest a complex interplay between SNR, 58 

intelligibility, attention, and their impact on neural speech encoding (Devocht et al., 2017; Krueger 59 

et al., 2017; Yasmin et al., 2023), highlighting a critical gap in our holistic understanding of how 60 

these factors individually and collectively shape neural encoding of speech in noise.  61 

 62 

Our study aims to address the need for a comprehensive analysis integrating these dimensions 63 

(SNR, SI, and AE) to fully elucidate their combined impact on neural encoding. We examined 64 

neural responses to speech in noise through a multifaceted approach incorporating a high-65 

resolution range of SNR values.  We used a repeated word detection task (Kirchner, 1958; Laffere 66 

et al., 2020; Marinato and Baldauf, 2019), designed to continually monitor subjects' behavior in a 67 

manner that integrates attentional performance with the assessment of speech intelligibility, 68 

allowing us to capture the variability of attentional engagement in natural listening conditions. 69 

Additionally, we estimated attentional effort by analyzing gaze velocity (Ala et al., 2020; Ciccarelli 70 

et al., 2019; Gopher, 1973) to understand their collective impact on EEG signals. Our findings 71 

advance our holistic understanding of noisy speech processing in the auditory cortex and have 72 

practical implications for designing auditory technologies to improve speech perception under 73 

challenging listening conditions. 74 
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2. Materials and Methods 75 

2.1. Participants 76 

Fourteen native American English speakers (7 males; mean ± standard deviation (SD) age, 24.86 77 

± 4.4 years) with self-reported normal hearing participated in the experiment. The study followed 78 

the protocol approved by the Institutional Review Board of Columbia University (Protocol Number: 79 

AAAR7230). Participants were paid for their time as well as a bonus based on their task 80 

performance (1-back detection hit rate). 81 

2.2. Experiment Procedures 82 

2.2.1. Experiment 1: Measuring Intelligibility by Connected Speech Test 83 

Speech intelligibility (SI) was measured with the Connected Speech Test (CST) (Cox et al., 1987) 84 

in experiment 1. Subjects listened to a series of connected short sentences from daily familiar 85 

topics with one sentence at a time. The sentences were normalized to 65dB and were covered 86 

with noises at different SNRs ranging from -12 dB to 4 dB. Subjects were asked to verbally repeat 87 

the words they heard. Stimuli were synthesized by Google Text-To-Speech API (WaveNet) (Oord 88 

et al., 2016) with four different voices (2 males and 2 females), and played by two loudspeakers 89 

placed at ± 45 degrees. Experimenters recorded subjects’ responding accuracy and regressed 90 

for individual SI curves afterward. 91 
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 92 

Fig 1. Illustration of the task schematic and psychometric curves. (A) The general task 93 
schematic. Subjects were instructed to focus on the target talker while ignoring the masker talker 94 
and the background noise. EEG, gaze activities, and button press were recorded while subjects 95 
performed the tasks. The subjects press a buzzer when they hear a repeated word in the target 96 
stream. (B) Speech intelligibility (SI) is measured using a connected speech task to derive 97 
psychometric curves for pedestrian and babble noises. No significant difference appears between 98 
the noise types.  99 

2.2.2 Experiment 2: Multi-talker Speech-in-Noise Perception Test 100 

American English podcast stories were synthesized by Google Text-to-Speech API with the same 101 

setting as experiment 1. 160 trials of context-continuous stories (average length ~35s) were also 102 

played by two loudspeakers placed to ± 45 degrees of subjects (Fig 1A). During each trial, 103 

subjects were presented with two speech streams covered by naturalistic background noises 104 

(babble or street noise). The target speech was normalized to 65 dB, and its SNR ranged from -105 

12 dB to 4 dB. 106 

Subjects were instructed to focus on the speaker whose gender and direction were specified by 107 

the icon on the monitor. Three repeated words were inserted in both speech streams. For 108 

simplicity, we selected semantically important keywords as repeated words, excluding articles, 109 

prepositions, and conjunctions. During the experiment, subjects needed to press the buzzer 110 

whenever they captured a repeated word from the target speaker. After each round of 16 trials, 111 

experimenters calculated the buzzer responses to the repeated words (1-back detection hit rate) 112 
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and reported to subjects as feedback. Experimenters also asked subjects to summarize the 113 

stories they heard briefly. However, only 1-back detection hit rate was evaluated as a basis for 114 

compensation, to avoid unnecessary memory load for subjects. 115 

Subjects were also instructed to keep their gaze on the monitor and minimize head movement 116 

during each trial. To facilitate tracking of target speech in extremely adverse trials with low SNRs, 117 

a 3-second window was used at the start of each trial where masker speech and noise gradually 118 

increased to the pre-set SNR. These windows were removed in later analyses. 119 

2.3. Data Acquisition and Preprocessing 120 

In Experiment 1, the word recalling accuracy for each SNR bin was manually recorded for later 121 

regressing the SNR-SI psychometric curve (Fig 1B; Details also in 2.4.2 Speech Perceptual 122 

Attributes). 123 

In Experiment 2, buzzer responses to the repeated words, 64-channel EEG, and eye-tracking 124 

data were recorded for each trial. Among them, buzzer responses and EEG were recorded by 125 

g.HIAMP (g.tec, Australia). Eye tracking data were calibrated and acquired from Tobii Pro Nano 126 

(Tobii, Sweden). All data was streamed from Simulink (Mathworks, MA, USA) at 1200 Hz with a 127 

60Hz notch. Afterward, EEG data were downsampled to 100Hz with an anti-aliasing filter. 128 

Channels with unusual standard deviations were automatically detected and replaced using 129 

spherical interpolation of the remaining channels (Delorme and Makeig, 2004; Kang et al., 2015; 130 

Perrin et al., 1989). 131 

Speech envelopes for both target and masker speakers were firstly extracted by a nonlinear, 132 

iterative (NLI) method (Horwitz-Martin et al., 2016) and secondly downsampled to 100Hz to match 133 

with the EEG recordings. Finally, each envelope was z-scored to zero mean and unit variance.  134 
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Blink detection and gaze tracking were completed and preprocessed automatically by Tobii Pro 135 

SDK (Tobii, Sweden) with a sampling frequency of 60Hz. The gaze coordinates were normalized 136 

to (0,0) and (1,1) within the screen.  137 

2.4. Measurement of objective and subjective features  138 

2.4.1. Speech objective attribute: Signal-to-Noise ratio (SNR) of target speech. 139 

In both experiments, the volume of target speeches was normalized to 65 dB. The masker speech 140 

and bi-channel noises were at equalized volume to form the SNRs distribution from -12 dB to 4 141 

dB. The SNRs were computed in the following formula: 142 

 	𝑆𝑁𝑅!"#$%! 	= 	10𝑙𝑜𝑔&'
((!"#$%!)

((+",-%#)./((012,%)
   (1) 143 

P: power of stimuli 144 

The bi-channel noises used in this study for SNR adjustments are: 145 

● The babble noise was 10-speaker babble derived from the AzBio test (Spahr et al., 2012). 146 

● The street noise was the pedestrian area recording from CHiME3 (Barker et al., 2015) but 147 

with any salient interference removed (e.g. car horn, high-pitch car brake sound, intelligible 148 

pedestrians’ talking, etc.). 149 

Noise audios were truncated as long as the formal trial (~35s per trial). 150 

2.4.2. Speech perceptual attribute: Speech Intelligibility (SI) 151 

Speech Intelligibility (SI) was measured by the Connected Speech Test (Cox et al., 1987). In 152 

Experiment 1, experimenters manually filed the subjects’ word recalling accuracy for each SNR 153 

bin in the range of -12 dB to 4 dB. Then, the psychometric curve between SNRs and word recall 154 
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accuracy was fitted by psignifit toolbox, which implements the maximum-likelihood method 155 

described by (Wichmann and Hill, 2001a, 2001b) , and a customized logistic function: 156 

𝑆𝐼	 = 	𝑙𝑤	 +	
𝑢𝑝 − 𝑙𝑤

1 + 𝑒𝑥𝑝3$#∗(5673!8,)
 (2) 

lw: lower bound (defined to approach 0); up: upper bound (defined to approach 1); gr: 157 

growth rate; SNR: signal-to-noise ratio, range from -12 to 4 dB; ths: threshold when SI = 158 

50%, defined in the range of SNR. 159 

Among the two approaches, the one producing a regressed curve with higher 𝑅/ and lower 𝑅𝑀𝑆𝐸 160 

was selected. From the selected curve, the corresponding SI for each SNR in Experiment 2 was 161 

read. 162 

2.4.3. Attention Measures 163 

● Attentional performance (AP): Single-trial 1-back detection hit rate (HR) 164 

As mentioned above, single-trial 1-back detection hit rate (HR), as a measure of subjects’ 165 

performance in terms of attention focus for each trial, was computed by the buzzer-hitting 166 

performance (Kirchner, 1958; Laffere et al., 2020; Marinato and Baldauf, 2019). There 167 

were 3 words inserted for each trial. Therefore, the range of HR was [0, ⅓, ⅔, 1]. Intuitively, 168 

high HR in a trial indicates a better attentional performance. 169 

● Attentional effort (AE): Gaze Velocity (GV) 170 

Concentration periods are associated with suppressed irrelevant physiological activities, 171 

evidenced by reduced ocular movements (saccade and micro-saccade rate) and blink 172 

rates, as well as prolonged fixation (Abeles et al., 2020; Braga et al., 2016; Contadini-173 
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Wright et al., 2023; Cui and Herrmann, 2023). Oculomotor activity, with its anatomical 174 

overlap with the attention-related network (Corbetta et al., 1998), is, therefore, a valuable 175 

metric for evaluating attentional effort with superiority in stability across age (Bruenech, 176 

2008), and the relationship has been justified by (Ala et al., 2020; Ciccarelli et al., 2019; 177 

Gopher, 1973). In this paper, we use averaged gaze velocity (GV) to quantify attentional 178 

effort for each trial, as it reflects the overall intensity of oculomotor activity, including 179 

saccade and micro-saccade. A higher GV, indicating more frequent oculomotor activity, 180 

suggests reduced attentional effort (Ala et al., 2020; Ciccarelli et al., 2019; Gopher, 1973). 181 

The gaze coordinates were recorded and normalized between (0,0) and (1,1) by the Tobii 182 

Pro Nano screen-based eye tracker. To calculate actual gaze angular velocity, we first 183 

restored relative coordinates to screen size, then computed and averaged the absolute 184 

value of the derivative of gaze coordinates over time within each trial. Finally, using the 185 

(approximately) 0.6m distance from the subject’s seat to the screen, we calculated gaze 186 

velocity (GV) using trigonometric functions (Diaz et al., 2013).   187 

2.4. Attention Decoding 188 

The classical approach for auditory attention decoding (AAD) is to model the linear projection 189 

between neural electrophysiological recordings and speech features (O’Sullivan et al., 2015), 190 

such as speech envelope. Once the model is trained, AAD correlates—the correlations between 191 

the speech features and their reconstruction from neural recordings—are compared for target and 192 

masker speech to decode auditory attention. Over and above the conventional forward or 193 

backward regularized linear model that applies transformation solely on one side of this projection 194 

(either neural signal or speech features), the Canonical Correlation Analysis (CCA) approach 195 

transforms both neural recordings and speech features for significantly better correlations scores 196 

(Dähne et al., 2015; de Cheveigné et al., 2018).  197 
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We adopt the CCA algorithms for target speech decoding. Speech envelope, which is the slow 198 

modulation of speech and proved to be feasible for neural speech tracking with EEG (Horton et 199 

al., 2014; Mesgarani et al., 2009; O’Sullivan et al., 2015), was extracted from both target and 200 

masker speech. Envelopes for clean speech and the multi-talker EEG recordings were first 201 

downsampled to 100Hz for a sampling rate match. Second, stimuli and neural recordings were 202 

windowed for overlapping receptive fields. Time-lagged matrices were produced for envelopes 203 

and EEG recordings. For EEG, the receptive fields were 400 ms and for speech envelope, the 204 

receptive fields were 200ms. Third, for each subject, subject-wise CCA-based linear models for 205 

both speeches were trained in a leave-one-out cross-validation setting.  206 

The stimuli-response mapping is quantified by the trained model and evaluated by Pearson’s 207 

correlation between transformed stimuli and neural responses. As the target and masker stimuli 208 

are not identically encoded in the brain (Ding and Simon, 2012a), we computed this correlation 209 

for both the target and masker speech. The correlation for the target is referred to as rT, and for 210 

the masker speech is rM. We also defined rD as their difference (rD = rT-rM) to quantitively 211 

represent the different intensities of neural entrainment caused by selective attention. rD > 0 212 

indicates a successful attention-decoded trial.  213 

Moreover, to investigate the neural modulation pattern under varying speech conditions, we 214 

estimated temporal response functions (Ding and Simon, 2012b; Lalor et al., 2009) of target 215 

speech using regularized linear regression. This approach minimizes the mean-square error 216 

between the actual neural recordings and the predicted values. The training and prediction 217 

processes for each subject were also conducted in a leave-one-out cross-validation fashion using 218 

the mTRF toolbox (Crosse et al., 2016).  219 
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3. Result 220 

Fourteen participants were instructed to perform selective listening tasks, focusing on a target 221 

speaker’s speech (attended stream) while ignoring a masker speaker (non-target, unattended) 222 

and background noises. We recorded 64-channel EEG, gaze velocity, and buzzer press 223 

responses to capture the participants' neural and behavioral responses in real-time (Fig 1A). For 224 

each participant, speech intelligibility (SI) was measured using a connected speech test (Cox et 225 

al., 1987) prior to the actual experiment. As the difference in psychometric curves between 226 

different types of noise was negligible (Fig 1B, left), we adopted an average psychometric curve 227 

for each subject to streamline the analysis (Fig 1B, right).  228 

3.1. Distinct Impacts of SNR and SI on Neural Speech Tracking: SI Enhances Tracking, 229 

While High SNR Reduces It 230 

To measure the strength of neural tracking for target and masker speech, we trained CCA-based 231 

linear models to quantify neural speech tracking for each talker. We computed Pearson’s 232 

correlation between the transformed speech envelope and neural recordings to measure the 233 

strength of neural speech tracking for the target (rT) and masker (rM) speech. The difference in 234 

correlation between target and masker speech (rD = rT – rM) was used as a single measure to 235 

reflect how well participants followed the target speech while suppressing the masker speech.  236 
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 237 

Fig 2. The relationship between neural speech tracking for target and masker speech with 238 
variables SNRs and SI. (A) rT: the correlation of the target neural speech tracking across 239 
different SNR and SI values; (B) rM: the correlation of masker neural speech tracking across 240 
different SNR and SI values; (C) rD: the difference between neural speech tracking of target and 241 
masker speech streams, rD = rT- rM. (D) Average neural speech tracking across SI. (E) Averaged 242 
neural speech tracking across SNR. (F) rD across SNR for different groups of SI, with a linear 243 
line fitted to the data sample distribution of rD. Scatters and the fitted line are color-coded by SI. 244 
(G) Slope of rD vs. SNR with SI fixed. Significant slopes with 95% confidence intervals not 245 
containing 0 are marked with asterisks. 246 
 247 

To accurately assess the impact of SNR and SI on target and masker neural speech tracking, it 248 

is crucial to distinguish between these two highly correlated factors. We addressed this by 249 

analyzing their effect on neural speech tracking as a function of both SI and SNR. Our analysis 250 

revealed distinct patterns in how SNR and SI affect neural speech tracking. Fig 2A-2C show the 251 

averaged neural tracking correlations across subjects for target (rT) and masker speech (rM) and 252 

their difference (rD) for different SI and SNR values. We found that while increasing SNR and SI 253 

generally increase rT (enhanced neural tracking of the target speech) and decrease rM 254 

(suppressed neural tracking of the masker speech), this relationship shifts when SI is sufficiently 255 
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high. Specifically, under high SI conditions (i.e., SI>80%), increasing SNR reduces rT and 256 

increases rM, indicating decreased neural tracking of the target speech while increasing the 257 

tracking of the masker speaker. The average plots across SI and SNR in Fig 2D and 2E further 258 

illustrate these effects, showing that SI has a nearly monotonic relationship with rT, rM, and rD, 259 

while SNR’s impact on these values reverses beyond approximately -1.6 dB. This indicates that 260 

in easier listening conditions, when the target talker is highly intelligible, increasing the SNRs of 261 

the masker talker can paradoxically reduce its neural speech tracking. In Fig 2F,  we quantized 262 

SI into 6 bins from 0 to full intelligibility, each denoted by a different color. Trials categorized as 263 

'Full SI’ are marked in black and represent instances where SI reached its plateau on individual 264 

psychometric curves. Fig 2G illustrates the linear relationship between SNR and rD within each 265 

SI bin, revealing a progression from positive to neutral to negative correlation between rD and 266 

SNR as SI increases. In summary, these results demonstrate that while SNR and SI are strongly 267 

correlated, they have distinct and sometimes opposing effects on neural speech tracking, which 268 

we will explore in greater detail in the next section   269 

3.2. Increased SNR Leads to Reduced Attentional Effort and Neural Speech Tracking  270 

Our findings of a negative relationship between SNR and neural speech tracking (rD) under high 271 

SI conditions suggest a secondary effect of SNR. One possibility is that increasing SNR may lead 272 

to decreased attentional performance (AP) and/or attentional effort (AE), which could 273 

consequently reduce rD. Specifically, AP is the is the actual performance outcome while AE refers 274 

to the cognitive resources required to maintain attention, including motivation and resource 275 

allocation (Pashler et al., 2001; Sarter et al., 2006). To investigate this, we used the hit rate of 276 

word repetition detection task (HR) as an ongoing measure of attentional performance, where a 277 

high HR indicates heightened attentional performance (Kirchner, 1958; Laffere et al., 2020; 278 

Marinato and Baldauf, 2019). Additionally, we used gaze velocity (GV), to measure oculomotor 279 

activity, as an indicator of ongoing attentional effort (AE); notably, a low GV suggests increased 280 
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attentional effort (Ala et al., 2020; Ciccarelli et al., 2019; Gopher, 1973). (see “4. Materials and 281 

Methods” - “2.4.3 Attention Measures”). Fig 3A and 3B illustrate how SNR influences these 282 

two attention-related metrics. In Fig 3A we observe that the median HR levels off after -5 dB, 283 

suggesting that our attentional performance metric reaches a maximum beyond this SNR 284 

threshold, limiting its ability to explain changes in rD in this range. 285 

 286 

Conversely, Fig 3B shows that GV significantly increases at higher SNRs, where speech is highly 287 

intelligible. This indicates that the attentional effort required to maintain focus on the target talker, 288 

which is inversely related to GV, substantially decreases when SNR is sufficiently high. The 289 

reduced attentional effort, reflected by increased ocular activity, correlates with the decline in rD 290 

(Fig 3D, Pearson correlation test, c = -0.15, p<1e-5).  291 

 292 

We conducted a more detailed analysis to explore the impact of attention-related features on rD. 293 

Fig 3C shows the modulation of rD by attentional performance, measured by HR. Higher HR was 294 

found to be associated with higher rD. Moreover, this change is not continuous due to the discrete 295 

nature of the behavioral response (three repeated words in each trial). The variation of rD with 296 

attentional effort, measured by GV, is shown in Fig 3D. This analysis reveals that trials with lower 297 

rD also exhibit more frequent gaze activity, suggesting that a decrease in attentional effort is 298 

correlated with decreased neural speech tracking. 299 
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 300 

Fig 3. Attentional performance and attentional effort. (A) single-trial repeated word hit rate 301 
(HR) increases with SNR. (B) Gaze velocity (GV) increases with SNRs. (C) Interaction between 302 
rD and HR: distribution of rD across groups of HR. Medians and confidence intervals are marked 303 
with black lines and gray shades, respectively. Significant differences between groups are found 304 
(p<0.05, Kruskal-Wallis test, Bonferroni-corrected). (D) Interaction between rD and GV: GV 305 
negatively correlates with rD (c = -0.15, p<1e-5). The black line marks the regressed linear fit with 306 
significant slope and intercept: rD = -0.0014 * GV + 0.1126. (E) Interaction between rD and HR 307 
when fixing SNR. (F) Interaction between rD and GV when fixing SNR. 308 
 309 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.10.616515doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.10.616515
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

To ensure these results apply across the entire range of SNR values, we repeated the same 310 

analyses separately for each SNR bin from -12 dB to 4 dB, as shown in Fig 3E and 3F. The results 311 

confirm that the observed positive correlation between rD and HR (Fig 3E) and the negative 312 

correlation between rD and GV (Fig 3F) is consistent across different SNR values. Hence, while 313 

the effect of attentional effort on rD becomes more visible in higher SNRs, these two show the 314 

same relationship in all SNR conditions. In summary, Fig 3 shows that attentional effort decreases 315 

with SNR, meaning subjects exert less effort in easier trials, which also corresponds to decreased 316 

target speech neural tracking. 317 

3.3. Modeling the Interactions Between SNR, Speech Intelligibility, and Attentional Effort 318 

on Neural Speech Tracking  319 

Given that our previous results indicate that multiple interacting variables influence rD, we used 320 

a computational model to elucidate these complex relationships. Specifically, we fitted a linear 321 

model to predict rD for each trial from that trial’s objective (SNR) and subjective (SI and GV) 322 

measurements (Adjusted 𝑅/: 0.151; F-statistic vs. constant model: 48.2, p < 0.001). The main 323 

effects and interaction terms are depicted in Fig 4A. This analysis shows that SI positively 324 

influences rD, while GV negatively affects rD. Interestingly, the direct influence of SNR on rD is 325 

not significant when interaction terms are included. This suggests an indirect influence of rD by 326 

SNR through the modulation of attentional effort and SI (Fig 4A). Specifically, increasing SNR 327 

improves SI and reduces attentional effort. The opposing effects of SI and attentional effort on rD 328 

could explain the non-linear relationship observed in Fig 2E.  329 

 330 

Fig 4B-4D further illustrate the interaction between these features. Fig 4B shows that SI has a 331 

positive impact on rD irrespective of SNR levels. However, as SNR increases, the effect of SI and 332 

its significance lessens, likely due to SI approaching the ceiling at higher SNRs. Fig 4C 333 

demonstrates the interaction between SNR and GV, showing that GV negatively impacts rD 334 
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across all SNR levels. The change in the slope with increasing SNR suggests that rD is more 335 

sensitive to GV at higher SNRs. This increased sensitivity indicates that attentional effort plays a 336 

more significant role in shaping the neural target tracking at higher SNRs especially after 337 

maximum intelligibility.  338 

 339 

Fig 4D shows how SI and GV differentially influence rD. Fig 4D (left) shows that the impact of SI 340 

on rD varies with different levels of attentional effort. With increased attentional effort (low GV), 341 

the influence of SI on rD decreases, highlighting the primary role of attention in shaping neural 342 

speech tracking. Conversely, Fig 4D (right) shows that the negative impact of increased GV on 343 

rD depends on SI. Attentional effort has the highest influence on rD in less intelligible conditions, 344 

where increased performance may attempt to compensate for the heightened difficulty of the 345 

listening task.  346 

 347 

Fig 4. Interaction of various factors. (A). The main effect analysis of a linear model, and a 348 
hypothesized model of feature interactions. Speech intelligibility and gaze velocity exhibit a 349 
significant effect on rD (p<0.001, t-test), while SNR does not. (B) Interaction effect between SNR 350 
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and SI of the fitted linear model. (C) Interaction effect between SNR and GV of the fitted linear 351 
model. (D) Interaction effect between SI and GV of the fitted linear model.   352 

3.4 Temporal and Spatial Dynamics of Neural Responses Under Varying Speech 353 

Intelligibility and Attentional Effort 354 

To investigate how the timing and spatial distribution of neural response patterns change under 355 

different SI and GV conditions, we calculated the temporal response functions (TRFs) (Ding and 356 

Simon, 2012b; Lalor et al., 2009) for target speech in different listening conditions. TRFs capture 357 

the brain’s temporal dynamics in response to continuous auditory stimuli, reflecting the 358 

relationship between the EEG signal and the speech envelope over lags at different electrodes. 359 

Normalized TRFs for target speech, averaged across all channels, are shown in Fig 5A and 5B. 360 

The group with low SI (< 50%) exhibits weaker early components TRF50 (positive, around 50 ms) 361 

across the scalp, especially in the temporal and central regions. Additionally, the low SI group 362 

shows reduced attention-related TRF components TRF100  (negative, around 100 ms) and TRF200 363 

(positive, around 200 ms), indicating reduced selectivity for target speech and less suppression 364 

of masker speech components (Ding and Simon, 2012b; Fiedler et al., 2019).  365 

 366 

Attentional effort, measured inversely by GV, also impacts the TRFs. While the acoustics-367 

modulated early components TRF50 remain consistent across different GV, a significant difference 368 

emerges for higher-level, attention-related components around TRF100  and TRF200 (Fig 5C and 369 

5D). In trials with lower attentional effort (high GV, GV>66.7% percentile), TRF100  responses 370 

decrease in posterior electrodes (Fig 5D). For TRF200, only the group with low GV (GV<33.3 % 371 

percentile) shows strong activation in the anterior and central areas. 372 
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 373 

Fig 5. Normalized Temporal Response Functions (TRFs) under different Speech 374 
Intelligibility (SI) or Gaze Velocity (GV) levels. (A) The normalized TRFs under low (<50%) and 375 
high (>50%) SI. TRFs are averaged across all EEG channels. Significant temporal components 376 
(compared to the chance level, t-test, p<0.05) are marked with thick lines. (B) The topography of 377 
normalized TRFs amplitude at three critical time points (50ms, 100~150ms, and 200~250ms), 378 
under different levels of SI. (C) The normalized TRFs under low (<33%), mid (33%-67%), and 379 
high (>67%) GV. TRFs are averaged across all EEG channels. Significant temporal components 380 
(compared to the chance level, t-test, p<0.05) are marked in thick lines. (D) The topography of 381 
normalized TRFs amplitude at three critical time points (50ms, 100~150ms, and 200~250ms), 382 
under different levels of GV. 383 

4. Discussion 384 

We demonstrate that neural tracking of target speech is influenced by both objective (signal to 385 

noise ratio) and subjective (speech intelligibility, attentional performance and effort) factors in 386 

distinct ways. As speech intelligibility increases, the positive effect of improving SNR on neural 387 

tracking of target speech diminishes. Specifically, in conditions where speech is highly intelligible, 388 

further increases in SNR decrease neural speech tracking. We propose that this decrease is 389 

caused by the reduced attentional effort required to focus on the target speech. Our findings show 390 

that gaze velocity, a measure proposed for quantifying attentional effort, effectively explains this 391 
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reduction in neural speech tracking accuracy. Together, our findings suggest a complex 392 

interaction between speech intelligibility and attentional effort mediated by SNR in shaping the 393 

neural representation of speech in noise. 394 

4.1. Distinct Contributions of SI and SNR to Neural Speech Tracking 395 

Despite the significant correlation between speech intelligibility (SI) and signal-to-noise ratio 396 

(SNR), our findings reveal distinct impacts of each on neural tracking of target speech as 397 

measured by EEG. While SI and SNR are often discussed together due to their high correlation, 398 

they affect neural speech tracking through different mechanisms. Previous studies, including 399 

those by (Das et al., 2018; Iotzov and Parra, 2019; Vanthornhout et al., 2018), primarily 400 

investigated the impact of SI on neural tracking at different SNRs. Our results, however, 401 

underscore the importance of differentiating the effects of SI and SNR. 402 

Objective acoustic features like SNR drive bottom-up processing in speech perception. In 403 

contrast, SI is shaped by an individual’s bottom-up perception and top-down processing 404 

capabilities and strategies for allocating cognitive resources or restoring features masked by noise 405 

(Raghavan et al., 2023). This distinction highlights how SNR and SI contribute differently to neural 406 

processing. For example, the activity in brain regions responsible for top-down processing is 407 

increased when bottom-up processing was impaired by degraded speech (lower SNRs) (Zekveld 408 

et al., 2006). Several previous studies also suggested different modulation of neural speech 409 

tracking by objective or perceptual speech attributes. Previous research has shown that while 410 

SNR non-linearly modulates the amplitude of the temporal response function, changes in neural 411 

latency align more closely with variations in SI (Yasmin et al., 2023). In contrast, the relationship 412 

between neural speech tracking and SI does not exhibit such non-linearity (Decruy et al., 2020a). 413 

Instead, the different metrics of neural speech tracking accuracy show slightly dissimilar 414 

correlations with SNR and SI, but this mismatch has not been explained (Nogueira and 415 
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Dolhopiatenko, 2022). Our findings go beyond these observations by dissociating the interplay 416 

between SI and SNR and their impact on neural speech tracking. We provide evidence that SNR 417 

contributes indirectly to neural speech tracking by modulating attentional effort and speech 418 

intelligibility. This supports the notion of an indirect contribution of SNR to neural speech tracking, 419 

as suggested by (Etard and Reichenbach, 2019). It is important to note that our measure of neural 420 

speech tracking is based on EEG recordings, which reflect scalp potentials from large populations 421 

of neurons but do not provide the fine-grained detail available from invasive or single-neuron 422 

recordings. Studies using invasive techniques in animals and humans have shown that noise-423 

invariant representations gradually develop along the auditory pathway (Kell and McDermott, 424 

2019; Mesgarani et al., 2014; Rabinowitz et al., 2013), with lower areas representing the noise 425 

and higher areas filtering it out. Our findings highlight how the combined effects of these 426 

interactions manifest in scalp EEG signals which is critical as EEG is the most widely used 427 

measure to study speech in noise in normal hearing, hearing impaired, and aging individuals (Di 428 

Liberto et al., 2022; Fuglsang et al., 2020; Mesik et al., 2021).  429 

4.2. The Role of Attention in Neural Speech Tracking 430 

Attention plays a crucial role in how the brain tracks attended speech. The acoustic characteristics 431 

of speech can influence attention levels and, consequently, the accuracy of neural speech 432 

tracking (Ding and Simon, 2012a; Iotzov and Parra, 2019; Mesgarani and Chang, 2012; Power et 433 

al., 2012; Vanthornhout et al., 2019a; Zion Golumbic et al., 2013). Our study examined two 434 

aspects of attention: attentional performance and attentional effort. Attentional effort refers to the 435 

cognitive resources required to maintain attention, including motivation and resource allocation, 436 

while attentional performance is the actual outcome (Pashler et al., 2001; Sarter et al., 2006). We 437 

assessed attentional performance using repeated word hit rate (HR). We inferred attentional effort 438 

by measuring gaze velocity (GV) (Ala et al., 2020; Ciccarelli et al., 2019; Gopher, 1973). In easier 439 

listening conditions (SNR > -1.6 dB), we observed a significant reduction in neural speech tracking 440 
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accuracy with increasing SNR. This finding aligns with studies by (Das et al., 2018; Lesenfants et 441 

al., 2019), which noted decreased neural speech tracking accuracy from mildly noisy to clean 442 

conditions. Our study further investigates this paradoxical relationship by measuring ocular 443 

activity as an approximation of attentional effort. The identified negative interaction between 444 

ocular activity and task difficulty was also illustrated by (Contadini-Wright et al., 2023; Cui and 445 

Herrmann, 2023; Herrmann and Ryan, 2024). In contrast, attentional performance, measured by 446 

HR, shows a limited correlation with task difficulty. These results suggest that the reduction in 447 

neural target speech tracking can be more accurately attributed to changes in attentional effort 448 

rather than variations in attentional performance. Our findings also align with previous research 449 

indicating that increased eye movement activity reflects less suppression of task-irrelevant 450 

psychological activity, impairing information processing such as selective neural speech 451 

perception (Abeles et al., 2020; Braga et al., 2016; Cui and Herrmann, 2023). More importantly, 452 

we provide a potential explanation for the reduced neural speech tracking in easier listening 453 

conditions, as also reported by (Das et al., 2018; Hauswald et al., 2022; Lesenfants et al., 2019). 454 

Note that this decreasing effect exists across SNRs, not only in the high SNR listening conditions. 455 

Attentional effort and attentional performance exhibit distinct characteristics despite their 456 

interconnectedness (Bruya and Tang, 2018). Our study also supports differentiating the 457 

modulation of neural entrainment between attentional effort and attentional performance, similar 458 

to the findings of (Dai and Shinn-Cunningham, 2016), which showed that selective attention could 459 

modulate the strength of cortical event-related potential but not change the attentional 460 

performance. It is also worth mentioning studies that have demonstrated increased neural speech 461 

tracking in older populations and subjects with hearing impairment (Decruy et al., 2020b, 2019). 462 

Our study offers an explanation for these observations: increased task difficulty in these subject 463 

populations elevates attentional effort, thereby enhancing neural speech tracking. To test this 464 

hypothesis, we propose measuring differences in gaze velocity between populations or adjusting 465 
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the SNR to identify the threshold at which neural speech tracking declines relative to normal 466 

hearing subjects, estimated in our study at approximately -1.6 dB. 467 

4.3 Modeling the Interplay of Speech Intelligibility and Attentional Effort on Neural Speech 468 

Tracking 469 

In analyzing the interaction of various features on predicting neural speech tracking, we found 470 

that both speech intelligibility (SI) and gaze velocity (GV) have significant effects, while signal-to-471 

noise ratio (SNR) does not. Supplementary analyses and comparisons of temporal response 472 

functions (TRFs) for significant features (SI and GV) revealed that SI influences both acoustic-473 

related (TRF50) (Ding and Simon, 2013) and attention-related components  (TRF100, TRF200) (Ding 474 

and Simon, 2012b; Fiedler et al., 2019) of neural speech tracking, consistent with previous studies 475 

(Chen et al., 2023; Muncke et al., 2022). Notably, the modulation of early response (TRF50) may 476 

be attributed to the combined effect of SNR and SI, as shown in prior study, where a lower SNR 477 

at the same SI resulted in reduced TRF50 amplitude (Verschueren et al., 2020). In contrast, GV, 478 

as an indicator of attentional effort, only modulates attention-related components, specifically the 479 

activation area of TRF100 and the intensity of TRF200. These components are closely associated 480 

with the top-down process of directing mental resources toward the target of interest (Fritz et al., 481 

2007; Kong et al., 2014; Vanthornhout et al., 2019b). These findings suggest that while SI affects 482 

multiple aspects of neural speech processing, GV's influence is limited to the attentional 483 

mechanisms. 484 

From the detailed analyses of the interaction among features, we proposed a model based on our 485 

finding that AE and SI show counterbalancing effect on neural speech tracking as SNR increases, 486 

with the dominant factor shifting from SI to AE. The proposed model is able to explain the widely 487 

observed non-linearity between task demands and neural speech tracking (Das et al., 2018; 488 

Hauswald et al., 2022; Lesenfants et al., 2019), and also provides an explanation for the increased 489 
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speech tracking in hard of hearing and aging populations (Decruy et al., 2020b, 2019), for which 490 

the increased task difficulty results in an increased attentional effort.  491 

There are several limitations to consider while interpreting our results. As EEG signals provide 492 

only a broad overview of cortical activity, complementary neuroimaging techniques would be 493 

needed to fully characterize the encoding of noisy speech in various cortical and subcortical 494 

auditory regions. Additionally, our measure of attentional effort is indirect. While used extensively 495 

in the field (Ala et al., 2020; Ciccarelli et al., 2019; Gopher, 1973), gaze velocity is only an 496 

approximation of the cognitive resources that are used to maintain focus. Finally, our measure of 497 

attentional performance is sparse, as we cannot rule out the possibility that the listeners lose 498 

focus in between the repeated words. Future research is needed to explore more direct methods 499 

to measure cognitive load and attentional performance, and to expand these findings to aging 500 

and hard of hearing population.  501 

In summary, our study demonstrates that the neural tracking of target speech is influenced by 502 

SNR, speech intelligibility, and attentional performance and attentional effort, with distinct and 503 

sometimes opposing effects. By disentangling the roles of attentional performance and effort, we 504 

provide a clearer understanding of how these factors interact to shape neural speech processing. 505 

Beyond their scientific impact, these insights also have important implications for developing 506 

auditory technologies and strategies to improve speech perception in noisy environments. 507 
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