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Abstract

Intracellular delivery of DNA is considered a challenge in biological research and treatment

of diseases. The previously reported transfection rate by commercially available transfection

reagents in cancer cell lines, such as the mouse lung tumor cell line (TC-1), is very low. The

purpose of this study is to introduce and optimize an efficient gene transfection method by

mechanical approaches. The combinatory transfection effect of mechanical treatments and

conventional chemical carriers is also investigated on a formerly reported hard-to-transfect

cell line (TC-1). To study the effect of mechanical loadings on transfection rate, TC-1 tumor

cells are subjected to uniaxial cyclic stretch, equiaxial cyclic stretch, and shear stress. The

TurboFect transfection reagent is exerted for chemical transfection purposes. The pEGFP-

N1 vector encoding the green fluorescent protein (GFP) expression is utilized to determine

gene delivery into the cells. The results show a significant DNA delivery rate (by ~30%) in

mechanically transfected cells compared to the samples that were transfected with chemical

carriers. Moreover, the simultaneous treatment of TC-1 tumor cells with chemical carriers

and mechanical loadings significantly increases the gene transfection rate up to ~ 63% after

24 h post-transfection. Our results suggest that the simultaneous use of mechanical loading

and chemical reagent can be a promising approach in delivering cargoes into cells with low

transfection potentials and lead to efficient cancer treatments.

Introduction

Managing the transportation of molecules in biological cells is a significant aim in many medi-

cal processes including gene therapy and treatment of diseases such as cancer and viral diseases

[1]. From the various DNA transfection methods applied for eukaryotic cells, some methods

rely on physical treatments and others rely on chemical materials or biological particles as the

functional carriers. Chemical carrier can have a polymeric (such as polyplexes) or a lipid base

(such as lipofection) [1]. Transfection using physical methods, such as electroporation and

sonoporation, is challenging as they showed to physically disrupt the cell membrane [2]. Many

researchers have developed several physical methods for gene transfection [3–5].

Physical methods suggested for transfection have shown an advantage in some applications.

These methods eliminate the need for vector materials and circumvent the endocytotic
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pathway; especially those involving primary cells that are recalcitrant to vector-based methods.

However, both electroporation and sonoporation techniques have the disadvantage of being

highly toxic and have shown limited success in delivering materials such as proteins and nano-

materials. Electroporation, in particular, has been shown to damage certain target materials,

such as quantum dots [6, 7]. Moreover, electroporation has a harmful effect on cells, which is

related to its effect on pH levels. [8]. Microinjection, an alternative method in which cells are

punctured by a microneedle, can address a variety of target materials and cell types. However,

its low throughput has hindered its adoption for most applications (throughput*100 cell/h at

most) [9]. Thus, there is need for more effective intracellular delivery methods.

Mechanotransduction is a process where cells transmute mechanical stimuli into electro-

chemical signals. Mechanotransduction plays a momentous role in many microbiological phe-

nomena such as regenerative medicine [10–12], cell proliferation [13–16], and differentiation

[17–23]. However, the exact mechanisms by which cells sense and respond to local mechanical

signals are not well understood [24–27]. Mechanotransduction occurs in living cells by various

stimuli such as hydrostatic pressure [28–31], cyclic stretch [32–35], and cyclic shear stress [36–

38].

The cell membrane is the primary barrier to the transport of molecules and ions between

the interior and the exterior regions of a cell [39]. Leontiadou et al. [40] presented atomistic

MD simulations to show that hydrophilic water pores could be stabilized in a DPPC lipid

membrane under low tension. The pores were shaped like an hourglass, with a radius of 0.7

nm in the interior of the membrane [40]. Therefore, we can expect that mechanical stress

alone can be a potent transfection factor.

According to the research literature, mechanical stresses exerted on cells can lead to gene

transfection. Accordingly, in this paper, three mechanical bioreactors (uniaxial cyclic stretch,

equiaxial cyclic stretch, and shear stress) were used to create a different force field on TC-1

tumor cell line for gene transfection (i.e., pEGFP-N1). The transfection efficiency of the chemi-

cal method in combination to mechanical approaches was conducted and compared with the

results obtained from mechanical loadings or chemical carrier, alone. In the end, the optimal

conditions for gene transfection were determined.

Materials and methods

2.1 Cell line and plasmid DNA construct

The cell line used in this study is TC-1 (NCBI Code: C569) that was provided by the National

Cell Bank of Iran (Pasteur Institute of Iran). TC-1 cell line was derived from the primary lung

epithelial cells of C57BL/6 mice. The TC-1 lung metastasis model can be used to test the effi-

cacy of various E6/E7-specific vaccines and immunotherapeutic strategies [41]. The

pEGFP-N1 plasmid (Clontech, Mountain View, CA) was used for the in vitro transfection

assay. This vector encoding the GFP marker was purified using the EndoFree Plasmid Maxi

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. DNA concentra-

tion was determined using NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., N-

1000, USA).

2.2 Cell culture

The TC-1 cancerous cell line was cultured in RPMI 1640 (Sigma, Germany) supplemented

with 5% heat-inactivated fetal calf serum (Gibco, USA), 2 mM L-glutamine (Sigma, Germany),

5 ×10−5 mM 2-mercaptoethanol (Sigma, Germany), 10 mM HEPES (Sigma, Germany), and

40 μg/ml gentamicin (Sigma, Germany). Cells were incubated in a humidified atmosphere at

Transfection by mechanical loading

PLOS ONE | https://doi.org/10.1371/journal.pone.0209199 December 28, 2018 2 / 14

https://doi.org/10.1371/journal.pone.0209199


37˚C in 5% CO2. TC-1 cells were harvested by trypsinization, counted, and seeded in a 24-well

plate and also on a medical grade silicone membrane.

2.3 Transfection method by TurboFect reagent

For transfection using the cationic polymer technique, cells were transfected with TurboFect

transfection reagent (Thermo Scientific) according to the manufacturer’s protocol. Briefly, the

TC-1 cells were seeded at a density of 6 × 104 cells/well in a 24-well plate in complete RPMI-

1640 supplemented with 5% heat-inactivated FBS. For DNA transfection with TurboFect, the

purified pEGFP-N1 vector (~1 μg) was pre-incubated with 4 μl of reagent in a final volume of

25 μl and incubated at room temperature for 20 min to form the DNA/TurboFect complex.

The complex was then added to the cells in each well containing serum-free medium. The

medium was replaced after six h incubation at 37˚C with complete RPMI 5% FBS. The trans-

fection efficiency was monitored by fluorescence microscopy (EnvertFluorescent Ceti, Korea)

and quantified by a FACS Calibur flow cytometer (Partec, Germany) at 24 h post-transfection.

Flow cytometer settings were adjusted to discriminate the transfected and non-transfected

cells. The Windows FloMax software package was used for data analysis. Moreover, for the

simultaneous treatment using the chemical reagent and mechanical loading, cells cultured on

the silicone membranes were loaded by various mechanical bioreactors before transfection.

Then, the plasmid DNA alone or complexed with TurboFect were added to the medium and

the cells were incubated at 37˚C in a 5% CO2 incubator.

2.4 Transfection method by mechanical loading

After autoclave sterilization, the medical grade silicone membrane was used as the cell seeding

platform for further cell transfection analyses. Briefly, the TC-1 cells were seeded on the central

part of the silicone membrane at a density of 2×105 cells and incubated for 2 to 3 hours. After

ensured cell attachment to the membrane, by microscopic observations, the culture medium

was slowly added to the petri dish and incubated overnight in the incubator. According to the

research on molecular dynamics [40], which indicated that mechanical stress was the cause of

forming pores on cell wall, it can be expected that the mechanical loadings cause molecules to

diffuse into the cell. Therefore, this study focused on the effect of mechanical loading on the

cell by various mechanical bioreactors. For applying mechanical loadings on the studied cell

line, uniaxial cyclic stretch, equiaxial cyclic stretch and shear stress bioreactors made in the

Pasteur Institute of Iran were used. The schematic of these bioreactors were shown in Fig 1.

After unloading the cultured cells, the transfection process was further carried out in 2 situa-

tions. In one case, the loaded cultured cells were placed in the vicinity of the plasmid DNA

containing GFP and without using TurboFect transfection reagent. In this case, the effect of

mechanical loading on transfection rate was examined. In the second situation, the loaded cul-

tured cells were placed in the vicinity of the plasmid DNA containing GFP and TurboFect

transfection reagent.

2.4.1 Transfection using uniaxial cyclic stretch. Various designs that apply uniaxial

cyclic strain to cells cultured on a suitable elastic membrane or soft tissue and simulation of

the internal mechanical environment of the body have been investigated, but each design has

its limitations. A uniaxial cyclic stretch bioreactor in National Cell Bank of Iran had been

designed to apply uniaxial cyclic stretch. In this step, mechanical loading was be used. The

Range of applied strain was 0 to 10 percent, at a time interval of 24 hours and a frequency of

0.5HZ. It should be noted that the test conditions must first be determined for any mechanical

load to achieve the best transfection efficiency without causing any damage to the cell. After

unloading and separating the membrane from the uniaxial cyclic stretch bioreactor, the
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membrane containing the loaded cell, the transfection operation should be performed accord-

ing to section 2.3. Flow cytometry and fluorescence microscopy were used for analyzing pro-

tein expression in the cell.

2.4.2 Transfection method by equiaxial cyclic stretch bioreactor. In this section, the

equiaxial cyclic stretch acted to the cell adhering to the silicone membrane is defined. This bio-

reactor was able to stretch cyclically into the periphery of a circular membrane. To conduct the

test, 2×105 cells were cultured on the center of the membrane and incubated overnight. This

test was done at the frequency of 0.5Hz, loading time of 15 min, and 5% strain. After unload-

ing, the membrane was separated from the bioreactor, and the transfection operation was per-

formed as described in section 2.3.

2.4.3 Transfection method by shear stress. The shear stress bioreactor was used in this

section for transfection of TC-1. This bioreactor can apply shear stress to the cultured cells on

the silicone membrane by a rotating shaft with the frequency f, shaft radius R, and with a dis-

tance of h from the membrane. In this bioreactor, the slope of cone clinging to the rotating

shaft (0.5–3 degree) is low. For this slope, the flow is laminar. In this case, in the center of the

membrane for a small radius, shear stress is almost constant [42]. The applied shear stress was

obtained according to the following equation:

t ¼
2pmRf

h
ð1Þ

About 2×105 cells were cultured on a center of the silicone membrane and loaded after 24

hours. The cultured cells located at the center of the bioreactor would be exposed to the same

shear stress conditions. After unloading, the membrane was separated from the bioreactor and

the transfection operation was performed as described in section 2.3.

2.5 Statistical analysis

The results are expressed as mean ± standard deviation. The normality test was done by Sha-

piro-Wilk method. ANOVA and Scheffe’s tests (SPSS) were performed to analyze the percent-

age of transfection using flow cytometry. The value of p< 0.05 was considered statistically

significant.

Fig 1. The schematic of three bioreactors. (a) Uniaxial cyclic stretch bioreactor (b) Equiaxial cyclic stretch bioreactor

(c) Shear stress bioreactor.

https://doi.org/10.1371/journal.pone.0209199.g001
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Results

3.1 Effect of cationic polymer TurboFect transfection reagent

The pEGFP-N1 transfection in TC1 cells was investigated using TurboFect transfection

reagent. Flow cytometry analysis showed that the transfection rate of pEGFP-N1 (i.e., the per-

centage of GFP expression) into TC-1 cell is very low (~ 5%) by this method.

3.2 Effect of uniaxial cyclic stretch

After uniaxial cyclic stretch transfection, the cells were trypsinized from the medical silicone

membrane, and then, the flow cytometry was used for analyzing protein expression in the cells.

First, the effect of strain rate was investigated in three strain rates (3%, 5%, and 10%). For this test,

the loading time and frequency were 60 minute and 0.5Hz. The results showed the maximum rate

of transfection was related to 5% strain (see Fig 2). In the 10% strain, the transfection rate was

reduced, which can be due to damage to the cells. The results indicated that there was a significant

difference between different strain groups. The statistical test demonstrated that the 5% strain

group possessed the most significant differences compared to other related groups.

The results for the 5% strain are given in Fig 3 for various loading times. This figure showed

that by decreasing the loading time, the transfection rate was increased. The maximum trans-

fection rate was related to the loading time of 15 minutes. At the loading time of 15 minutes,

the percentage of transfection was 30.20 ± 3.02%. At the loading time of 5 minutes, the per-

centage of transfection was reduced by 6.35 ± 1.31%. The statistical test demonstrated that the

5% strain group and 15 minutes of loading possessed the most significant differences com-

pared to other related groups.

3.3 The simultaneous use of uniaxial cyclic stretch and TurboFect

transfection reagent

The combined effect of mechanical loading and TurboFect transfection reagent on the gene

transfection in the TC1 cells were investigated. In this case, at first, the membrane containing

Fig 2. Effect of strain rate on transfection efficiency (loading time = 60 min, frequency = 0.5 Hz).

https://doi.org/10.1371/journal.pone.0209199.g002
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the cells was loaded and then the transfection operation was performed using a plasmid DNA

with TurboFect transfection reagent. This test was done under optimal conditions determined

in section 3.2 (strain rate = 0.5%, frequency = 0.5 Hz). The survey parameter was loading time

for the simultaneous use of mechanical loading of uniaxial cyclic stretch and chemical reagent.

The results were shown in Fig 4. This test also indicates that the maximum transfection was

related to 15 min loading time (63.07 ± 5.24%). It can also be concluded that the chemical

reagent increased the efficiency of transfection by mechanical loading. Also, the results of flow

Fig 3. Effect of various loading time on transfection efficiency (5% strain, frequency = 0.5 Hz).

https://doi.org/10.1371/journal.pone.0209199.g003

Fig 4. Effect of simultaneous use of uniaxial cyclic stretch and chemical reagent (TurboFect transfection reagent)

for various loading time (strain rate = 0.5%, frequency = 0.5 Hz).

https://doi.org/10.1371/journal.pone.0209199.g004
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cytometry were indicated in Fig 5 in two states. In the first state, the cell is affected by uniaxial

cyclic stretch, and in the second state, the TurboFect transfection reagent was also employed

in addition to uniaxial cyclic stretch. The statistical results showed that the application of an

effective parametric the TurboFect transfection reagent was to assist in transfection under uni-

axial cyclic stretch. Fig 6 illustrated the image of a fluorescent microscope to investigate the

efficiency of transfection for 15 min loading time and frequency 0.5 Hz for simultaneous use

of mechanical loading of uniaxial cyclic stretch and the TurboFect transfection reagent.

3.4 The effect of equiaxial cyclic stretch and the simultaneous use equiaxial

cyclic stretch and TurboFect transfection reagent

The effect of equiaxial cyclic stretch and the simultaneous effect of mechanical loading of

equiaxial cyclic stretch and TurboFect transfection reagent as a gene transfection factor have

Fig 5. Effect of uniaxial cyclic stretch on TC-1 transfection efficiency by flow cytometry (loading time: 15 min,

frequency: 0.5 Hz, and strain: 5%). (a) without reagent (b) with reagent.

https://doi.org/10.1371/journal.pone.0209199.g005

Fig 6. The transfection efficiency of pEGFP-N1 in TC-1 related to 15 min loading time for simultaneous use of

mechanical loading of uniaxial cyclic stretch and chemical reagent by fluorescent microscopy.

https://doi.org/10.1371/journal.pone.0209199.g006
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been investigated (Fig 7). In this test, according to the loading conditions of the previous sec-

tion, loading parameters were selected. The mechanical loading conditions were frequency 0.5

Hz, strain rate of 5% and loading time of 15 minutes. The results of this section showed that

the transfection percentage due to equiaxial cyclic stretch was 29.43 ± 3.17%. The combination

of equiaxial cyclic stretch loading and TurboFect transfection reagent increased the transfec-

tion efficiency to 43.17 ± 3.75%. Fig 8 revealed the results of flow cytometry derived from the

transfection of equiaxial cyclic strain for two states of use and no use of the TurboFect transfec-

tion reagent. This figure also demonstrated that using the TurboFect transfection reagent

increases the transfection efficiency.

3.5 The effect of shear stress and the simultaneous use of shear stress and

TurboFect transfection reagent

The effect of shear stress loading was investigated for transferring the gene into the cultured

cell on the silicon membrane. Fig 9 revealed the effect of frequency on the transfection

Fig 7. Comparison of efficiency of equiaxial cyclic stretch transfection methods with and without reagent

(frequency 0.5 Hz, strain rate of 5% and loading time of 15 minutes).

https://doi.org/10.1371/journal.pone.0209199.g007

Fig 8. Flow cytometry analysis for equiaxial cyclic stretch transfection of TC-1 (loading time: 15 min, frequency:

0.5 Hz, and strain: 5%). (a) without reagent (b) with reagent.

https://doi.org/10.1371/journal.pone.0209199.g008
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efficiency for 15 minute loading time. The results demonstrated that the frequency equal to 0.5

Hz experienced a significant difference compared to other two frequency groups. The flow

cytometry results at this frequency for the two states of use or no use of the TurboFect transfec-

tion reagent had been listed in Fig 10. The statistical results indicated that the use of the turbo-

fect transfection reagent was effective in increasing the transfection efficiency caused by shear

stress.

The results showed that shear stress with a loading time of 15 minutes and frequency 0.5

Hz caused gene transfection of 26±2.23%. Moreover, the simultaneous effect of mechanical

loading of the shear stress and the chemical reagent caused a gene transfection of up to 48.1

±0.96%.

Fig 9. Effect of simultaneous use of mechanical loading of shear stress and chemical reagent (TurboFect

Transfection Reagent) for various frequency (loading time = 15 min).

https://doi.org/10.1371/journal.pone.0209199.g009

Fig 10. Effect of shear stress on TC-1 transfection efficiency by flow cytometry (loading time: 15 min, and

frequency: 0.5 Hz). (a) without reagent (b) with reagent.

https://doi.org/10.1371/journal.pone.0209199.g010

Transfection by mechanical loading

PLOS ONE | https://doi.org/10.1371/journal.pone.0209199 December 28, 2018 9 / 14

https://doi.org/10.1371/journal.pone.0209199.g009
https://doi.org/10.1371/journal.pone.0209199.g010
https://doi.org/10.1371/journal.pone.0209199


Discussion

This paper investigated the transfection efficiency of pEGFP-N1 in TC1 cell line. This cell line

has a low efficiency of gene transfection by commercial transfection reagent. Shahbazi et al.

[43] showed the pEGFP-N1 and pEGFP-E7 delivery were detected in approximately 99.1%

and 80.63% of HEK-293T cells, 5.04% and 4.47% of TC-1 cells, and 6.66% and 5.95% of A549

cells treated with TurboFect, respectively. These results indicated that TurboFect produced

more effective transfection in the non-cancerous cells compared to cancerous cell lines [43].

Transfection of cancer cell line possesses many applications including in vivo medical imaging

and therapeutic strategy for cancer [44–46]. Therefore, DNA transfection efficiency in the can-

cer cell line is facing a challenge. Molecular dynamics research suggests that exerting mechani-

cal load was accompanied by the formation of cavities in the cell membrane, which could

cause cell permeability [43]. Akimov et al. [47] indicated the effective mechanical force was

driving changes of the pore radius. Akimov et al. [48] in another study, considered the process

of pore formation under the external stress. The waiting time to pore formation proved a non-

monotonous function of the lateral tension, dropping from infinity at zero tension to a mini-

mum at the tension of several milli-newtons per meter. So, we could conclude mechanical

stimuli were a strategy for the challenge of transfection of cancer cells. A study based mechani-

cal loading on cell indicated that a prototype of a microfluidic-based jet injector designed to

deliver macromolecules inside a cell by piercing the cell wall with a picoliter jet [9]. The limita-

tion of this study was transfection only a small number of cells. Sharei et al. [49] provided a

microfluidic system for transfection macromolecules based on the immediate deformation of

cell. This system transmits macromolecules into the cell by compression. The considered sys-

tem was capable of transfection 20,000 cell/sec up to 1,000,000 cells until failure of channels of

this microfluidic system by clogging. It should be noted that 1,000,000 cells with each platform

could be referred to as a limitation of microfluidic systems, but the system provided in the

present study was by cell culture on a silicone membrane and loading of this membrane. The

membrane is capable of bearing loads in this range and almost an unlimited number can be

used for transfection. Also, this system can simulate different stress fields on cells.

In our study, the effects of mechanical loading on TC1 cells for transfection of the plasmid

harboring GFP gene were investigated. In our study for mechanical loading, uniaxial cyclic

stretch bioreactor, equiaxial cyclic stretch, and shear stress bioreactors in the Pasteur Institute

of Iran were used. For chemical DNA transfection, the TurboFect transfection reagent had

been used. The results of this study showed that mechanical loading alone could be a factor for

gene transfection into the cell. Suitable loading conditions for gene transfection using uniaxial

cyclic stretch bioreactor were loading time of 15 minutes with the frequency of 0.5 Hz and

strain percentage 5%. In this loading condition, the transfection efficiency was 30.20 ± 3.02%.

In this test, only mechanical stimuli acted on the cell. Therefore, it could be concluded that the

mechanical loading, alone, was a great transfection factor. In the next experiment, under con-

ditions (strain rate = 5%, loading time = 15 min and frequency = 0.5Hz), equiaxial cyclic

stretch was applied on TC-1 cells. The transfection efficiency for this test was 29.43 ± 3.17%.

Also, this test confirmed that the mechanical loading was an efficient approach for delivery of

DNA into the hard-transfected cell. The simultaneous use of the TurboFect transfection

reagent and mechanical loading increased the transfection efficiency up to 63.06 ± 5.24% and

43.17 ± 3.75% for uniaxial cyclic stretch and equiaxial cyclic stretch loadings, respectively. Our

data indicated that the chemical transfection enhanced the efficiency of mechanical loading.

On the other hand, given that the TurboFect transfection reagent alone could not be effective

for DNA transfection into TC-1 cells, we could understand that the mechanical forces caused

the transient pores in phospholipid membrane and this transient pores helped to increase the
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efficacy of TurboFec transfection reagent. In the final experiment, the effect of shear stress on

transfection of TC1 was examined. The results of this study showed that shear stress could also

be a factor in the gene transfer into the TC-1 cell.

In conclusion, this study introduced that mechanical loading alone could be a factor in

transfection of the gene into the cell. The simultaneous use of mechanical loading and com-

mercial chemical reagent increased the transfection efficiency. This method can be used for

cells with low transfection efficiency like cancer cell line and immune cells [50]. Transfection

of immune cells like dendritic cells (DCs) with tumor antigens can stimulate potent antitumor

immunity in tumor-bearing mice [51–55].
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