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Abstract: Cultural heritage preservation is a crucial topic for our society. When dealing with fine art,
color is a primary feature that encompasses much information related to the artwork’s conservation
status and to the pigments’ composition. As an alternative to more sophisticated devices, the analysis
and identification of color pigments may be addressed via a digital camera, i.e., a non-invasive,
inexpensive, and portable tool for studying large surfaces. In the present study, we propose a new
supervised approach to camera characterization based on clustered data in order to address the
homoscedasticity of the acquired data. The experimental phase is conducted on a real pictorial
dataset, where pigments are grouped according to their chromatic or chemical properties. The results
show that such a procedure leads to better characterization with respect to state-of-the-art methods.
In addition, the present study introduces a method to deal with organic pigments in a quantitative
visual approach.

Keywords: color correction; chemical composition; camera characterization

1. Introduction

Cultural heritage bears witness to life and history, provides an identity to nations, and
represents an irreplaceable source of inspiration. Its importance from cultural, historical,
and economic points of view is invaluable; thus, its preservation and valorization are
crucial topics for our society. Natural aging and deterioration due to external agents
endanger artworks such as paintings, sculptures, and architecture, and therefore diagnostic
tools are needed for monitoring and preservation.

Monitoring historical artistic heritage consists of the evaluation of possible modifica-
tions of some characteristics of the object under observation. When it comes to a artwork
or, more generally, a mono- or polychromatic surface, color is one of those characteristics,
as it is easily perceivable by the human eye, allows one to distinguish an artwork, and
provides information on the nature and status of an artwork.

Color analysis on artworks is generally performed via specific instruments such
as colorimeters and spectrophotometers, both of which use sophisticated technologies
to accurately and precisely quantify and define color, working in a device-independent
color space as Commission Internationale de l’Éclairage (CIE) L*a*b* [1,2] This allows for
objective assessment of color changes in order to monitor the state of the painting over time
and appropriately plan periodic protection or restoration actions. Color studies of artworks
could also make use of Infrared (IR) and Ultraviolet (UV) data (by means of, e.g., infrared
reflectography, UV–Visible spectrophotometry, UV reflectance, etc.) or X-ray fluorescence
spectroscopy (XRF) [3,4].

However, several drawbacks may limit the efficacy of such devices/methodologies.
First, colorimeters and spectrophotometers give, as with XRF, pointwise measurements;
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thus, color studies on large areas require several time-consuming repetitions. Further-
more, even though spectrophotometers are defined as non-invasive devices [5], they must
perfectly lean onto the artwork surface in order to exclude external light radiation, thus,
risking ruining the painting. Finally, it is still rare nowadays that small laboratories are
equipped with the abovementioned costly devices.

In order to address such issues, recent studies have proposed performing color moni-
toring through photographic documentation. Here, the necessary equipment is conceivably
minimal and considerably cheaper, consisting of a professional digital camera and a pho-
tographic set with adequate lighting; then, the color data of each pixel of the selected
area can be stored from a single photoshoot, limited only by illumination [6]. However,
uncorrected digital data are not directly comparable, in terms of quantitative reliability,
to the standard provided by the more specific spectrophotometric instrumentation. In
addition, a well-defined procedure consisting of camera calibration, arrangement of lights,
and positioning of the artwork, although necessary, is not sufficient per se for a correct
comparison of digital data with colorimetric data. Finally, another major problem when
using a digital camera for measuring color is that consumer-level sensors (either CCD or
CMOS type) are typically uncalibrated.

Therefore, camera characterization is needed, i.e., some specific digital image pro-
cessing to transform raw color digital values into objective L*a*b* values equivalent to
colorimetric measures.

A common approach to minimize the difference between digital and colorimetric
determinations relies on the application of a correction based on a least-squares regression
to the uncalibrated digital data. Linear [7,8], nonlinear, and mixed [9] approaches have
all been described in the literature. Regarding nonlinear regressions, one can mention
polynomial regressions [10,11], neural networks (NNs) [12,13], and look-up tables [14].
In addition, the problem of different color spaces based on the acquisition device must
be addressed. Indeed, camera data usually refer to RGB or sRGB color spaces. Several
approaches have been proposed [15], such as linear or quadratic models, neural networks
for L*a*b* regression starting from RGB values, and models requiring RGB data to be
converted into XYZ values, which are then used to derive L*a*b* values, with and without
a linearization of sRGB data via a gamma model. Gamma correction is also involved in the
method [16].

Further aiming at minimization of the correction error, other features to be preserved
may be considered. For instance, characterization should be robust across different illumi-
nants and reflectance types, and across noise [17–19].

To achieve better results, the use of digital image processing techniques for camera
characterization can also be combined with different disciplines. Indeed, a multidisciplinary
approach allows one to deal with specific features related to the heterogeneity of the data
under analysis. Therefore, in order to overcome the lack of homoscedasticity required to
apply a single-step procedure, an innovative approach combining pattern recognition and
image processing techniques with chemistry information is proposed here.

In the present study, 117 tiles from the database of diagnostic analyses of The Founda-
tion Centre for Conservation and Restoration of Cultural Heritage “La Venaria Reale” (in
collaboration with the National Institute of Metrological Research and Laboratorio Analisi
Scientifiche of Regione Autonoma Valle d’Aosta) represent the basic dataset [3,20].

As proposed by the state-of-the-art literature, the methods of linear regression, poly-
nomial regression, and NN [8,9,19] were initially applied herein to the whole dataset, but
the resulting performances unfortunately proved to be not satisfactory. It is worthwhile
mentioning that a preliminary camera calibration using the X-Rite ColorChecker Passport
Photo failed to provide satisfactory results [9], as expected, due to the limited color content
of such a color chart.

To understand the reason for such poor results, the work was adapted by conducting a
closer investigation of the pigments’ characteristics and their corresponding statistical anal-
ysis in photographic images in order to overcome the significant lack of the homoscedas-
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ticity feature that is required for proper application of approaches in the literature, which
work at a global level.

Consequently, from the perspective of optimizing the analysis, the original idea
proposed herein is to apply state-of-the-art characterization methods to clusters of data
rather than to the whole digital dataset, selected by means of two different criteria, i.e., the
color and chemical properties of pigments. Regarding the latter, based on Kremer code, the
main chemical element can be objectively defined for each pictorial layer analyzed.

To overcome the issue of a small amount of data and to find one-to-one correspondence
between an image and colorimetric data, samples referring to the same tile are sorted by
hue values, which provides coupled data and the use of supervised methods for precise
and punctual color correction.

Thus, the application of several methods for camera characterization to numerous clus-
ters of the base dataset is described hereinafter, in order to minimize the difference between
digital and spectrophotometric quantitative color data, and therefore validate a handy
diagnostic tool such as a digital camera for color determination. The best characterization
approach results were achieved from a polynomial regression, while the predominant factor
that affects the efficacy of the color correction could be found in the chemical composition,
more precisely, in the nature of the central element. The best results were those splitting
the data by chemical composition. In addition, the proposed method also proved to be
effective with organic pigments, which could not be analyzed via standard approaches
such as XRF; in fact, the latter has been employed to identify the presence of inorganic
pigments, characterized by elements with an atomic number higher than 13. Instead, other
non-invasive approaches for the study of organic pigments (usually referred to as “lakes”)
include IR and Raman spectroscopy, but still require rather sophisticated instrumentation.

The considered approaches are briefly presented in Section 2, along with the dataset.
Additionally, details on how data were collected and split into clusters and how camera
images were used are provided.

Although a complete color analysis of artworks is also based on IR and UV data, the
scope of the present study is to investigate how deep an analysis performed with traditional
photographic data can be.

2. Materials and Methods
2.1. Background

Sensors’ responses to light distribution are clearly defined in the literature [21,22].
For the sake of clarity, let I(λ) be the illuminant spectral power distribution falling on the
surface patch (λ is the wavelength), and let γ(λ) be the reflectance function of the material
the object is made from (or that its surface is painted with), so that the spectral power
distribution P(λ) can be expressed as follows:

P(λ) = I(λ)γ(λ) (1)

where P(λ) is the spectrum of the light that reaches the sensor and is associated with the
corresponding pixels of the image.

Then, let σ(λ) be the spectral filter function of the sensor, and define the sensor’s
response to P(λ) as follows:

s =
∫

λ
P(λ)σ(λ)dλ (2)

As mentioned in the Introduction, in the present study, camera and colorimeter
sensors are involved. Hence, hereinafter, whenever s refers to the camera, it will be referred
to as cm, while the colorimeter, s, will be referred to as cl (which will be the reference
measurement). Specifically, based on the available data, cm is a three-dimensional vector
cm = [R, G, B]T , laying in the RGB color space. Similarly, the colorimeter response comes
from the device-independent color space CIE L*a*b*, namely cl = [L, a, b]T .
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In order to perform an efficient correction on error-prone measurements of color
changing, such as those deriving from commercial cameras, an optimal transformation f

such that cm
f→ cl must be found. In fact, the final value of such a correction is only an

approximation of the real corresponding cm value, namely f (cm) = ĉl , due to the different
nature of the considered color spaces, to noise, estimation, and computation errors, etc.
Some constraints can be added to improve the precision of the correction and are discussed
later in the paper. The general requirement for the function f is to be error-minimizing, i.e.:

f = argming

N

∑
i = 1

∣∣∣∣∣
∣∣∣∣∣u(cl)− u(g(cm))

∣∣∣∣∣
∣∣∣∣∣, (3)

where N is the number of color triplets in the dataset, u is a color space transformation to
ensure that g(cm) and cl refer to the same color space, and ||·|| is the norm. In the present
manuscript, the considered norms will be the root mean squared error (Euclidean distance)
and ∆E00 [23]. In addition, a similarity measure will also be involved, i.e., Pearson’s
correlation coefficient.

In the following, since f is properly designed to correct cm to be more similar to cl ,
hence, both cl and f (cm) are in the CIE L*a*b* color space, and u is assumed to be the
identity function.

In general, methods in the literature are applied to the entire dataset. However,
it appeared that no conditions for a single correction were present because of the non-
homoscedasticity of the data. Hence, the methods were applied to clusters of tiles that
could be determined according to some criterion. Here, this multi-cluster approach is based
on either the chemical element or color, which is the major novelty of this study.

In this paper, the dependance of the color on the predominant chemical composition
as well as on its chromaticity is investigated. More specifically, let Ci be the i-th cluster of
color, based on either the chemical properties or the chromaticity. The purpose is to find
many functions fi, one for each cluster, which, of course, depends on the cluster that the
input color belongs to:

cm ∈ Ci =⇒ ĉl = fi(cm) = f (cm|Ci) (4)

2.2. Instrumentation

According to the CIE standard definition [24], reference measurements were made us-
ing a Konica Minolta CM2600d spectrophotometer (Konica Minolta, Ramsey, NJ, USA) [25]
with the following setup: standard observer at 10◦, illuminant D65, and acquisition SCI.
Five measurements were acquired for each pictorial layer.

Photographic image data were acquired with a Lumix DMC-FZ200 camera (Panasonic,
Osaka, Japan). The following image acquisition setup was used: The camera was placed
vertically at 46.5 cm from the samples. The angle between the axis of the lens and the
sources of illumination was approximately 45◦. Illumination was achieved with two
Natural Daylight 23 W fluorescent lights (OSRAM, Munich, Germany), color temperature
6500 K, reproducing the standard D65 illuminant. The photos were shot in a dark room.
The settings of the camera are summarized in Table 1.

Table 1. Camera setup.

Variable Value

Focal distance 4 mm
Flash Off

ISO speed 400
Operation mode Manual
Exposure time 1/60 s

Quality Raw
f-Number f/3.2
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2.3. Dataset

As previously mentioned, the dataset of the present study consisted of 117 tiles from
the database of diagnostic analyses of La Venaria Reale [20]. A picture for each tile was
taken to enable analysis. Figure 1a shows an example of a photographic picture of the
tables from Venaria.

Figure 1. (a) On the left, a picture of a table with a collection of colored tiles from The Foundation
Centre for Conservation and Restoration of Cultural Heritage “La Venaria Reale”; (b) on the right, a
single tile. The reader may notice the presence of two columns and three rows. The red box indicates
the area considered for this study.

In the table, each pigment (Figure 1b) is presented in a mixture with two binders:
polyvinyl acetate (PVAc) (column on the left) and linseed oil (column on the right). Then,
the painted surface is divided into 3 rows. The first two present 2 different finishings:
terpene resin (stripe on the top) and acrylic resin (middle stripe), while the third one is
unprotected. For the present study, only the unprotected and the linseed oil sectors were
taken into consideration (the red box in Figure 1b), because the linseed oil technique is
the one most used by painters since the 15th century. The central portion of the camera
acquisition was considered in order to avoid specularity and saturation problems. Figure 2
shows some of the selected parts of tiles involved in the study.

Figure 2. A subset of tile samples involved in the present study.

To address the local color inhomogeneity of tiles, the characterization was performed
by taking into consideration five measurements via the colorimeter and five RGB triplets
extracted from the pictures in order to create paired couples and to develop a robust
supervised color correction.
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Specifically, pixels from each tile were sorted by hue (in ascending order). Then, five
triplets were extracted, namely the first one (i.e., the one with minimal hue), the last one
(i.e., the one with maximal hue), and the ones corresponding to the 25th, 50th, and 75th
percentiles. This was done to obtain as many samples as possible for the reference dataset.

2.4. Linear Regression

The method consists of estimating the L*, a*, and b* values separately via linear
regression. In particular, let (αL, βL), (αa, βa), and (αb, βb) be the regression coefficients for
L*, a*, and b*, respectively, so that the estimated values are Le = αLLl + βL, ae = αaal + βa,
and be = αbbl + βb, where Ll , al , and bl are the colorimeter values. To find the best
characterization of the camera data with L̂m, âm, and b̂m, the constraints Lm → L̂m ∼= Ll ,
am → âm ∼= al , and bm → b̂m ∼= bl are added, yielding the following:

L̂m =
Le − βL

αL
, âm =

ae − βa

αa
, b̂m =

be − βb
αb

(5)

2.5. Polynomial Regression

The polynomial regression approach consists of mapping a polynomial expansion of
the device RGB values to estimated L*a*b*. In the following, the polynomial P8 was used:

P8 = [R, G, B, RG, RB, GB, RGB, 1], (6)

The corrected L*a*b* triplet ĉl is obtained via the following equation:

ĉl = MP8, (7)

where M is the 3 × 8 tranformation matrix, which is derived via a pseudo-inversion
procedure as in [11].

2.6. Hue-Plane-Preserving Camera Characterization—Weighted Constrained Matrixing Method

The Hue-Plane-Preserving Camera Characterization—Weighted Constrained Matrix-
ing (HPPCC-WCM) method [19] is aimed at ensuring that the characterization preserves
the hue plane and minimizes error. Starting from the camera data, the transformation
matrix is defined in function of the device hue angle ϕm and of the parameter p referring
to the order of the transformation, as follows:

M(ϕm, p) =
1
σ ∑N

i = 1(π − ∆ϕi)
p Mi, (8)

where N is the number of training coupled colorimeter–camera data (cl , cm), Mi is the
transforming matrix cm,i = Micl,i, ∆ϕi = min(|ϕm − ϕi|, 2π−|ϕm − ϕi| ), with ϕi being
the i-th training color hue angle, and σ = ∑N

i = 1(π − ∆ϕi)
p.

To sum up, the color correction here proposed is as follows:

ĉl = M(ϕm, p)cm (9)

2.7. Data Grouping

To avoid the application of each method in a global way, the dataset under analysis
was clustered according to two different criteria, i.e., according to chromatic appearance
and the chemical composition, with reference to the central metal atom. Table A1 in
Appendix A shows the available pigments and relevant features (pigment name and color,
chemical composition, chemical cluster, and chromatic cluster). Regarding the chromatic
appearance, five classes were subjectively identified. Conversely, regarding the chemical
composition, Kremer code [26] was objectively considered. The clusters and relevant
numbers of tiles are summarized in Table 2.
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Table 2. Number of tiles for each selected cluster.

Red 33 Iron 23
Green 16 Lead 10
Blue 31 Copper 16

Yellow 23 Copper (organic) 9
Gray 14 Organic dyes and salts 34

Iron, manganese, and cobalt 31
Other 36

Some considerations regarding this clustering are made in the following.
In general, three phases drove the choice of the different chemical clusters. Firstly,

three major classes were considered referring to the elements most spread in the dataset:
iron, lead, and copper (Phase 1).

Then, by looking at the copper class, it was found that some tiles were organic lakes,
generating the idea that this clustering method could also be effectively applied to organic
dyestuff. Accordingly, the clusters “copper (organic)” and “organic” (collecting all the
lakes in the dataset) were considered (Phase 2).

Finally, a mixed class was also considered, characterized by the presence of either iron,
manganese, or cobalt, i.e., vicinal transition metals with very similar electronic properties
(Phase 3).

Regarding the chromatic clusters, the gray cluster collects pigments with similar R, G,
and B values (thus also including black and white pigments).

In Table A1, one can notice that the color grouping of some pigments differs from
the chromatic class to which they belong, according to the closest color perception. For
example, tile number 57, despite being visually brown/violet, also has shades of red given
by its chemical description provided by Kremer, which identifies it as a red pigment.

2.8. Proposed Method

The proposed approach involves a combination of the aforementioned procedures.
The data grouping procedure splits the dataset into clusters, which are homogeneous
in terms of either color or chemical properties. The color correction methods are inde-
pendently applied to each cluster. Recall that colorimetric and camera data are precisely
coupled by hue, as specified in Section 2.3. Altogether, this leads to an adaptive color
correction method.

3. Results

The color correction process was assessed via a five-fold cross-validation approach.
The effectiveness of the procedure was evaluated on the grounds of statistical pa-
rameters such as Pearson’s correlation coefficient and the three measures of color
distance. The root mean squared error in the L*, a*, and b* parameters (RMS) and
the related color distance measure expressed in color units, according to the formula

∆ =
√

RMS(L)2 + RMS(a)2 + RMS(b)2 [23], represent traditional metrics. The ∆E00 dis-
tance, officially adopted in 2001 as the new CIE color difference equation, improves the
performance on blue and gray colors thanks to an interactive term between chroma and hue
differences and a scaling factor for the CIELAB a* scale, respectively [27]. The latter is imple-
mented, here, according to the CIEDE2000 formula [21] (MATLAB implementation [28]).

The relevant values in Tables 3–13 are the means of the five attempts performed
during the cross-validation. In addition, the error associated with each value is specified in
brackets. It was computed as the semi-difference between the maximum and minimum
values in the five measurements, and it assesses the robustness of the k-fold procedure.
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Table 3. Evaluation of the considered methods for the whole dataset. The bold font highlights the best values throughout.

Pearson’s Coefficient RMS

L a b L a b

Uncalibrated 0.95 (0.03) 0.85 (0.02) 0.95 (0.02) 13.52 (3.94) 13.26 (4.28) 15.22 (5.12)
Linear regression 0.80 (0.03) −0.16 (0.01) −0.34 (0.02) 106.70 (9.44) 126.18 (18.11) 98.22 (11.26)

Polynomial regression 0.95 (0.02) 0.91 (0.01) 0.96 (0.02) 8.17 (1.57) 9.89 (2.08) 10.53 (1.88)
HPPCC-WCM 0.94 (0.03) 0.87 (0.03) 0.44 (0.02) 38.30 (9.44) 46.83 (8.11) 90.74 (11.91)

∆E00 ∆

Uncalibrated 127.31 (10.5) 24.30 (4.16)
Linear regression 140.13 (14.16) 192.23 (14.10)

Polynomial regression 101.26 (8.93) 16.60 (2.94)
HPPCC-WCM 53.52 (7.18) 109.06 (9.87)

Table 4. Pearson’s correlation coefficients of the considered methods for the major chemical clusters (Phase 1). The bold
font highlights the best values throughout.

Lead Iron

L a b L a b

Uncalibrated 0.92 (0.03) 0.93 (0.03) 0.97 (0.02) 0.76 (0.02) 0.92 (0.02) 0.90 (0.02)
Linear regression 0.59 (0.03) −0.67 (0.03) −0.87 (0.03) 0.87 (0.03) 0.16 (0.03) −0.28 (0.02)

Polynomial regression 0.92 (0.02) 0.98 (0.02) 0.97 (0.02) 0.91 (0.02) 0.93 (0.02) 0.94 (0.01)
HPPCC-WCM 0.66 (0.02) 0.90 (0.03) 0.84 (0.01) 0.85 (0.03) 0.76 (0.03) 0.25 (0.02)

Copper

L a b

Uncalibrated 0.89 (0.03) 0.51 (0.03) 0.78 (0.03)
Linear regression 0.24 (0.01) −0.16 (0.02) 0.02 (0.03)

Polynomial regression 0.91 (0.01) 0.87 (0.03) 0.92 (0.01)
HPPCC-WCM 0.66 (0.03) 0.84 (0.02) 0.81 (0.01)

Table 5. Pearson’s correlation coefficients of the considered methods for the other chemical clusters (Phase 2 and Phase 3).
The bold font highlights the best values throughout.

Copper (Organic) Organic

L a b L a b

Uncalibrated −0.31 (0.02) 0.75 (0.04) 0.66 (0.03) 0.91 (0.03) 0.88 (0.02) 0.90 (0.02)
Linear regression −0.52 (0.02) −0.04 (0.01) −0.52 (0.03) 0.89 (0.03) −0.11 (0.04) −0.32 (0.03)

Polynomial regression 0.77 (0.03) 0.90 (0.02) 0.92 (0.02) 0.97 (0.02) 0.91 (0.04) 0.92 (0.03)
HPPCC-WCM 0.23 (0.02) −0.43 (0.04) 0.22 (0.03) 0.92 (0.01) 0.78 (0.03) −0.53 (0.05)

Iron + Mn + Co

L a b

Uncalibrated 0.77 (0.04) 0.93 (0.03) 0.90 (0.03)
Linear regression 0.44 (0.03) −0.56 (0.03) −0.39 (0.02)

Polynomial regression 0.82 (0.02) 0.93 (0.02) 0.91 (0.02)
HPPCC-WCM 0.65 (0.03) 0.59 (0.03) 0.09 (0.03)
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Table 6. RMS of the considered methods for the major chemical clusters (Phase 1). The bold font highlights the best
values throughout.

Lead Iron

L a b L a b

Uncalibrated 12.46 (2.49) 9.96 (2.33) 13.87 (2.92) 14.02 (1.91) 5.98 (1.4) 13.91 (1.74)
Linear regression 156.97 (9.88) 198.51 (8.91) 143.58 (8.56) 81.13 (6.5) 58.64 (5.19) 51.34 (7.92)

Polynomial regression 5.29 (2.03) 4.25 (2.94) 6.89 (0.8) 5.22 (2.53) 4.04 (1.97) 4.89 (1.69)
HPPCC-WCM 35.59 (7.37) 44.91 (6.39) 123.48 (5.89) 82.81 (6.95) 122.67 (5.48) 152.47 (5.76)

Copper

L a b

Uncalibrated 12.42 (2.98) 19.45 (3.89) 14.97 (3.98)
Linear regression 39.11 (7.13) 136.14 (6.89) 899.47 (44.13)

Polynomial regression 5.21 (1.42) 8.79 (3.03) 5.92 (1.78)
HPPCC-WCM 147.46 (14.71) 91.33 (6.86) 116.78 (12.03)

Table 7. RMS of the considered methods for the other chemical clusters (Phase 2 and Phase 3). The bold font highlights the
best values throughout.

Copper (Organic) Organic

L a b L a b

Uncalibrated 13.07 (3.04) 10.44 (3.29) 12.02 (4.21) 17.77 (4.28) 23.12 (5.82) 21.38 (6.92)
Linear regression 31.48 (6.92) 166.89 (22.12) 66.34 (2.96) 164.24 (12.98) 231.84 (12.95) 89.29 (5.98)

Polynomial egression 3.38 (0.24) 9.92 (2.31) 12.34 (4.32) 6.14 (3.07) 4.96 (0.45) 10.33 (1.89)
HPPCC-WCM 142.29 (14.56) 113.95 (8.22) 125.13 (16.21) 39.34 (5.89) 87.43 (18.19) 194.90 (23.67)

Iron + Mn + Co

L a b

Uncalibrated 15.72 (2.68) 7.44 (2.03) 14.49 (2.23)
Linear regression 73.15 (9.86) 79.74 (9.65) 73.92 (6.73)

Polynomial regression 7.47 (2.33) 6.83 (1.12) 7.39 (2.11)
HPPCC-WCM 89.09 (7) 109.32 (13.13) 132.52 (16.18)

Table 8. ∆E00 of the considered methods for the chemical clusters. The bold font highlights the best values throughout.

Lead Iron Copper Copper (Organic) Organic Iron + Mn + Co

Uncalibrated 47.35 (9.68) 152.59 (13.72) 336.47 (24.68) 129.96 (7.34) 166.31 (29.76) 138.61 (12.91)
Linear regression 136.43 (13.8) 135.49 (14.25) 149.02 (18.32) 176.22 (16.43) 172.15 (32.94) 142.90 (19.94)

Polynomial regression 9.78 (3.18) 126.50 (10.18) 95.24 (8.58) 111.38 (13.23) 113.29 (22.63) 93.38 (8.22)
HPPCC-WCM 46.87 (5.97) 79.42 (6.38) 68.48 (3.69) 82.11 (9.56) 78.62 (9.35) 83.09 (5.63)

Table 9. Pearson’s correlation coefficients of the considered methods for the chromatic clusters. The bold font highlights the
best values throughout.

Red Green

L a b L a b

Uncalibrated 0.86 (0.03) 0.90 (0.03) 0.92 (0.02) 0.89 (0.03) 0.70 (0.02) 0.84 (0.02)
Linear regression 0.86 (0.04) 0.13 (0.03) −0.60 (0.03) 0.32 (0.03) −0.35 (0.04) −0.15 (0.02)

Polynomial regression 0.92 (0.02) 0.91 (0.01) 0.94 (0.03) 0.91 (0.01) 0.84 (0.02) 0.86 (0.01)
HPPCC-WCM 0.91 (0.02) 0.47 (0.02) −0.30 (0.01) 0.54 (0.03) 0.83 (0.02) 0.74 (0.01)
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Table 9. Cont.

Blue Yellow

L a b L a b

Uncalibrated 0.89 (0.03) 0.38 (0.03) 0.84 (0.02) 0.87 (0.02) 0.35 (0.03) 0.81 (0.02)
Linear regression 0.74 (0.02) −0.33 (0.02) 0.04 (0.02) 0.39 (0.02) −0.43 (0.01) −0.71 (0.03)

Polynomial regression 0.92 (0.02) 0.73 (0.02) 0.89 (0.01) 0.90 (0.03) 0.87 (0.03) 0.92 (0.02)
HPPCC-WCM 0.73 (0.02) 0.87 (0.01) 0.75 (0.02) 0.78 (0.01) 0.65 (0.01) −0.13 (0.02)

Gray

L a b

Uncalibrated 0.99 (0.01) 0.74 (0.01) 0.76 (0.01)
Linear regression 0.98 (0.02) 0.18 (0.03) 0.10 (0.02)

Polynomial regression 0.99 (0.01) 0.88 (0.01) 0.75 (0.01)
HPPCC-WCM 0.98 (0.02) 0.99 (0.01) 0.95 (0.02)

Table 10. RMS of the considered methods for the chromatic clusters. The bold font highlights the best values throughout.

Red Green

L a b L a b

Uncalibrated 14.72 (2.58) 9.70 (1.56) 14.68 (2.01) 13.58 (2.09) 14.32 (3.23) 12.77 (2.98)
Linear regression 138.58 (7.55) 62.36 (5.79) 53.43 (6.69) 47.86 (7.36) 142.85 (11.81) 80.63 (6.40)

Polynomial regression 6.64 (1.73) 6.31 (0.82) 9.42 (1.72) 6.72 (1.23) 10.28 (2.34) 8.23 (0.82)
HPPCC-WCM 36.15 (2.68) 129.90 (7.76) 176.77 (11.24) 118.15 (15.73) 69.96 (4.61) 104.65 (18.03)

Blue Yellow

L a b L a b

Uncalibrated 13.61 (2.71) 14.22 (2.94) 14.65 (2.20) 12.90 (1.96) 17.31 (2.51) 19.75 (3.31)
Linear regression 49.17 (4.73) 78.28 (7.31) 310.77 (29.33) 163.72 (6.69) 204.02 (9.87) 83.26 (6.39)

Polynomial regression 7.65 (0.74) 9.99 (2.06) 7.93 (1.05) 3.77 (1.48) 4.10 (1.24) 8.91 (1.61)
HPPCC-WCM 60.56 (7.88) 49.43 (7.61) 51.42 (9.26) 14.48 (16.56) 65.89 (7.41) 252.45 (16.67)

Gray

L a b

Uncalibrated 8.98 (1.95) 9.48 (1.09) 15.71 (3.96)
Linear regression 117.32 (9.34) 257.94 (8.92) 180.36 (8.27)

Polynomial regression 5.67 (1.42) 8.39 (2.04) 8.14 (1.89)
HPPCC-WCM 22.82 (4.22) 23.65 (3.92) 52.87 (4.54)

Table 11. ∆E00 of the considered methods for the chromatic clusters. The bold font highlights the best values throughout.

Red Green Blue Yellow Gray

Uncalibrated 55.45 (6.21) 211.41 (22.39) 201.16 (19.35) 18.74 (4.56) 45.29 (6.86)
Linear regression 110.13 (7.47) 161.11 (5.69) 129.01 (8.07) 153.30 (8.51) 146.29 (6.94)

Polynomial regression 35.12 (3.67) 558.33 (44.10) 186.45 (13.96) 5.83 (0.67) 61.26 (5.90)
HPPCC-WCM 69.11 (7.23) 68.03 (5.50) 79.12 (6.16) 56.71 (5.15) 51.81 (5.28)

Table 12. ∆ of the considered methods for the chemical clusters. The bold font highlights the best values throughout.

Lead Iron Copper Copper (Organic) Organic Iron + Mn + Co

Uncalibrated 21.14 (4.82) 20.64 (5.96) 26.89 (5.17) 29.49 (5.25) 44.53 (11.72) 22.64 (5.75)
Linear regression 290.97 (13.67) 112.50 (8.02) 939.86 (22.37) 188.19 (9.89) 304.21 (35.28) 131.05 (10.07)

Polynomial regression 9.67 (1.22) 8.21 (1.94) 11.32 (1.16) 22.77 (1.92) 19.18 (5.92) 12.53 (2.47)
HPPCC-WCM 136.13 (13.64) 212.49 (12.88) 211.75 (16.36) 233.65 (9.37) 226.56 (18.37) 193.52 (9.53)
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Table 13. ∆ of the considered methods for the chromatic clusters. The bold font highlights the best values throughout.

Red Green Blue Yellow Gray

Uncalibrated 22.94 (4.35) 23.51 (5.01) 24.54 (4.02) 29.26 (5.19) 20.43 (5.25)
Linear regression 161.08 (13.49) 170.87 (9.13) 324.23 (18.08) 274.52 (13.35) 335.90 (16.27)

Polynomial regression 13.14 (1.58) 14.78 (2.37) 14.87 (2.79) 10.51 (2.03) 12.99 (2.49)
HPPCC-WCM 222.33 (13.35) 172.64 (8.35) 93.57 (8.26) 261.31 (11.31) 62.25 (5.78)

Some examples of color correction applied to the pigments are reported in Figure 3. All
five measurements extracted from the considered tile are shown, coupled according to the
described approach. Each visualization depicts the uncalibrated color values, the colorime-
ter data, and the correction when the polynomial regression characterization was trained
on the whole dataset and on the specific cluster. The reader may notice the improvement
in the visual rendering when dealing with clustered data by chromatic properties.

Figure 3. Images depicting an example of color correction by means of the polynomial regression method.

4. Discussion

First, the obtained results are discussed in terms of the values of the metric considered.
Then, the importance of the preliminary cluster analysis is highlighted, with observations
mainly relevant to the two clustering procedures. To conclude, possible applications of
the proposed pipeline are disclosed, along with the limitations of the present research and
foreseeable future developments.

4.1. Discussing the Considered Indexes’ Values

Table 3, referring to the application of the methods to the whole dataset, shows a
strong agreement among the traditional metrics of correlation, the RMS on the L*, a*, and
b* parameters, and the color distance ∆.

In general, for both the whole dataset and the different selected clusters, the character-
ization method that produced the best color correction was polynomial regression, which
was always able to improve similarity with colorimetric data as compared with uncalibrated
data. Linear regression dramatically worsened the result as compared with the original
data, as did the HPPCC-WCM method on most of the indexes. However, even though
polynomial regression always showed improvements, according to the ∆E00 distance, the
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HPPCC-WCM method outperformed the others since both the method and the metric rely
on the more recent CIE standards, facing some drawbacks of the traditional standards.

Tables 4–7 confirm the best performances of polynomial regression, which improved
uncalibrated data on all clusters, even in the challenging case of copper (organic), where
the acquired colorimetric and photographic L parameters showed a strong misalignment.

Table 8 gives further evidence that the ∆E00 metric can solve some problems of tradi-
tional colorimetry as, except for the lead cluster, it gives better improvements. Additional
results reported in Table 11 show that the blue, green, and, to a lesser extent, the gray
clusters might benefit from hue preservation and the new metric, as declared in the new
standard scope.

The Pearson coefficients were already high for the whole dataset; hence, the improve-
ment obtained by clustering was less relevant for this index. Conversely, by taking into
consideration RMS, ∆E00, and ∆, the improvement when passing from the global correction
to the cluster-based correction was significant, as they both decreased when focusing on
chemical and chromatic clusters. In fact, the expression of the prediction error in terms of
color units is only intended to evaluate the human perception of the correction; indeed,
recall that if the error is approximately less than 2.2 color units, then, the difference is
considered to be imperceptible to the human eye. It is worthwhile noting the improve-
ment in this index, which decreased from a mean value across classes of 27.56 (Table 12,
“uncalibrated”) to 13.95 with respect to the chemical clusters (Table 12, “polynomial regres-
sion”), and from a mean value across classes of 24.14 (Table 13, “uncalibrated”) to 13.26
with respect to the chromatic clusters (Table 13, “polynomial regression”). In such a case,
clustering based on the chemical components is the most effective procedure, i.e., the one
producing the lowest error. It is expected that more sophisticated algorithms, which could
be investigated in future developments of the present study, would lead to an even lower
color unit error.

4.2. The Significance of the Clustering Procedure

Splitting the dataset into clusters led to a better color correction for both splitting
criteria (chromatism or chemical composition). The efficacy of clustering can be appreci-
ated by comparing the value of, for example, the ∆ index for the whole dataset (Table 3,
16.60 after polynomial regression characterization, with a 32% decrease with respect to the
value for the uncalibrated data) with the values for the single clusters in Tables 12 and
13, for example, for the “lead” cluster, the value is 9.67, with a 54% decrease after charac-
terization. Therefore, one can infer that the clustering procedure effectively addresses the
homoscedasticity of the data. Indeed, the major contribution of the present study is the
efficiency of the coupling between clustering and application of some state-of-the-art color
correction methods. In addition, it is worth stressing that, although one might expect better
results and a more effective color correction from chromatic clusters, the best correction
was provided by chemical clusters. This is likely due to the objectivity of the chemical
component criterion for defining clusters, while chromatic properties are more dependent
on human perception, thus, leading to less homogeneous classes.

To stress once more the novelty of the present study, to the best of our knowl-
edge, such an approach as well as the results relevant to the different clustering criteria
are unprecedented.

4.3. Chromatic Clusters

As outlined above, clustering by chromatism seems less effective for color correction
purposes. The perceived colors driving the selection of the chromatic clustering depend, to
some extent, on the observer, and therefore are subjective. In addition, several color shades
are present, which may lead to heterogeneous classes. Of course, having more samples for
each tile would allow one to split the data into more classes, each being characterized by a
closer chromatic similarity; as a result, the training phase would benefit, thus, conceivably
leading to better color correction.
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The correction provided by the polynomial regression method on the coordinates of the
Lab color space suggests some additional considerations, recalling that “L” represents the
perceptual lightness, while “a” and “b” refer to the four colors in the opposite component
model of human vision, i.e., red, green, blue, and yellow.

The most improved coordinate was L, meaning that this procedure addresses the
problems in terms of the lightness sensitivity of photographic data. Without correction, the
error is so high that the observer perceives a consistently different color with respect to the
colorimetric data (see Figure 3).

Regarding the coordinates “a” and “b”, it is interesting to consider the chromatic class
of gray. The values in this class are supposed to be similar, and so the difference between
colorimeter and photographic data should also be similar. However, by looking at the RMS
index (Table 10), we found that the difference between colorimeter and photographic data
was much higher for “b” than for “a”. Conversely, once the values were corrected with
polynomial regression, the errors were similar, thus, suggesting that the procedure is useful
to address some imbalance for the gray class.

4.4. Chemical Clusters

The criterion based on chemical composition is more univocal, an aspect that surely
contributes, in general, to the results being more similar as well as rewarding across the
considered classes.

In particular, the RMS index mirrors a gratifying, effective color correction for the main ele-
mental clusters (lead, iron, and copper, see Table 6) after polynomial regression characterization.

Regarding the additional elemental classes reported in Table 2, particular atten-
tion must be paid to the copper-based samples. In fact, the “copper” cluster of Table 2
(16 samples) also included nine organic samples, where copper was the metal cation of
an organic salt, which made up the selected subcluster defined as “copper (organic)”. In
terms of the RMS index, both the “copper” cluster and the subcluster performed extremely
well (Tables 6 and 7, respectively) as far as the “L” component was concerned, while the
components “a” and “b” did not seem to be significantly corrected for the subcluster by
the characterization method of choice. Nonetheless, we paid attention to the consistent
number of tiles containing organic pictorial matter (either organic dyes or metal salts of
organic acids); satisfactorily enough, the rather crowded (34 samples of lakes) “organic
dyes and salts” cluster responded positively to the polynomial regression characterization
(as compared with the values of the RMS index in Table 7 or of the ∆ index in Table 12) or
to the HPPCC-WCM treatment (as compared with the value of the ∆E00 index in Table 8).

The performance provided by the cluster of lakes represents, in our opinion, a further
original and very interesting aspect of the camera characterization procedure herein. This
is because the identification and study of organic matter on pictorial artworks cannot be
achieved by means of XRF, a non-invasive technique that is widely applied in the presence
of pigments containing heavy metals, but which fails to detect organic dyestuff because
C, N, and O atoms are too light. Instead, the current approach based on the correction
of digital data grouped in elemental clusters does not depend on the atomic weight, and
thus opens very appealing perspectives as to the analysis of lakes. Developments and
applications to study cases are necessary to sustain this hypothesis.

A first hypothesis about the reason why elemental clustering is a good approach is
suggested by the results of the analysis on the mixed “iron, manganese, and cobalt” cluster.
In fact, these three elements are transition metals adjacent in the periodic table, whose
electronic configuration differs only for the number of electrons at the internal level, with
the external one being identical for all three. The good results obtained for such a mixed
class may mean that the proposed approach is sensitive to the outermost electronic level.
Of course, more experimental trials are needed to validate the hypothesis, particularly by
selecting other mixed clusters responding to the same characteristics.



J. Imaging 2021, 7, 115 14 of 20

4.5. A Possible Usage of the System for the Programming of Restoration Actions

A main concern about cultural heritage is the preservation of artwork for future
generations. Of course, artworks, whatever the typology, inevitably tend to change or
degrade with time due to several different causes, and restoration campaigns must be
conducted whenever necessary. As far as pictorial artworks are concerned, color is surely
the main sentinel to be observed in order to decide what actions to take. A handy and
low-cost tool such as a digital camera would be optimal for frequent periodic control on
artworks, as well as on large surfaces. In this way, time-dependent data describing the state
of the paintings could be easily collected and analyzed preliminarily to further deepen
more sophisticated analyses, if necessary, prior to a restoration action.

To this end, repeated periodical collections of data are necessary to verify the feasibility
of selecting a parameter as a valid index of color deterioration. While elemental clustering
has proven optimal for the identification of color, it could be foreseen that chromatic
clustering would be best to handle the fading/deterioration of color with time. Of course,
at the present time, this is only a conjecture to be verified in the future as a compulsory
development of the present study.

4.6. Limitations and Future Developments

First, the amount of available data needs to be increased, as it is supposed that it
would lead to better correction, at least on statistical grounds.

Of course, the present study cannot be limited to “theory”; in addition to the desirable
significance of the method outlined in the previous paragraph, a main interest would be
the application of the training to real cases in order to perform identification and study
of the pictorial layers of an unknown composition. Thus, once the chemical clusters have
been characterized, one can consider an “unknown” painting and focus on a particular
area. If such an area fits a particular cluster, i.e., proper color correction is obtained by
considering the parameters for that class, then it would mean that the relevant chemical
elements are present in the considered area.

A continuing collaboration with the laboratories of “La Venaria Reale” and contacts
with museums or galleries would surely satisfy both the outlined forms of progress and
enable the development of a novel machine-learning-based approach, which is presently
hampered by the limited size of the available dataset.

5. Conclusions

A dataset of digital camera photographs and of colorimetric measurements on 117 tiles
from the database of diagnostic analyses of The Foundation Centre for Conservation and
Restoration of Cultural Heritage “La Venaria Reale” was collected and analyzed with the
aim of minimizing the difference between digital and spectrophotometric quantitative
color data, from the perspective of validating a handy diagnostic tool such as a digital
camera for quantitative color determination.

To address the homoscedasticity of the data acquired, the current study proposed a
supervised approach to camera characterization and color correction based on clustered
data. To this end, within the dataset, samples were grouped into clusters based on either
the chromatic or the chemical properties of the pigments.

Among the different approaches studied in the present study, a polynomial regression
obtained the best results with both of the proposed clustering criteria. Thus, while the
correlation between characterized photographic data and colorimetric data remains high
when considering both the entire dataset and the single clusters, in the latter case, notable
improvements can be seen in the three parameters considered to test the efficacy of the
characterization (i.e., RMS, ∆E00, and ∆). The central thesis that the piecewise method
improves prediction accuracy was supported by numerical evaluations, even though, in
absolute terms, the results were short of an error low enough to be imperceptible to a
human expert.
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In future studies, the aim could be to extend the dataset, for example, by developing
the collaboration with La Venaria Reale. Of course, increasing the dataset would allow one
to define new or more densely populated clusters, and therefore study the chemical and
chromatic properties of the pigments in more detail, hopefully confirming the hypothe-
ses above. A larger dataset may substantially improve the error, and therefore achieve
imperceptible differences between the acquired data and the corrected data.

Furthermore, different approaches could be investigated, no longer based on the
mean value of the colorimetric data, but rather looking for other significant parameters to
perform the analysis. Additionally, further applications of the proposed approach are being
investigated, such as applying it for characterizing the chemical composition of unknown
artworks by leveraging the photographic data.
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Appendix A

In this appendix, a table presenting the pigments’ descriptions is provided.

Table A1. List of the available pigments with their name, chemical composition, and chemical and chromatic classes.

Tile Pigment Name Pigment Color Chemical Composition Chemical
Class

Chromatic
Class

Tile 1 Lead White Lead white 2PbCO3.Pb(OH)2 Lead Gray

Tile 4 Calcium Carbonate White CaCO3 Other Gray

Tile 5 Vine Black German Black
Retouching color in aldehyde resin 81.

Carbon with impurities of potassium and
sodium ions

Organic Gray

Tile 9 Azurite MP,
sky-blue light Azure Cu3(CO3)2.(OH)2 Copper Blue

Tile 13 Smalt Blue K2O.nSiO2 with the presence of cobalt Cobalt Blue

Tile 15 Orpiment Yellow As4S6 Other Yellow

Tile 16 Realgar Orange, yellow As4S4 Other Yellow

Tile 19 Yellow Ochre
Iron Oxide Yellow α-FeO(OH) or K,Fe(SO4)2(OH)6 or

γFeO(OH)) Iron Yellow

Tile 20 Raw Sienna Italian Raw sienna,
yellow, brown Fe2O3.nH2O + MnO2 + Al2O3 + SiO2 Iron Yellow

Tile 21 Massicot Litharge Yellow PbO Lead Yellow
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Table A1. Cont.

Tile Pigment Name Pigment Color Chemical Composition Chemical
Class

Chromatic
Class

Tile 22 Burnt Sienna Italian Burnt sienna,
red, brown Fe2O3.nH2O + Al2O3 (60%) + MnO2 (1%) Iron Red

Tile 23 Burnt Umber
Reddish

Burnt umber,
brown Fe2O3 + MnO2 + Si + Al2O3 Iron Red

Tile 25 French Ochre
SOFOROUGE Red SiO2 + Al2O3 + Fe2O3 Iron Red

Tile 28 Pozzuolana Red
Earth Purple, red Mix of lands Iron Red

Tile 30 Madder Lake
Genuine Pink, red Organic nature Organic Red

Tile 31 Red Ochre English Red Fe2O3.nH2O Iron Red

Tile 33 Red Bole Brown, red Al2Si2O5(OH)4 Other Red

Tile 34 Red Lead, minimum Orange, red PbO4 Lead Red

Tile 36 Malachite Natural
Standard Green Cu3(CO3).(OH)2 Copper Green

Tile 41 Verdigris, synthetic Blue, turquoise,
green Cu(CH3COO)2

Copper
(organic) Blue

Tile 42 Barium Sulfate White BaSO4 Other Gray

Tile 43 Sepia Fine Black-brown Sepia, fine (colorant of cuttlefish) Organic Gray

Tile 44 Bone Black Black 15–20% of carbon, 60–70% of Ca3(PO4)2 Other Gray

Tile 45 Asphaltum Black Black High molecular weight hydrocarbons Organic Gray

Tile 46 Blue Bice Blue, turquoise Cu2(CO3)2.Cu(OH)2 Copper Blue

Tile 47 Lapis Lazuli Blue (Na,Ca)8(AlSiO4)6 + % of iron Iron Blue

Tile 48 Ultramarine Ash Blue ultramarine Na2O3Al6SiO2.2Na2S Other Blue

Tile 49 Lead Tin
Yellow Light Lemon yellow Lead stannate, type I (Pb2SnO4) Lead Yellow

Tile 50 Indian Yellow
Imitation Indian yellow Consisting primarily of euxanthic acid

salts Organic Yellow

Tile 51 Naples Yellow, dark Naples yellow Pb2Sb2O7 Lead Yellow

Tile 52 Van Dyck Brown Van Dyke brown Consists mainly of humic acids and iron
oxide Iron Red

Tile 53 Natural Cinnabar Orange, red Mineral cinnabar, HgS Other Red

Tile 54 Lac Dye Pink, red Lac dye (from coccus lacta secretion,
Natural Red 25; gum lac, Indian lake) Organic Red

Tile 55 Vermilion Vermilion red Mine cinnabar, HgS Other Red

Tile 56 Caput Mortuum
Reddish Red, violet Fe2O3 Iron Red

Tile 57 Caput Mortuum
Violet Brown, violet Fe2O3 Iron Red

Tile 58 Green Earth Light Green Iron-based silicate Iron Green

Tile 59 Prussian Blue Prussian blue Fe4[Fe(CN)6]3.6H2O or
KFe[Fe(CN)6].6H2O Iron Blue

Tile 60 Lead Tin Yellow II Lemon yellow Type II, Pb(Sn,Si)O3 Lead Yellow
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Table A1. Cont.

Tile Pigment Name Pigment Color Chemical Composition Chemical
Class

Chromatic
Class

Tile 61 Naples Yellow
from Paris Yellow Pb(Sb,Sn)O3 Lead Yellow

Tile 62 Venetian Red Venetian red Fe2O3 Iron Red

Tile 67 Lead Sulfate White PbSO4 Lead Gray

Tile 68 Lithopone White BaSO4 + ZnS Other Gray

Tile 69 Titanium White
Rutile Titanium white TiO2 Other Gray

Tile 70 Zinc White Zinc white ZnO + % of iron Iron Gray

Tile 71 Zinc Sulfide White ZnS Other Gray

Tile 72 Manganese Black Black (Fe,Mn)3O4 Iron Gray

Tile 73 Ploss Blue Blue, turquoise, (CuCa)CO3(CH3COO)2.2H2O) Copper
(organic) Blue

Tile 74 Blue Verditer Blue CuCO3 Cu(OH)2 Copper Blue

Tile 75 Ultramarine Blue
very dark Ultramarine blue Al6Na8O24S3Si6 Other Blue

Tile 76 Copper Blue Blue, turquoise Copper based Copper Blue

Tile 77 Zirconium
cerulean blue Cerulean blue Derived from zircon Other Blue

Tile 78 Cavansite Blue, turquoise Ca(VO)Si4O10.4(H2O) Other Blue

Tile 79 Ultramarine Blue
Dark Ultramarine blue Na2O3Al6SiO2.2Na2S Other Blue

Tile 80 Cobalt Blue Dark Blue (Co,Zn)2SiO4 Cobalt Blue

Tile 81 Cobalt Blue Pale Blue CoAl2O4 Other Blue

Tile 82 Natural Chromium
Yellow or crocoite Yellow PbCrO4 Lead Yellow

Tile 83 Cadmium Yellow
n◦6 medium Cadmium yellow CdS + ZnO Other Yellow

Tile 84 Permanent Yellow
medium Yellow Organic nature Organic Yellow

Tile 85 Brilliant Yellow Yellow C18H18N4O6 Organic Yellow

Tile 86 Studio Yellow Yellow C16H12Cl2N4O4 Organic Yellow

Tile 87 Cobalt Yellow Yellow [Co(NO2)6]K3 + 3H2O Cobalt Yellow

Tile 88 Bismuth-Vanadate
YelLow Lemon Yellow (Bi,V)O4 Other Yellow

Tile 89 Baryte Yellow Yellow BaCrO4 Other Yellow

Tile 90 Studio Pigment
Yellow Yellow C18H18N4O6 Organic Yellow

Tile 91 Studio Pigment
Yellow Sun Gold Yellow Organic nature Organic Yellow

Tile 92 Cadmium Orange
n◦0 very light Orange Cd2SSe Other Red

Tile 93 Paliotol® Orange Orange C8H9N Organic Red

Tile 94 Paliogen® Orange Orange C23H8Cl8N4O2 Organic Red
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Table A1. Cont.

Tile Pigment Name Pigment Color Chemical Composition Chemical
Class

Chromatic
Class

Tile 95 Irgazin® Yellow,
light orange

Yellow C8H7NO Organic Yellow

Tile 96 Isoindolol Orange Orange C8H7N Organic Red

Tile 97 Titanium Orange Orange, yellow Ti-Sb-Cr-O Rutile Other Yellow

Tile 98 Iron Oxide
Orange 960 Orange Fe(O)OH + Fe2O3 Iron Red

Tile 99 IWA-Enogu® Shinsia Pink Sodium aluminosilicate with oxides of
metals other than iron Other Red

Tile 100 IWA-Enogu®

Iwamomo
Pink Sodium aluminosilicate with oxides of

metals other than iron Other Red

Tile 101 IWA-Enogu®

Usukuchi-Murasaki
Violet Sodium aluminosilicate with oxides of

metals other than iron Other Red

Tile 102 Côte d’Azur Violet Gray, violet Fe2O3 Iron Gray

Tile 103 Thioindigo Red
Lightfast Red Organic nature Organic Red

Tile 104 Cinquasia® Violet
RT 201 D

Reddish violet Organic nature Organic Red

Tile 105 Ultramarine Violet
medium Violet, bluish Sodium, alumino, sulfo, silicate Other Blue

Tile 106 Manganese Violet Manganese violet (NH4)2Mn2(P2O7) Manganese Blue

Tile 107 Cobalt Violet Dark Cobalt violet Co3(PO4)2 Cobalt Blue

Tile 108 Pink color Pink, red Ca(Sn,Cr)SiO5 Other Red

Tile 109 Cadmium Red n◦2
medium Cadmium red CdS Other Red

Tile 110 Irgazine® Scarlet
DPP EK

Scarlet red C6H2N2O2 Organic Red

Tile 111 Alizarine Crimson
dark Pink, red Colorant/organic pigment for coatings Organic Red

Tile 112 XSL Irgazine® Red
DPP

Red Organic nature Organic Red

Tile 113 Rosso Sartorius Brown, red Fe2O3.nH2O Iron Red

Tile 114 Aegirine Fine Green NaFeSi2O6 Iron Green

Tile 115 Andeer Green Fine Green Granite Other Green

Tile 116 Phthalo Green dark Green, bluish Cu(C32N8Cl14).16HCl Copper
(organic) Green

Tile 117 Chromite Green FeCr2O4 Iron Green

Tile 118 Cobalt Green Green Co2SnO4 Cobalt Green

Tile 119 Cobalt Green
Bluish A Green, turquoise Cobalt-based Cobalt Green

Tile 120 Chrome Oxide
Green Green Cr2O3 Other Green

Tile 122 Permanent Green Green, turquoise CoAl2O4 Cobalt Green

Tile 123 Cadmium Green
Light Green Cadmium-based Other Green
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Table A1. Cont.

Tile Pigment Name Pigment Color Chemical Composition Chemical
Class

Chromatic
Class

Tile 124 Cadmium Green Dark Green Cadmium-based Other Green

Tile 125 Fluorescent Pigment
Blue Blue Unspecified Other Blue

Tile 126 Phthalo Blue Blue C32H16CuN8
Copper

(organic) Blue

Tile 127 Phthalo Blue Royal Blue Blue C32H16CuN8
Copper

(organic) Blue

Tile 129 Indanthren® Blue Blue Unspecified Organic Blue

Tile 130 XSL Phthalo Blue Royal
Blue Very Lightfast Blue C32H16CuN8

Copper
(organic) Blue

Tile 131 Indigo Blue Lake Blue Organic nature Organic Blue

Tile 132 Indigo Red-Violet Blue, violet Organic nature Organic Blue

Tile 133 Studio Pigment Sky Blue Blue Unspecified Other Blue

Tile 134 Studio Pigment
Dark Blue Blue Unspecified Other Blue

Tile 135 XSL Translucent Yellow Yellow Unspecified Iron Yellow

Tile 136 IWA-Enogu® Iwabeni Red Unspecified Other Red

Tile 137 Phthalo Green,
yellowish green, yellowish Copper-based Copper

(organic) Green

Tile 138 Heliogen® Green Green, bluish Copper-based Copper
(organic) Green

Tile A Madder Lake glazing
over natural cinnabar Red Organic nature Organic Red

Tile B Azurite glazing over
Madder Lake Blue Cu3(CO3)2.(OH)2 Copper Blue

Tile C Lapis Lazuli glazing
over Azurite Blue (Na,Ca)8(AlSiO4)6 + % of iron Iron Blue

Tile D Copper resinate glazing
over Verdigris Green Cu(CH3CO)2.2Cu(OH)2.nH2O Copper

(organic) Green

Tile E
Bisso (mixture of

Madder Lake and Lapis
Lazuli)

Blue Organic nature Organic Blue

Tile F Mixture of Azurite and
Lead Tin Yellow Light Green Cu3(CO3)2

.(OH)2 and Pb2SnO4
Copper
lead (*) Green

(*): Tile F presents both copper and lead in its chemical composition, so it belongs to both copper and lead clusters.
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