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Biological Sciences, Federal University of Goias, Goiânia, Brazil, 3 Institute of Health Sciences, Federal University of Mato
Grosso, Sinop, Brazil, 4 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão
Preto, Brazil

The O-linked b-N-acetylglucosamine modification (O-GlcNAcylation) of proteins
dynamically regulates protein function, localization, stability, and interactions. This post-
translational modification is intimately linked to cardiovascular disease, including
hypertension. An increasing number of studies suggest that components of innate and
adaptive immunity, active players in the pathophysiology of hypertension, are targets for
O-GlcNAcylation. In this review, we highlight the potential roles of O-GlcNAcylation in the
immune system and discuss how those immune targets of O-GlcNAcylation may
contribute to arterial hypertension.
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STATING THE PROBLEM

O-GlcNAcylation on serine (Ser), threonine (Thr) and tyrosine (Tyr) residues of nuclear, cytosolic,
and mitochondrial proteins is one of the most abundant post-translational modifications that
modulate phosphorylation, stability, and activity of multiple cellular signaling pathways and
transcription regulatory cascades (1, 2).

O-GlcNAc is dynamically, reversibly, and rapidly cycled on and off proteins by two specific
enzymes: O-GlcNAc transferase (OGT), which catalyzes the addition of the O-GlcNAc moiety; and
O-GlcNAcase (OGA), that catalyzes its removal (Figure 1). This modification is responsive to
several stimuli, including nutrient availability. An overabundance of nutrients can drastically shift
substrates to the hexosamine biosynthetic pathway (HBP), favoring the synthesis of the O-GlcNAc
precursor, UDP-GlcNAc, manly via recruitment of the rate-limiting enzyme glutamine:fructose-6-
phosphate aminotransferase (GFAT) (2, 3). However, many studies show that protein O-
GlcNAcylation excess occurs in response to factors that do not fit neatly with the nutrient
availability concept, including oxidative stress (4, 5), renin-angiotensin system (RAS) (6–8) and
endothelin-1 (ET-1) (9–12).

O-GlcNAc-modified proteins have been implicated in a diverse array of cellular functions,
including signaling, transcription, apoptosis, and inflammation (2, 13). Given its diverse roles,
protein O-GlcNAcylation has been associated with a diverse array of pathological conditions, such
as arterial hypertension.
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Hypertension affects over 1.2 billion individuals worldwide
and is a multifactorial disease involving immune cells activation,
inflammation, oxidative stress, activation of the sympathetic and
renin angiotensin aldosterone (RAAS) systems, and others. This
might explain the fact that the etiology of hypertension is known
in only 10% of the patients (14). Many therapeutical classes of
drugs targeting many different molecules are available to treat
hypertension based on the classical view of blood pressure (BP)
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control by neural, vascular and renal mechanisms. Still, 20% of
hypertensive patients do not adequately achieve BP control (15).
With this refractory response to the regular anti-hypertensive
therapeutic arsenal in mind, scientific advances have been
targeting the immune system, as a possible therapeutic target
to treat hypertension (16).

The present review will provide a brief overview of the
scientific advances related to the role of O-GlcNAcylation on
FIGURE 1 | Factors linked to hypertension also related to O-GlcNAcylation levels. Hypertension is a multifactorial disease involving many factors and events, which
are also associated with excessive chronic O-GlcNAcylation levels.
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hypertension progression. Then, the focus will be to set on
potential mechanisms whereby O-GlcNAcylation of
components of the immune system could impact hypertension.
O-GlcNAcylation AND ARTERIAL
HYPERTENSION

It is well-recognized that hyperglycemia, linked to the diabetic
condition, negatively impacts cardiovascular function and,
consequently, blood pressure control (17). Yet, little is known
regarding how augmented flux of glucose, or other subproducts
from the nucleotide and fatty acid metabolism, through the
hexosamine biosynthetic pathway (HBP) contributes to the
pathophysiology of hypertension.

The HBP is highly sensitive to the major metabolites
produced in glucose, amino acid, nucleotide, and fatty acid
metabolism. Therefore, an overabundance of nutrients (18), as
seen in diabetic or hyperlipidemic subjects, may overload the
HBP flux, leading to increased protein O-GlcNAcylation (19). In
addition to diabetes, increased O-GlcNAc levels have been
reported in different experimental models of hypertension (6,
20, 21), cardiac hypertrophy (22, 23), cardiac dysfunction (22, 24,
25), as well as in response to agonists such as angiotensin II (Ang
II) (6) and endothelin-1 (ET-1) (9, 10). The fact that O-GlcNAc
impacts biological functions that are not totally linked to altered
nutrient availability, raised the suggestion that other mechanisms
regulating O-GlcNAcylation may participate in the
pathophysiology of hypertension.

Increases in arterial blood pressure can be generated by a
variety of events, including modifications in cardiac output,
vascular dysfunction, and target organ damage (14, 17).
Interestingly, well-known mechanisms whereby blood pressure
(BP) and cardiac function may be altered are also targeted by O-
GlcNAcylation (Figure 1).

Excessive chronic O-GlcNAcylation has been shown both in
humans and animal models of myocardial dysfunction, cardiac
remodeling, aortic banding, and hypertension (22, 25–27).
Hyperglycemia in Zucker (diabetic fatty) rats leads to high O-
GlcNAc levels along with attenuated cardiomyocytes calcium
peak and prolonged time to relaxation and, consequently, to
impaired cardiac contraction and relaxation in these
animals (28).

Chronic increases in O-GlcNAc levels also leads to increased
risk of ventricular arrhythmias, which has been linked to
increased O-GlcNAcylation of cardiac voltage-gated sodium
channels (26).

Cardiac hypertrophy is usually seen in different stages of
hypertension (29, 30). In the long-term, cardiac O-
GlcNAcylation is also increased in cardiac hypertrophy
conditions (22, 31). High levels of O‐GlcNAc are seen in
hypertrophic hearts in response to phenylephrine (32, 33).
However, hypertrophy was not observed in cardiomyocytes
treated with an inhibitor of GFAT (23), a rate-limiting enzyme
in the HBP pathway. These results suggest that high levels of O-
GlcNAc are associated with cardiac hypertrophy and inhibition
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of the O-GlcNAc pathway may work as a pharmacological tool to
block hypertrophy progression during hypertension.

Considering the evidence linking the O-GlcNAc involvement
with ventricular arrhythmias, cardiac hypertrophy and other
cardiac dysfunctions, it is reasonable that O-GlcNAc may
influence important factors related to hypertension (24). In
this sense, experimental models of hypertension, such as
spontaneously hypertensive rats (SHR), have significantly
higher systolic blood pressure, hypertrophy and increased
protein O-GlcNAcylation in the left ventricle (LV). This study
showed that increased O-GlcNAc in pressure overload
conditions, including chronic hypertension and aortic banding,
is associated with increased OGT protein, suggesting that OGT
levels might be an important mechanism for cardiac protein O-
GlcNAcylation. Of importance, O-GlcNAc levels are 65% higher
in LV biopsies from patients with severe aortic stenosis,
compared with controls (22).

Furthermore, a correlation between increased O-
GlcNAcylation and GFAT expression was reported in SHR
(20, 22). Silva-Aguiar et al. showed that adult SHR with
established hypertension display increased renal cortical O-
GlcNAcylation. They proposed that changes in protein located
at the proximal tubule are associated with an increase in O-
GlcNAcylation in the renal cortex of adult SHR. Conversely, no
changes in O-GlcNAc levels or blood pressure were observed in
young SHR, suggesting that increased cortical O-GlcNAcylation
could be related to the development of hypertension. In
agreement, a GFAT inhibitor reduced global O-GlcNAcylation
and also significantly decreased blood pressure in SHRs (20).

ET-1, a potent vasoconstrictor peptide and growth-
promoting factor (34), also plays an important role in the
physiological control of blood pressure and in the genesis and
development of arterial (35) and pulmonary hypertension (36).
ET-1 l eve l s a r e inc r ea s ed in the va s cu l a tu r e o f
deoxycorticosterone acetate (DOCA)-salt hypertensive rats
(Schiffrin, 2005). Moreover, increased vascular GFAT
expression and O-GlcNAcylation was correlated with time-
dependent increases in blood pressure and vascular
dysfunction in DOCA-salt hypertensive rats (21). In
agreement, in vitro and in vivo treatment with ET-1 increases
vasoconstriction and the vascular content of O-GlcNAc-
modified proteins. Interestingly, these effects were not observed
when vessels were previously transfected with antibodies against
OGT or incubated with an OGT inhibitor (10).

Chronically increased BP occurring similarly to augmented
O-GlcNAc tissular levels may be an additional mechanism
eliciting end-organ damage (20). For example, chronically
increased O-GlcNAcylation was positively correlated with renal
damage (12, 37), and patients with nephropathy display
increased glomerular and tubular O-GlcNAcylation (38).
Moreover, a number of studies also provide evidence for an
interplay between protein O-GlcNAcylation and Ang II, a well-
known vasoactive that increases blood pressure (29), induces
cardiac hypertrophy (39) and kidney damage (40, 41). Ang II
increases O-GlcNAcylation in mesangial cells (6) and heart from
mice (7). Conversely, Ang 1–7 and Mas-receptor inhibition
March 2022 | Volume 13 | Article 852115
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reduced protein O-GlcNAcylation by repressing GFAT1
activity (8).

Gellai et al. showed that RAAS inhibitors inhibit diabetes-
induced O-GlcNAcylation in the kidney, by increasing OGA
expression (12). In line with this view, changes of protein O-
GlcNAcylation levels resulted in a concomitant alteration in
angiotensinogen, OGT, and GFAT transcripts (42).
Furthermore, in vivo glucosamine-treatment increased the
expression of angiotensinogen in adipose tissue (43).
Therefore, O-GlcNAcylation regulates local and systemic
RAAS, which may contribute to the progression of
hypertension. Finally, high levels of O-GlcNAcylation driven
by high glucose or glucosamine treatment leads to impaired
vascular endothelial and smooth muscle cells function in human
and rat (11, 25, 44–46), a phenotype closely associated with
hypertension (29). In this sense, there is direct evidence that
elevated levels of protein O-GlcNAcylation in endothelial cells
impairs endothelium-dependent relaxation (44, 47–49),
demonstrating that O-GlcNAcylation leads to endothelial
dysfunction. Furthermore, O-GlcNAcylation of vascular
smooth muscle cells augments vascular response to contractile
agonists (50, 51) and favors vascular calcification (52–54),
resulting in high blood pressure (25).
POSSIBLE MECHANISMS WHEREBY THE
CROSSTALK BETWEEN O-GlcNAcylation
AND THE IMMUNE SYSTEM IMPACTS
ARTERIAL HYPERTENSION

Classically, the main function of the immune system is to defend
a host against pathogen invasion. However, as extensively
reviewed in the literature, overactivation of immune system
components contributes to non-infectious disease, like
hypertension (16, 55, 56). The immune response is complex
and has two interconnected systems: the innate immunity, which
mediates early reactions, and adaptive immunity, which is a late
and more specific response. Both systems are activated and
contribute to high blood pressure and tissue damage in
hypertension. The interplay between O-GlcNAcylation and the
immune system has gained great interest in the last few years
when several studies have been performed, highlighting how this
post-translational modification impacts the immune cells. In this
chapter we will highlight potential mechanisms whereby O-
GlcNAcylation of immune components may contribute to
hypertension (Figure 2).

Involvement of Innate Immunity in
Hypertension: Possible Roles of
O-GlcNAcylation
The innate immune response is initiated by the recognition of
antigens originated from debris and other molecules from
damaged cells, known as DAMPs (damage associated
molecular patterns); or alternatively, from antigens originated
Frontiers in Immunology | www.frontiersin.org
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from pathogens, called PAMPs (pathogen associated molecular
patterns) (57). DAMPs and PAMPs are recognized by pattern
recognition receptors (PRR), including Toll-like receptors (TLR)
family, which are expressed in several cells.

There are 11 subtypes of TLRs, and the participation of TLR2,
TLR3, TLR4, TLR7, and TLR9 receptors in hypertension has been
described (58, 59). Activation of TLR4 is directly involved on
vascular inflammation, vascular dysfunction, and hypertension
(60, 61). Vascular TLR4 expression is increased in cardiovascular
disease, including several animal models of hypertension (SHR,
Ang II infusion, DOCA-Salt), atherosclerosis and others (18, 62).
Treatment with a neutralizing anti-TLR4 antibody decreases blood
pressure, vascular inflammation, and cardiac remodeling in
hypertensive rats (60, 61, 63). TLR4 overexpression aggravates
vascular smooth muscle cells proliferation and vascular
remodeling in hypertension (64). TLR9 stimulation produces
systemic maternal inflammation and vascular dysfunction that
lead to hypertension (65). A TLR9 antagonist decreased blood
pressure in SHR and TLR9 agonist impairs mesenteric resistance
arteries’ function and increases local ROS (66). Mitochondrial
DNA is a DAMP that activate TLR9. Echem et al. (63)
demonstrated that only male SHR exhibit high levels of plasma
mitDNA and the antagonism of TLR9 normalizes mitDNA-
induced increased aortic contractions elicited to phenylephrine
(67). TLR9 also negatively modulates cardiac vagal tone and
baroreflex in mice (68).

After the PRR recognize specific antigens, innate immunity
cells are activated and contribute to the inflammatory profile in
hypertension. Circulating and endothelial cell adhering
monocytes are increased in many hypertensive animal models
and hypertensive patients (69–74). Monocytes isolated from
hypertensive patients are pre-activated and secrete high levels
of IL-1b after Ang II stimulation (75). Of importance,
macrophage infiltration is recognized as a classical histological
characteristic of end-organ injury in hypertension (70, 76).

As previously mentioned, TLRs are known to initiate innate
immune response in several cells, such as macrophages,
neutrophils, natural killer (NK), dendritic cells, and mast cells
(77). Thus, regulation of TLRs activation is a critical step to
ensure adequate immune responses.

Macrophages can switch to a distinct functional phenotype in
response to physiological and microenvironmental signals and
stimuli. The classically activated M1 macrophages are known to
possess a pro-inflammatory phenotype, secreting pro-
inflammatory cytokines, aiming to kill pathogens. They may be
characterized by TLR-2, TLR-4, CD80, CD86, iNOS, and MHC-
II surface phenotypes, secreting pro-inflammatory cytokines and
chemokines, promoting cell proliferation and tissue repair (78,
79). Beyond involvement in the innate immune response, there is
direct evidence that macrophages per se may affect blood
pressure. For example, patients with hypertension display
macrophage infiltration into the vascular wall, myocardium
and kidneys (80). Moreover, Ang II-induced increased blood
pressure is attenuated in macrophages-deficient mice, showing
the contribution of these cells to hypertension (81).
March 2022 | Volume 13 | Article 852115

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


dos Passos Junior et al. O-GlcNAc-Modified Immune Targets in Hypertension
When macrophages are activated by LPS/TLR4, M1
macrophage polarization is induced, resulting in reduced HBP
activity and attenuated protein O-GlcNAcylation (82). However,
increased O-GlcNAcylation in LPS-stimulated macrophages, or
after intraperitoneal injection of LPS in mice have also been
reported (83). In this case, when macrophages are activated by
LPS, OGT is activated, enhancing protein O-GlcNAcylation,
which in turn favors cytokine production, and a pro-
inflammatory environment.

Among the pro-inflammatory cytokines produced by M1
macrophage and other immune cells, tumor necrosis factor alfa
(TNF-a) and interleukin (IL)-6 are crucial to this inflammatory
profile. Therefore, NF-kB activation is a key component of the
stimulation of innate immunity by PRR recognition of PAMPs/
DAMPs, inducing the production of pro-inflammatory
cytokines, which plays an essential role in the hypertension
(84). Interesting, O-GlcNAcylation was found to modulate this
transcription factor (85). NF-kB transcriptional activity is
induced by OGT, and OGT colocalizes with promoter regions
of NF-kB, enhancing RelA acetylation upon TNF-a stimulus, as
Frontiers in Immunology | www.frontiersin.org 5
observed in human embryonic kidney (HEK 293) cells (86). c-
Rel, one of the five NF-kB subunits, is a target for O-
GlcNAcylation at serine350, a mandatory post-translational
modification required for c-Rel binding to the DNA, allowing
transcription, as demonstrated by RAMOS in a B lymphocyte
line and in Jurkat cells (immortalized line of human T
lymphocytes (87). LPS also favors O-GlcNAcylation of c-Rel in
the iNOS promoter in BV2 microglia cells (88). In RAW 264.7
cells, a cell line of mouse macrophages, overexpression of OGT
inhibited NF-kB reporter activity upon LPS stimulus, resulting in
NF-kB/iNOS transcription suppression (89). Therefore, these
data on macrophages indicate that immune dysfunction may be
elicited both by augmented and diminished protein
O-GlcNAcylation.

Neutrophil lymphocyte ratio is an inflammatory marker,
which has strong independent association with the severity of
hypertension (90–93). During inflammation, neutrophils are the
first cells to arrive at the injured site, ready to orchestrate the
repair of tissue damage induced by macrophages. Neutrophils
are polymorphonuclear leukocytes that enter the circulation and
FIGURE 2 | Immune targets of O-GlcNAcylation may contribute to arterial hypertension. O-GlcNAcylation is a dynamic and reversible modification in protein
residues by the actions of two specific enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Regarding innate immunity: O-GlcNAc plays important
roles in macrophages and neutrophils by favoring pro-inflammatory cytokine production, neutrophil infiltration and motility, which are associated with the severity
of hypertension. Additionally, in natural killer (NK)-cells, reduced O-GlcNAc modification was found to favor NK cell cytotoxicity by enhancing MAPK family activity.
Regarding adaptive immunity: O-GlcNAcylation was found to target T cells, T reg cells and B cells. In lymphocytes T, global elevation of O-GlcNAc modification
favors IL-2 production and cell proliferation, as well as Th1 pro-inflammatory IL-17A and IFNg cytokine secretion, which are associated with hypertension. In
lymphocyte Treg was found that O-GlcNAc actions impaired anti-inflammatory response through STAT-3 O-GlcNAcylation, affecting STAT3–IL-10 axis and
impairing Treg function. Additionally, in B cells, protein O-GlcNAcylation enhances B cell proliferation and survival. Interestingly, B cells were found to be related
to increased blood pressure.
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migrate towards other tissues, are responsible for patrolling the
organism and searching for pathogens and other signs of
infection (94). To reach sites of injury, neutrophils migrate
under the regulation of intracellular signaling in a mechanism
called chemotaxis. These signaling pathways release molecules
that stimulate neutrophils to migrate towards the injury site (95).
One of the most commonly used polymorphonuclear leukocytes
stimuli, the chemotactic tripeptide formyl-methionine-leucine-
phenylalanine (fMLF), binds to cell surface receptors and
induces protein phosphorylation within seconds.

O-Gl cNAc-mod ifi ed pro t e in s a r e inc r ea s ed in
polymorphonuclear leukocytes stimulated with fMLF-stimulus,
and glucosamine increases O-GlcNAc and enhances neutrophils
motility (96). In addition, pharmacological increases in O-
GlcNAc, using glucosamine or PUGNAc (OGA inhibitor),
increases the activity of the small GTPase Rac and MAPK
signaling in neutrophils (97). These protein kinases are involved
in neutrophil chemotaxis and Rac is known to activate MAPK
(98). This evidence shows that O-GlcNAcylation is required for
neutrophil signaling transduction, including chemotaxis. In fact,
augmented O-GlcNAcylation evokes both neutrophil chemotaxis
and mobility (96, 97). Importantly, the downregulation of the
immune system appears as a key factor in the treatment of
hypertension. As a proof of this concept, a selective antagonist
of b1-adrenoceptors, nebivolol, efficiently reduced innate immune
responses in hypertensive patients, through decreased levels of
neutrophils (99). Therefore, the role of O-GlcNAc during
neutrophil chemotaxis and mobility may be a predictor of
ongoing vascular inflammation in various cardiovascular
disorders such as hypertension.

NK cells are a large granular type of cytotoxic lymphocytes
that are essential for innate immune response, acting rapidly
against a great number of pathogens and constantly interacting
with other immune cells, such as macrophages and dendritic
cells (100). Compared to normotensive rats, SHRs have a strong
increase in the number of NK cells (101). Depletion of NK cells,
using an anti-NK antibody, protects against Ang II-induced
vascular dysfunction (102). Furthermore, an association
between increased proportions of NK-cells and levels of
systolic blood pressure has been detected in a large multi-
ethnic cohort (103).

NK cells recognize infected cells through activation of
receptors such as natural killer group 2D (NKG2D), which
require the actions of the transcription factor enhancer of zeste
homolog 2 (EZH2) (104, 105). Interestingly, few studies found
that EZH2 O-GlcNAcylation is required for EZH2 protein
stability and enzymatic function in human breast and
colorectal cancer cells (78, 79, 106). Upon activation through
its receptors, NK cells exert their cytotoxic activity killing
aberrant cells, such as infected and tumorigenic cells, through
the release of cytotoxic molecules stored in exocytic organelles
(107). The cytotoxic vesicles release depends on MAPK family
and extracellular signal-regulated kinases (ERK) activation (108).
ERK-2 MAPK-dependent pathway becomes activated and
mediates the movement of intracellular granules (109). A study
reported that protein O-GlcNAcylation may be involved in the
Frontiers in Immunology | www.frontiersin.org 6
cytotoxic signal transduction of NK cells. There is reduced O-
GlcNAc modification during NK cell cytotoxicity and inhibiting
NK cytotoxicity by GST-sHLA-G1a chain restores O-
GlcNAcylation in NK92 cells (110). Moreover, glucosamine
treatment exerts an inhibitory effect on NK-92 cell cytotoxic
vesicles release by increasing O-GlcNAc modification of ERK
downstream proteins, increasing ERK nuclear localization and
altering granules migration (111). The same study also showed
that after, glucosamine treatment, the transcription factor
FOXO1 presented reduced phosphorylation and increased O-
GlcNAcylation. Interestingly, FOXO1 was found to negatively
regulate NK cells’ function (112). Altogether, these data elucidate
the role of protein O-GlcNAcylation on NK cell function.

The wide range of responses elicited by O-GlcNAcylation in
innate immune cells indicates an important, but still incomplete
unknown, role for this post-translational modification on
inmate responses.

Involvement of Adaptive Immunity in
Hypertension: Possible Roles of
O-GlcNAcylation
Adaptive immunity, also referred to as acquired or specific
immunity, is the second and long-lasting line of the host’s
defense against non-self particles or pathogens. The main
characteristic of the adaptive immune response is the clonal
expansion of lymphocytes, such as T and B lymphocytes. There
are two primary subtypes of T cells: cytotoxic T cells (CTLs), and
helper T cells (Th). Experimental and clinical studies have shown
the importance of adaptive immune system in hypertension
(113). The main cells subtypes that contribute to hypertension
are Th1, Th17, regulatory T cells (Treg), T CD8 and B cell.

Possible Target: T Cells
The association of T lymphocytes with hypertension has been
supported by many studies showing that mice lacking T- and B-
lymphocytes exhibit attenuated hypertension in response to Ang
II (114–117).

Th1, Th2, Th17 and Treg are subtypes of CD4 T cells. Th1
cells express the transcription factor T-bet and release the
cytokine IFN-g. T-bet deficient mice infused with Ang II is
protected against renal injury, but not from high blood
pressure (118). Isolated T cells from the spleen of Ang II-
infused rats exhibit an imbalance of Th1/Th2 subsets, with
increased IFN-g (Th1 cytokine) and decreased IL-4 (Th2
cytokine) (119). IFN-g knockout mice are protected from Ang
II-induced vascular and kidney dysfunction (102, 120). Although
some studies show the contribution of IFN-g in hypertension,
other cell subtypes like LT CD8 and NK-T can also release this
cytokine. Therefore, the association between the activation of the
immune system and hypertension is clear.

The role of O-GlcNAcylation, as well as OGT, on T cells
activation has been investigated before (121–123). One of the
earliest studies in this field demonstrated that murine T
lymphocytes activation resulted in decreased levels of O-
GlcNAc-modified cytosolic proteins with a concomitant
increase of this post-translational modification in the nucleus,
March 2022 | Volume 13 | Article 852115
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establishing the role for protein O-GlcNAcylation in the early
stages of T-cell activation (123). This was further supported by a
study that found that blocking O-GlcNAc cycling disrupts early
T cell development in mice (124).

The nuclear factor of activated T cells (NFAT) allows
transcriptional induction and release of IL-2, as well as other
cytokines such as IL-4, IFNg, and TNFa, as observed in activated
T cells (125). NFAT is a target for O-GlcNAc and silencing OGT
through siRNA-mediated knockdown, impairs activation ofNFAT
andNFkB, reducing IL-2 production, and consequently preventing
T cell receptors (TCR)-induced activation (121). Thus, OGT is
required for T and B cell activation. These data was further
supported by Lund et al. (126), who found that activation of T
cells through the TCR resulted in a global elevation of O-GlcNAc
levels. Yet, in the absence of O-GlcNAc, IL-2 production and T cell
proliferationwere compromised (126).Controversially, augmented
O-GlcNAc levels in heart tissue and rat cardiomyocyte-derived cell
line suppressedNFATandNF-kB activity throughGSK-3b protein
O-GlcNAcylation (127). It seems that O-GlcNAcylation
antagonizes NFAT effects, since GSK-3b is known to negatively
regulate NFAT activity (128). Collectively, these data show that this
post-translational modification is crucial for T cell activation,
whereas aberrant protein O-GlcNAcylation may be deleterious.

Th17 and gd T cell release IL-17, which is associated with
hypertension. Kim et al. (129) demonstrated that transfer of
Th17 cells from adult SHR accelerates the development of
hypertension in juvenile SHR (129). Ang II infusion increases
IL‐17A production by T cells and IL‐17 protein in the aortic
media and the heart (130). Hypertension is not sustained in IL-
17A-/- mice infused with Ang II. These mice are also protected
against aortic stiffening and cardiac fibrosis (130, 131).

Regarding O-GlcNAcylation evoking immune response
through T cell, Ramakrishnan et al. (87) demonstrated that
hyperglycemia promoted NF-kB and c-Rel O-GlcNAcylation,
promoting autoimmunity through enhancing the release of
cytokines by helper Th cells (87). Elevated O-GlcNAc levels,
through OGA inhibitor, correlate with increased Th17 and Th1
pro-inflammatory IL-17A and IFNg cytokines secretion bymurine
and human CD4+ T cells (132). Additionally, Liu et al. (133) found
that the microRNA-15b contributes to multiple sclerosis by
negatively regulating Th17 cell differentiation, by targeting the
OGT enzyme (133). Moreover, microRNA-15b suppressed
retinoic acid-related orphan receptor (ROR)gT activation by
diminishing NFkB protein O-GlcNAcylation. These findings
provide evidence of the importance of O-GlcNAcylation in CD4+
T cells differentiation, since (ROR)gT is known to play a key role in
the differentiation of Th17 cell lineage.

Possible Target: Regulatory T Cells (Treg)
Another specialized subpopulationofCD4+Tcells is theTreg. These
cells play a key role in maintaining the homeostasis of the immune
system, regulating the balance between pro-inflammatory and anti-
inflammatory responses, and preventing autoimmune responses

In SHR, peripheral blood and splenic Treg cells are markedly
diminished, whereas Th17 cells are enhanced (134). In fact, Treg
have a protective effect in hypertension. A clinical study
demonstrated that during hypertension, end organ damage and
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arterial stiffness in children is associated with decreased
population of circulating Treg (135). Adoptive transfer of Treg
prevents Ang II–induced hypertension, vascular damage, and
vascular immune cell infiltration (114). Treg adoptive transfer
also prevents kidney macrophages infiltration, vascular
dysfunction and vascular oxidative stress induced by
aldosterone (136).

Treg cells express high levels of IL-2 receptor a (IL-2Ra)
chain in its surface and the forkhead box protein P3 (FOXP3)
transcription factor in the nucleus, which are important for Treg
function and cell fate (137, 138). O-GlcNAc-deficient mice due
Treg cell-specific deletion of OGT, display reduced FOXP3
expression, impaired Treg function, and aggressive and lethal
autoimmunity (139). Furthermore, deficiency in protein O-
GlcNAcylation results in attenuation of IL-2/STAT5 activity in
Treg cells. IL-2R activity is known to depend on STAT5 to
regulate FOXP3 expression and promote Treg development, thus
IL-2/STAT5 is required for FOXP3-induced differentiation of
Treg (140). The same importance can be given to Th2 cells, once
STAT5 activation is also crucial for Th2 differentiation (141).

IL-10 (STAT3/IL-10) is an anti-inflammatory cytokine released
by Treg and other immune cells. IL-10 knockout mice infused with
Ang II exhibit greater vascular contractions and IL-10 infusion
prevents blood pressure increase in Ang II-infused mice (142). O-
GlcNAcylation of signal transducer and activator of the
transcription (STAT)-3 resulted in defective STAT3
phosphorylation and IL-10 production, affecting STAT3–IL-10
signaling in macrophages, increasing disease severity in colitis
models while inhibition of OGT-mediated O-GlcNAcylation
protects against intestinal inflammation (143). The STAT3–IL-10
axis is essential for an anti-inflammatory response, since STAT3 is a
key transcriptional factor mediating IL-10 production (144, 145).
Thus, STAT-3 protein O-GlcNAcylation impairs its activation,
affecting STAT3–IL-10 anti-inflammatory responses. This is
further supported by the fact that elevated protein O-
GlcNAcylation enhances innate immune responses by increasing
NF-kB signaling, and by counterbalancing the anti-inflammatory
STAT3-IL-10 signaling in macrophages (82).

Possible Target: Cytotoxic T Cells
Once activated through TCR stimulation, T cells differentiate
into cytotoxic effector cells (CD8+) and undergo clonal
expansion and maturation to become activated CD8+ T cells
(146). In addition to CD4 T cells, CD8 cells are also activated and
increased in hypertension. Trott et al. (2014) reported that an
oligoclonal population of CD8+ cells accumulate in the kidney
and contribute to sodium retention and volume expansion, and
vascular rarefaction during hypertension development (147).
Resistant hypertension patients submitted to renal denervation
and with blood pressure control show low values of CD4, CD8
and naïve CD8 T cells, leanding to the suggestion that T cells can
be cellular biomarkers that predict the response to renal
denervation (148).

CD8 T cells travel through the blood towards tissues looking
for cells infected by pathogens, and inducing cell lysis and
apoptosis in order to resolve the infection (149). This process
involves many post-translational modifications such as
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phosphorylation and O-GlcNAcylation. Interestingly, protein O-
GlcNAcylation is strongly involved in both transcriptional and
translational processes that prompt T cells formation and
proliferation, in effector-like T cells and memory-like T cells,
establishing the role for O-GlcNAc in CD8+ T cells
function (150).

Possible Target: B Cells
B cells are bone marrow-derived cells that play crucial functions in
adaptive immunity, such as antibody production, antigen
presentation, and cytokine production and release (151). In the
bone marrow, progenitor B cells undergo pro-B, early pre-B, and
late pre-B stages to become immature B cells (152). B cells also
contribute to Ang II hypertension. B cells genetically deficient mice
infusedwithAng II present lower blood pressure and B cell transfer
rescues this response. Knockout mice are also protected from Ang
II-induced collagen deposition and aortic stiffening (117).

Augmented protein O-GlcNAcylation, by inhibiting the OGA
enzyme, enhances B cell activation and apoptosis induced by B
cell receptor (BCR). B cell-mediated apoptosis occurs through
protein O-GlcNAcylation of lymphocyte-specific protein-1
(Lsp1), resulting in protein kinase C-b1-mediated increased
levels of Lsp1 phosphorylation with consequent activation of
apoptosis-related signaling (153). OGT-deleted mouse exhibit
decreased number of mature B increased apoptosis in these cells
and defective activation of the B-cell receptor signaling cascade
(154), suggesting that O-GlcNAcylation is required for B cell
homeostasis and antibody responses since an cells. Inhibition of
O-GlcNAc in pre-B cells reduces growth and proliferation due to a
decrease in c-Myc expression upon decreased O-GlcNAc, which is
important for normal B cell proliferation and cell cycle progression
(155). Collectively, these data highlight an important role for
protein O-GlcNAcylation in regulating B cells homeostasis.
CONCLUSION

Since chronic increases in O-GlcNAcylation levels lead to
increased risk of ventricular arrhythmias, myocardial
dysfunction, cardiac remodeling, organ damage, aortic
banding, and vascular dysfunction, all of them well-known
mechanisms whereby blood pressure, it is plays this post-
translational modification has been associated with arterial
hypertension. On the other hand, recent efforts have been
made to determine the role of immune response during high
blood pressure and tissue damage in hypertension.
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Considering that less than 10% of the patients know the
primary cause of their hypertensive disease, one may speculate
that the association between O-GlcNAcylation and the activation
of the immune system may represent a new clinical approach to
the treatment of hypertension. In this sense, current findings in
the literature show the many players of innate and adaptive
immunity, which are directly involved on vascular inflammation,
vascular dysfunction, and hypertension are also targeted by O-
GlcNAcylation. As an example, O-GlcNAc-pathway is able to
modulate activity, production or pro-inflammatory environment
of key component of innate immune response such as, Toll-like
receptors, NF-kB pathway, circulating and endothelial cell
adhering monocytes, macrophage infiltration and neutrophil
lymphocyte ratio, players that are strongly association with the
severity of hypertension. Furthermore, it seems clear that O-
GlcNAcylation, as well as OGT, play an important role on T and B
cell activation, immune cells that are enrolled in the hypertensive
disease. Consequently, this post-translational modification
modulates IL-2, as well as other cytokines such as IL-4, IFNg, and
TNFa, as observed in activated T cells. Besides, this modification is
involved in antibody production, antigen presentation, cytokine
production and release through B cell activation. Therefore, the
investigation of new potential therapies, specifically aimed to
modulate the impact of O-GlcNAc-modified proteins in the
innate and adaptive immunity cells to treat or prevent
hypertension should be further encouraged.
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