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ABSTRACT Lactobacillus fermentum is found in food products and is generally con-
sidered safe. L. fermentum AGR1485 promotes barrier integrity in Caco-2 cells and
has genetic similarities to other known probiotic L. fermentum strains. L. fermentum
AGR1485 has potential as a probiotic and was sequenced to explore these probiotic
properties. The genome is a 2.2-Mbp circular chromosome with no plasmids and a
GC content of 51.15%.

Lactobacillus fermentum is commonly found in food products (1, 2) and is used as a
probiotic therapeutic agent for the treatment of intestinal and vaginal pathogens

(3–5). L. fermentum AGR1485 increases the barrier integrity of Caco-2 monolayers but
does not induce colonic inflammation in germfree mice (6, 7). L. fermentum AGR1485
has genetic similarities to other known probiotic L. fermentum strains, but little is known
about the probiotic mechanisms of action of these strains. L. fermentum AGR1485 was
isolated by oral swab from a healthy human volunteer and identified as a member of
the species L. fermentum using 16S rRNA gene sequencing (8). The genome of L.
fermentum AGR1485 was sequenced to determine its probiotic properties and genetic
characteristics.

L. fermentum AGR1485 was cultured in de Man-Rogosa-Sharpe (MRS) broth (Merck
Ltd., Auckland, New Zealand) and incubated overnight at 37°C. The cells were lysed by
grinding under liquid nitrogen followed by the Qiagen bacterial lysis method (9).
High-molecular-weight DNA was purified on Qiagen Genomic-tip/100G columns (Bio-
Strategy, Auckland, New Zealand) following the manufacturer’s specifications (9).

Whole-genome sequencing was done using both Illumina and PacBio single-
molecule real-time (SMRT) sequencing for hybrid assembly. Illumina library creation
and sequencing were carried out by BGI (Beijing Genomic Institute, Shenzhen, China),
and PacBio SMRTbell library creation and sequencing were done by Novogene (Hong
Kong, China). Illumina template DNA was sheared into 500-bp fragments for library
creation using a TruSeq library preparation kit from Illumina. The resulting template
DNA was sequenced on a HiSeq 2000 genome analyzer that generated 2,738,965
100-bp paired-end reads. The PacBio SMRTbell library was created from sheared
template DNA, and the hairpin dimers were purified by magnetic beads with size
selection conditions. The adapters were removed using PacBio’s MagBead kit. SMRT
sequencing of the SMRTbell templates was carried out on a PacBio Sequel platform,
creating 249,954 subreads with an average length of 8,790 bp and an N50 value of
10,057 bp.

Default parameters were applied for all software packages unless otherwise speci-
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fied. Illumina reads were assessed for length, quality, and adapters before and after
trimming using FastQC v0.11.9 (10). Illumina reads were quality controlled and trimmed
with Trimmomatic v0.39 (11). Hybrid de novo assembly was performed with Unicycler
v0.4.7 (12) using the trimmed Illumina short reads and uncorrected PacBio long reads.
The assembly graph was checked for errors and completeness using Bandage v0.8.1
(13) before final assembly and polishing. Polishing was done with Pilon v1.22 (14) using
all the sequencing reads until no further improvements to the assembly could be made.

The polished assembly was assessed with CheckM v1.0.18 to have 99.18% com-
pleteness and 0.546% contamination (15). QUAST v4.6.3 (16) confirmed that the
genome sequence was a single 2,226,862-bp chromosome with a GC content of 51.15%
and contained no missing or ambiguous nucleotides. Read coverage for the assembly
was calculated to be 989.2�. During assembly, Unicycler v0.4.7 predicted the chromo-
some to be circular. UGENE v34.0 (17) was used to overlap the ends of the L. fermentum
AGR1485 sequence and calculate an in silico digest at the I-Ceul restriction sites. The in
silico restriction digest fragment pattern and fragment sizes closely resembled previ-
ously published pulsed-field gel electrophoresis results of the same genome using a
commercial I-Ceul restriction enzyme (Fig. 1) (6).

The assembly was annotated with PGAP v4.11 (18) and GAMOLA2 v16.0 (19), which
found 2,367 open reading frames (ORFs), 1,839 Clusters of Orthologous Groups (COGs),
and 1,920 conserved domains. The genetic characteristics that give rise to this orga-
nism’s unique phenotypes are likely harbored in this chromosome, because no plas-
mids were identified during DNA purification or assembly.

Data availability. The PacBio long reads (SRX7669246) and Illumina reads
(SRX7669245) described here have been deposited at NCBI/GenBank under BioProject
number PRJNA588334. The whole-genome sequence (accession number CP047584.1) is
available from NCBI/GenBank under BioSample accession number SAMN13241836.
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one restriction site to the next (fragment sizes are in base pairs and kilobase pairs).

Bailie et al.

Volume 9 Issue 36 e00841-20 mra.asm.org 2

https://www.ncbi.nlm.nih.gov/sra/SRX7669246
https://www.ncbi.nlm.nih.gov/sra/SRX7669245
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA588334
https://www.ncbi.nlm.nih.gov/nuccore/CP047584.1
https://www.ncbi.nlm.nih.gov/biosample/SAMN13241836
https://mra.asm.org


funding provided by the New Zealand Tertiary Education Commission. E.A. and W.Y.
were partly funded by the AgResearch Strategic Science Investment Fund (contract
number A21246).

REFERENCES
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