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Abstract

Background: Risk-of-bias assessments are now a standard component of systematic

reviews. At present, reviewers need to manually identify relevant parts of research articles

for a set of methodological elements that affect the risk of bias, in order to make a risk-

of-bias judgement for each of these elements. We investigate the use of text mining

methods to automate risk-of-bias assessments in systematic reviews. We aim to identify

relevant sentences within the text of included articles, to rank articles by risk of bias and to

reduce the number of risk-of-bias assessments that the reviewers need to perform by hand.

Methods: We use supervised machine learning to train two types of models, for each of

the three risk-of-bias properties of sequence generation, allocation concealment and

blinding. The first model predicts whether a sentence in a research article contains rele-

vant information. The second model predicts a risk-of-bias value for each research art-

icle. We use logistic regression, where each independent variable is the frequency of a

word in a sentence or article, respectively.

Results: We found that sentences can be successfully ranked by relevance with area

under the receiver operating characteristic (ROC) curve (AUC)>0.98. Articles can be

ranked by risk of bias with AUC>0.72. We estimate that more than 33% of articles can be

assessed by just one reviewer, where two reviewers are normally required.

Conclusions: We show that text mining can be used to assist risk-of-bias assessments.
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Introduction

Systematic reviews combine evidence from multiple studies

to answer a research question more comprehensively than

is possible from an individual study. When combining the

evidence from several studies, it is important to consider

the risk of bias in each study. Results of clinical trials may

be biased if the study methods are not adequate. For ex-

ample, allocation of incoming participants to groups

should be concealed during the randomization process.1,2

Assessing risk of bias in clinical trials typically involves ex-

traction of information sufficient to assign a judgement on

the adequacy of each methodological property affecting

risk of bias.3

Thorough systematic reviews are time consuming, often

lasting up to 3 years and requiring two reviewers to assess

each research article to minimize errors. One study esti-

mated that 80% of risk-of-bias assessments took between

10 and 60 min to perform.4 Furthermore, risk-of-bias

judgements are imperfect. Studies have shown that re-

viewers often report different levels of risk of bias for the

same studies.5–9 This may happen, for instance, if a re-

viewer misses key sentences.8

Automating aspects of risk-of-bias assessments has the

potential both to reduce the time required to perform a re-

view and to reduce human error and subjectivity in the re-

viewing process. Identifying relevant sentences and

predicting a risk-of-bias assignment from text in articles

are tasks that text mining methods can potentially perform

automatically. Several studies have examined text mining

methods to predict elements of studies for systematic re-

views,10–22 but we know of only one research group that

has investigated automating the prediction of risk-of-bias

properties.23–25 An additional potential benefit of auto-

mating aspects of risk-of-bias assessments is the ability to

identify the high quality studies (with low risk of bias)

early in the process so that these can be prepared for inclu-

sion in the analyses. This has particular appeal in the con-

text of rapid reviews.26,27

In this work we investigate the use of text mining

methods to predict risk-of-bias properties, in order to

assist systematic reviewers with their work. We focus on

the following three risk-of-bias elements: the method of

random sequence generation; the use of concealment

methods when participants are allocated to the

study groups; and the method of blinding of participants

and personnel. These we refer to as the properties

sequence generation, allocation concealment and blind-

ing, respectively. We work towards specific objectives

of: (i) identifying relevant sentences within research art-

icles; (ii) ranking articles by risk of bias; and (iii)

reducing the number of assessments the reviewers need

to perform by hand. We also compare performance

when using the title and abstract from the PubMed

database with the performance when using the full text

article, to examine whether potential gains in perform-

ance from using the full text offset the cost of its

retrieval.

Dataset

Our dataset consists of a set of 1467 full-text articles, each

with a value assigned for at least one of the three risk of

bias properties (sequence generation, allocation conceal-

ment and blinding), where the value is supported by some

part of the text in the article (summarized in Figure 1 and

Table 1). These risk-of-bias values are either low or not-

low, denoting whether a particular property has a low risk

of causing bias. Our dataset also includes a binary label at-

tached to sentences, denoting whether they contain rele-

vant information with respect to a risk-of-bias property.

Each sentence is relevant or not-relevant or is unlabelled.

We also have the title and abstract text of each research

article in our dataset, retrieved from the PubMed database.

The full text was extracted from the research articles using

the Adobe PDFBox text extraction tool (version 1.8.6).

Sentence segmentation was performed with the

Key Messages

• Risk-of-bias assessments for systematic reviews are, at present, a manual process.

• Our results indicate that text mining can be used to automate elements of risk-of-bias assessments, in order to assist

systematic reviewers.

• We show that text mining can be used to identify information pertinent to risk of bias in research articles describing

clinical trials.

• We also show that text mining can be used to predict the level of risk of bias from the full-text content of research

articles describing clinical trials.
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PTBTokenizer of the Stanford CoreNLP Java package (ver-

sion 3.4.1).

We constructed this dataset using data collected from the

Cochrane Database of Systematic Reviews and specifically

from the Cochrane risk-of-bias assessment tool.3 The data

from this tool include references of articles that the reviewer

assessed for each clinical trial. Each trial also has a low,

high or unclear value assigned to each risk-of-bias property.

A value of low for blinding, for instance, means that blind-

ing was adequately performed in this study such that the

risk of bias is low. These judgements are supported by text

descriptions, often including direct quotations from articles

or a comment that no information was found in the article.

The Cochrane data do not specify which articles con-

tain the information that informed the risk-of-bias judge-

ment. We use the text descriptions to infer this. First,

articles containing quoted text contain information used

to make the judgement. For instance, Figure 2 shows an

example where a study has a quotation for the blinding

property, which is found in the article content of reference

2. We then infer that the blinding judgement was made

using information in this particular article. Articles where

‘no information’ was stated do not contain any informa-

tion, and we can infer that the lack of information is the

reason for this choice of label value. For instance, an art-

icle may have the label unclear for blinding and ‘no infor-

mation’ in the text description because all research

articles referenced for this study in this review have been

found to contain no relevant text, such that an assignment

for the property value to low or high could not be given.

We only include articles in our dataset when either no in-

formation is stated, or a quotation is found in the article

text. The flow diagram in Figure 3 illustrates our dataset

creation process.

We combine the high and unclear labels in the

Cochrane data to give a binary variable with values low

and not-low. We justify this on the basis that a reviewer

generally wants to identify the high quality studies, such

that the articles of high and unclear risk of bias can be

grouped together.

We use the quotations and ‘no information’ statements

to label sentences as relevant or not-relevant. A sentence is

Table 1. Number of studies with a value of each property in

our dataset, and in the original data files of the Cochrane risk

of bias tool

Our dataset Original data source

Property Property

value

Number Proportion Number Proportion

blind low 361 0.538 7120 0.415

not-low 310 0.462 10 021 0.585

total 671 17 141

seq-gen low 495 0.501 6846 0.408

not-low 494 0.500 9942 0.592

total 989 16 788

alloc-conc low 327 0.457 6057 0.338

not-low 388 0.543 11 840 0.662

total 715 17 897

Study

Reference 3

blind = yes
Description 

“we used sealed opaque 
envelopes”

Reference 2

Reference 1

seq-gen = unclear

alloc-conc = yes

Figure 2. Data from the Cochrane risk of bias tool. Dotted line represents a relationship that we need to infer.

Sequence generation Allocation concealment

Blinding

201377 218

226
168 70

207

715989

671

Figure 1. Venn diagram of data in our dataset, showing the number of

articles with a value for each property.
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relevant if it contains a quotation supplied for this article

in the Cochrane risk of bias assessment. A sentence is not-

relevant if it is within an article associated with a study

where ‘no information’ was stated. Otherwise, a sentence

is unlabelled. We cannot determine the label of the un-

labelled subset because, when a reviewer provides a quota-

tion during a risk-of-bias assessment, they are likely to

choose only exemplary text rather than to include

quotations for all relevant text in an article. Hence, these

unlabelled sentences may contain relevant information.

Further details of the dataset are provided in supplemen-

tary information S1 (available as Supplementary data at

IJE online).

Statistical and Machine Learning Methods

We use two types of models to make predictions from the

article text independently of each other. The first, used for

objective 1, predicts the relevance of each sentence of an

article using the words it contains. The second, used for

objectives 2 and 3, predicts the risk of bias in a study from

the words contained in an article. A flow diagram illustrat-

ing the process from PDF articles to model predictions is

shown in Figure 4.

We use logistic regression to create the sentence-level

and article-level models. We did not use regularization—

see supplementary material S2 (available as Supplementary

data at IJE online) for an explanation of this choice. In line

with the domain-based nature of a risk-of- bias assessment,

we implement this individually for each risk-of-bias prop-

erty: sequence generation, allocation concealment and

blinding. The dependent variable for a sentence-level

model is the binary variable with values relevant or

not-relevant, indicating whether a sentence contains infor-

mation relevant to a particular risk-of-bias property. The

dependent variable for an article-level model is the binary

variable with values low or not-low, describing whether a

particular property has a low risk of causing bias, as

described by the contents of the article. Each independent

variable is the absolute number of occurrences of a word in

Sentences containing quotation are 
labelled as relevant for seq-gen, 
remaining are unlabelledseq-gen text description 

contains quotation

seq-gen text description states 
`no information’

Article labelled with value 
of seq-gen recorded in 
Cochrane data

All sentences in article are 
labelled as not-relevant for 
seq-gen

Full text article found Article excluded

seq-gen

Article not labelled for seq-gen 
property

 no

 no

yes

yes

yes

alloc-conc blind

 no

......

Article in a Cochrane risk of bias assessment with 
either a quotation or `no information’ stated, for at least 
one risk of bias property

Figure 3. Flow diagram illustrating dataset creation process, from Cochrane risk-of-bias data to labelled dataset.
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a sentence or article respectively (known as a ‘bag of

words’ representation with unigram features).

Logistic regression provides predictions in terms of a

score that denotes the likelihood of each particular label.

We use logistic regression as it has the following attract-

ive features. First, the parameters of logistic regression

have a clear interpretation. Given the logistic model y¼ 1/

(1þ e(b1 � x1 þ b0)), a one-unit increase in the independent

variable x1 corresponds to a b1 change in the log odds of

y. Second, logistic regression is known to produce scores

that are well calibrated. Scores are calibrated if, for

example, given a set of articles that all have a score of 0.8,

we can expect 80% of these articles to have a label of low

(assuming a high score denotes more likely to be low).

This means that we can use these scores as probabilities

that an article (or sentence) belongs to a particular

class.28,29

We perform the following pre-processing of the fea-

tures, commonly performed in text mining tasks. We con-

vert the terms to lower case such that, for instance, the

words ‘random’ and ‘Random’ correspond to a single par-

ameter in the model. We perform word-stemming using

Porter’s algorithm. We remove common words, known as

stop words, from the set of features as these are unlikely to

be predictive and vastly increase the number of features.

We remove words that occur fewer than ten times in the

dataset and words of one or two characters in length. All

remaining words are included in the models. We use the

Weka machine learning package to perform the text pre-

processing and estimate the parameters of the logistic re-

gression models with stochastic gradient descent (SGD in

Weka, with sentence-level parameters, learning rate:

0.001, lambda: 0, epochs: 2000; and article-level

parameters, learning rate: 0.0001, lambda: 0, epochs:

4000). The number of examples is far higher for the sen-

tence-level learning compared with the article-level learn-

ing and so we use fewer epochs for the sentence-level

learning such that the time taken to run the analysis re-

mains practical, and a larger learning rate compensates for

the reduced number of epochs.

As is common practice in machine learning, we evaluate

model performance using 10-fold cross validation where we

train the model (i.e. estimate its parameters) using 90% of

the data, and test it on the other 10%; and this is repeated

10 times with different 90/10 splits of the dataset (where

each split is called a fold). This avoids over-optimistic esti-

mates of performance, which can arise when the model is

trained and tested on the same data. Our data are stratified

such that each fold contains approximately equal numbers

of positive and negative examples.

We use receiver operating characteristic (ROC) curves to

assess the performance of the models visually.30 These

curves depict many evaluation metrics that can be used to

evaluate model performance, for either classification or

ranking tasks. For instance, the horizontal and vertical axes,

the false and true positive rates (also known as 1-specificity

and sensitivity, respectively) are two common metrics for

evaluating classification performance.

Methods for objective 1: identifying relevant

sentences

This objective aims to rank sentences in order of relevance,

for each risk-of-bias property. Each sentence in our dataset

is one of three types, with respect to a particular risk-

of-bias property: relevant, not-relevant or unlabelled.

Sentence 1

Sentence 2

Sentence 3

se
g-

ge
n

Extract text

Segment into 
sentences

PDF research article

0.8

seq-gen
Article full text 
content

Article models

alloc-conc

blinding

0.9
0.1

...

0.7
0.8
0.3

...

0.6
0.5
0.5

0.3
0.6
0.8

al
lo

c-
co

nc

Sentence models

bl
in

di
ng

Figure 4. Flow diagram illustrating process from PDF article to predicted scores. The article model predicts a score denoting the risk of bias, and the

sentence model predicts a score denoting the relevance of a sentence, for each risk of bias property.
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Using this labelling, there are two choices of dataset we

can use to train the parameters of the logistic regression

model. The first dataset uses the sentences known to be

relevant as positive examples and not-relevant as negative

examples, and does not include unlabelled sentences. Here

we are trying to train a model that can distinguish relevant

sentences from not-relevant sentences.We refer to this as

the relevant/not labelling approach. The second option is

to use the relevant sentences as the positive examples, and

both the not-relevant and the unlabelled sentences as the

negative examples (such that all sentences in the dataset

are used). Here we would be trying to separate the relevant

sentences from the rest. We refer to this as the relevant/rest

labelling approach.

Our aim is to separate relevant sentences from not-

relevant sentences, but it is not clear which dataset is pref-

erable to train a model to do this. Whereas the relevant/not

data clearly represent the relevant vs not-relevant notion

more appropriately, the relevant/rest dataset has the ad-

vantage of a much larger sample size (see Table 2).

Previous work by Marshall et al.23 used the relevant/rest

labelling approach to separate relevant from not-relevant

sentences, which assumes (as they note) that the unlabelled

sentences are all not-relevant, and this is unlikely to be the

case. The relevant/not labelling approach assumes that the

subset of examples labelled as relevant and not-relevant

are representative of the remaining sentences in the dataset,

for which the labels are not known. We have no reason to

believe that this assumption is not valid.

We compared the use of the relevant/rest and relevant/

not datasets for separating relevant sentences from

not-relevant sentences. First, we train models with the

relevant/rest dataset, and test these models also with the

relevant/rest dataset (test A). We then train models with

the relevant/not dataset and test these models also with the

relevant/not dataset (test B). We compare the results using

these two datasets, to give an indication of the predictive

ability of each dataset. We also train models using

relevant/rest sentences and test using the relevant/not data-

set (test C). This allows us to assess how well a model

trained with the relevant/rest dataset can separate the rele-

vant sentences from the not-relevant sentences, even

though the unlabelled data are included in the relevant/rest

dataset. We compare the evaluation on the relevant/not

dataset, when estimating the parameters with both the rele-

vant/not (test A) and relevant/rest (test C), to determine

which has higher performance when trying to separate

relevant sentences from not-relevant sentences.

Methods for objective 2: ranking articles by risk of

bias

Objective 2 aims to rank articles by risk of bias, by training

a logistic model to predict the risk-of-bias value of each

article. The scores output by the model are used to rank

articles by predicted risk of bias. In this section we also

compare the performance when using just the title and ab-

stract text retrieved from the PubMed database, rather

than the full-text article. We generate models using: (i) the

full-text content of the research articles; (ii) the article title

from the PubMed database; and (iii) the article title and

abstract from the PubMed database.

Methods for objective 3: reducing the number of

assessments the reviewers need to perform by

hand

Objective 3 aims to reduce the reviewer work load by iden-

tifying articles that can be classified as low or not-low with

high enough certainty, so that only a single reviewer is

needed to assess these articles by hand. We suggest that the

certainty is high enough when the model’s assignment is at

least as likely to be correct as an assignment by a human

reviewer. When this is the case, it may be reasonable to re-

place a human reviewer by this model prediction. As al-

ready mentioned, the logistic regression model produces a

Table 2. Results for sentence level: predicting the relevance of each sentence with regards to a risk of bias property

seq-gen alloc-conc blind

Number of sentences Unlabelled 243 477 129 155 148 934

Not-relevant 14 989 59 390 24 190

Relevant 1667 514 1156

Mean AUC3 A) relevant/rest 0.974 (0.008) 0.981 (0.009) 0.974 (0.007)

B) relevant/not 0.987 (0.003) 0.986 (0.011) 0.991 (0.006)

C) train relevant/rest, test relevant/not 0.978 (0.008) 0.983 (0.009) 0.980 (0.007)

P-value A vs B1 <0.001 0.229 <0.001

B vs C2 0.005 0.462 0.001

1P-values using two-tailed unpaired t-test to compare the AUC values across the 10 folds of cross-validation (data are not matched).
2P-values using two-tailed paired t-test to compare the AUC values across the 10 folds of cross-validation (data are matched).
3Mean AUC across 10 folds of cross-validation.

International Journal of Epidemiology, 2016, Vol. 45, No. 1 271



well-calibrated score s for each article, such that s can be

interpreted as the probability that the article has a risk of

bias value of low. We can compare the scores assigned by a

model to two fixed probability thresholds t and 1� t,

where t is an estimate of the proportion of human assign-

ments that are correct. Articles are classified as low for a

property if s� t and as not-low if s� 1� t. This assumes

that the human reviewer makes the same proportion of

mistakes with not-low and low articles, respectively.

To determine the value of threshold t we use results of

previous work by Lensen et al.8 and Hartling et al.5 These

works analysed the degree of concordance of risk-of-bias

assignments given by reviewers who have assessed the

same studies. Using the binary labels low risk and high/un-

clear risk, Hartling et al.5 found disagreements (number of

disagreement/number of comparisons) of 11/123, 26/123

and 41/123 for sequence generation, allocation conceal-

ment and blinding, respectively. The Cohen kappa values

are 0.82, 0.31 and 0.30, respectively, such that higher

agreement (relative to that expected by chance) is achieved

for sequence generation compared with allocation conceal-

ment and blinding. Lensen et al.8 reported disagreements

of 8/28, 19/46 and 20/31 for sequence generation, alloca-

tion concealment and blinding, respectively. We calculate

the average proportion of disagreements across these stud-

ies and properties to give an estimate of the proportion of

articles with reviewer disagreements of 26.4%. For these

articles, we know that one assignment is incorrect and the

other is correct, such that exactly half of the assignments

for these reviews are incorrect. For the other article assign-

ments where both reviewers agree (the remaining 73.6%),

we cannot know whether they are both correct or both in-

correct. We assume that if two reviewers agree, then they

are both correct, such that all incorrect assignments are ac-

counted for in the 26.4% of articles with disagreements.

As exactly half of the assignments for articles with dis-

agreements are incorrect, the proportion of assignments

that are incorrect (under the above assumption) is 13.2%.

Therefore, a probability that is higher than 0.868 would be

better than the certainty of a human reviewer, and we set

the threshold value t to 0.868.

The lower threshold, 1�t¼ 0.132, denotes the score

below which we are at least as certain as a human reviewer

that an article has an assignment of not-low, according to

the model prediction. The upper threshold, t¼ 0.868, de-

notes the score above which we are at least as certain as a

human reviewer that an article has an assignment of low,

according to the model prediction. A score between 0.132

and 0.868 indicates that the model could not predict the

label with as much certainty as a human reviewer,

and these articles should be assessed as usual by two

reviewers.

Illustrative Results

Objective 1: identifying relevant sentences

Results of the comparisons of tests A, B and C are given in

Table 2, the average number of parameters in each model

is given in Supplementary Table 1 (available as

Supplementary data at IJE online) and the ROC curves of

the models generated in test B and test C are shown in

Figure 5. These indicate very good ranking performance,

as the ROC curves pass near to the point (0,1) in ROC

space. We evaluate the models using the area under the

ROC curve (AUC) metric, because for this objective we are

concerned with how well our models are able to rank sen-

tences by relevance. We are concerned with ranking rather

than classification because we seek to provide an ordering

to the reviewer such that they can see the most relevant

sentences in an article. For example, the ranks allow sen-

tences to be highlighted with different colours or shades in

an electronic version of the article. The AUC evaluates

ranking performance across all positions in a ranking.

Previous text mining work has used metrics that focus only

on a set of n highly ranked examples.18,25 For this sentence

ranking task, it is appropriate to assess the whole ranking

because, when a reviewer views an article, they are not re-

stricted to viewing only the top n sentences but can if they

wish view all sentences. Hence, ranking a relevant sentence

halfway down the ranking, for instance, rather than at the

end of the ranking, still provides some benefit to the

reviewer.

Table 2 gives the numbers of sentences that are relevant,

not-relevant and unlabelled for each risk-of-bias property,

and the results as the mean AUC across the 10 folds of cross-

validation. We compare the results of tests B and C using a

two-tailed paired t-test that compares the AUC evaluated on

the models of the 10 folds. We use an unpaired t-test to

compare the results of tests A and B because these tests evalu-

ate the models with different sets of sentences.

The ranking performance of all three sentence level tests

(A–C) across all three risk-of-bias properties was consist-

ently high (all between AUC¼ 0.974 and AUC¼ 0.991).

Training and evaluating models using the relevant/not data

produced better performance compared with training and

testing models using the relevant/rest dataset, for two of

our three labels (tests A vs B in Table 2). This may be be-

cause the relevant/rest dataset is noisier as it has some rele-

vant sentences labelled as rest rather than relevant. This

can have two effects. First, it is more difficult for the model

to separate the relevant examples from the rest examples.

Second, when evaluating the test data, the relevant sen-

tences that have been incorrectly labelled as rest would

be evaluated incorrectly. Comparing the performance
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between training using the relevant/rest dataset and train-

ing using the relevant/not dataset, while testing both using

the relevant/not labelling, we again found that the model

trained with the relevant/not labelling method gave a better

performance for two of the three properties (test B com-

pared with test C).

These tests have indicated that the relevant/not labelling

should be used to train models to predict sentence relevance.

These models gave a very high ranking performance, with

mean AUC values across the 10 folds higher than 0.985 for

all three properties. This can be interpreted as follows.

Given a randomly selected relevant sentence, and a ran-

domly selected not-relevant sentence, the probability that

the relevant sentence would be ranked more highly than the

not-relevant sentence is higher than 0.985.

Objective 2: ranking articles by risk of bias

We again use the AUC to evaluate the ranking perform-

ance of these models, given in Table 3 as the average AUC

across the 10 folds of cross-validation. The AUC is an ap-

propriate metric because it evaluates ranking performance

across the whole ranking. A reviewer assesses all articles in

a systematic review, such that ranking a low article before

a not-low article is beneficial at any point in the ranking.

The mean [standard deviation (SD)] number of param-

eters across the 10 folds for each model is given in

Supplementary Table 1. The ROC curves of the models

generated using the full text and the title and abstract only

are shown in Figure 6. The models using the full text had

mean AUC>0.72. The models using the PubMed title had

Figure 5. ROC curves for sentence-level learning comparing results using the relevant/not dataset, compared with the train relevant/rest, test relevant/not

results, for each risk-of-bias property. Test B: blue dashed curve. Test C: green solid curve. Generated with parametric rate-oriented method33 with asso-

ciated point-wise confidence bounds. This method requires a constant number of examples of each label (low,not-low) in each fold, so we add examples

to make N constant, and use random selection of examples to correct these frequencies, for instance by removing a randomly selected positive example

and duplicating a randomly selected negative example in a particular fold. TPR: true positive rate; FPR: false positive rate.
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mean AUC>0.67. The models using the PubMed title and

abstract had mean AUC> 0.68. All models are better than

random (all permutation P-values<0.001, which denotes

the proportion of random models achieving an AUC higher

than our model—see supplementary material S3 for de-

tails). Models using the article content are able to rank art-

icles better than when using only the title, or title and

abstract from the PubMed database, for the sequence gen-

eration and allocation concealment properties only. We

did not find a difference between using the title and using

the title and abstract, although this may be due to a lack of

power because our sample size is small.

Objective 3: reducing the number of assessments

the reviewers need to perform by hand

Table 4 shows the number of articles our models classify as

low or not-low using these score thresholds. We check the

model calibration (see supplementary material S4, avail-

able as Supplementary data at IJE online) and find, as ex-

pected, our models are well calibrated. All models were

able to classify more than 33% of articles as either low or

not-low with a certainty at least as high as a manual re-

viewer. We suggest that only one human reviewer is

needed to assess these articles manually.

Discussion

We have identified and addressed three key objectives to

assist the risk-of-bias assessment process using an auto-

mated text mining approach. We have shown that we

can rank sentences by predicted relevance (for each risk-

of-bias property) with high ranking performance

(AUC> 0.98). This is useful to assist reviewers by indi-

cating which parts of the article text are particularly

relevant to risk of bias. We were able to rank articles ac-

cording to risk of bias with AUC> 0.72. Ranking

articles by risk of bias means that the reviewer is able to

assess the articles from predicted low to predicted not-

low risk of bias. A web-based prototype to demonstrate

our methods can be found at [http://www.datamining.

org.uk/sysreview.html].

We found a small decrease in performance when using

only the article title and abstract from PubMed, compared

with using the full text extracted from the article PDF

document for sequence generation and allocation conceal-

ment (t-test P< 0.001 and P¼ 0.002, respectively). The

full-text content will often contain more information about

risk of bias compared with the title and abstract alone.

However, this benefit may be offset by noise from extrac-

tion of the article content from PDF documents (due to the

fact that text in PDF documents is stored as a set of charac-

ter locations which then need to be processed to form the

word, sentence and paragraph structures of the original

document). Also, much of the content in the full-text art-

icle is likely to be irrelevant to risk of bias. Conversely,

whereas the PubMed title and abstract may not contain as

much information about risk of bias compared with the

full text, it may have less noise because this text is a concise

summary of the full-text article retrieved from the PubMed

database. Retrieving PubMed data is quick and straightfor-

ward, whereas obtaining the full text of research articles

requires more effort, and text extractions from PDF docu-

ments are noisy. Hence, the increase in performance from

using the full text may not be worth the cost of retrieving

the article full text.

The PubMed title was predictive of risk of bias, with

AUC> 0.67 for all three properties. Although the number

of features was small (circa 60–100), the PubMed title con-

tains a set of key terms describing the study and often con-

tains terms such as ‘blind’ and ‘randomized’ that are

relevant to risk of bias. For instance, if a title includes the

term ‘double-blind’ then we would expect the study to be

more likely to have a low risk of bias compared with those

Table 3. Results for objective 2: ranking performance using different datasets and P-values comparing these models using a

paired two-tailed t-test

Dataset seq-gen alloc-conc blind

AUC (standard deviation)

1. Article content 0.769 (0.051) 0.777 (0.034) 0.726 (0.051)

2. PubMed title 0.682 (0.053) 0.690 (0.072) 0675 (0.063)

3. PubMed title and abstract 0.692 (0.037) 0.685 (0.047) 0.694 (0.065)

P-values:1 comparison of performance using feature sets 1, 2 and 3

1 vs 2 0.001 0.004 <0.001

1 vs 3 <0.001 0.002 0.206

2 vs 3 0.672 0.741 0.497

1P-values using two-tailed paired t-test to compare the AUC values across the 10 folds of cross validation.
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Table 4. Results for objective 3: mean number of articles (standard deviation) and precision (standard deviation) across 10 folds

(using sentence model)

Predicting not-low Predicting low

score�0.132 Score�0.868

% articles Precision % articles Precision Total %

seq-gen 16.9 (2.42) 0.821 (0.114) 20.9 (2.77) 0.838 (0.072) 38.2 (3.14)

alloc-conc 15.5 (2.92) 0.874 (0.090) 9.9 (2.77) 0.816 (0.181) 35.5 (4.45)

blind 7.6 (2.91) 0.803 (0.145) 14.8 (2.62) 0.810 (0.101) 33.4 (6.58)

Figure 6. ROC curves for predicting article risk of bias. Generated with parametric rate-oriented method33 with associated point-wise bounds. Blue

dashed line: article contents (model 1); green solid line: PubMed title and abstract (model 3); TPR: true positive rate; FPR; false positive rate.
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studies that do not have this term in the article title.

Indeed, 77% of the articles with ‘double blind’ in the title

are assigned a low value (76 low vs 23 not-low).

Our results indicate that it is possible to use text mining

to reduce the reviewer workload, by identifying the articles

that have been classified with a certainty higher than that

of human reviewers. We suggest that these articles only

need to be manually assessed by one reviewer. On average

more than 33% of research articles can be labelled as low

or not-low with higher certainty than that of a human re-

viewer, offering the potential to reduce the amount of time

required by human reviewers. We note that if the class dis-

tribution changes between the data used to train a model

and the data on which scores are predicted, a score

adjustment is needed before this classification into low and

not-low is used (discussed in more detail in supplementary

material S5, available as Supplementary data at IJE

online).

Our work has the following limitations. First, the lim-

ited size of our dataset (between 671 and 989 per risk-

of-bias property) may have restricted the performance of

our models. Also, this meant that the performance of the

article-level models could not be estimated precisely (as

shown by the wide confidence intervals around the ROC

curves). This limited our ability to test more complex mod-

els, because it would be unlikely that any difference in per-

formance (compared with our simple approach) could be

detected using this small dataset. Second, we only included

articles if the title and abstract could be found in the text

extracted from the PDF articles, such that articles with

poor text extractions are less likely to be included in our

dataset because noise within the text means that the title

and abstract may not be found. Therefore, it is likely that

our dataset is less noisy than study articles on average.

Furthermore, we only include articles in our dataset where

a quotation was supplied or no information was stated,

and so it is possible this sample is unrepresentative of art-

icles describing clinical trials. Third, we use labels inferred

from data from Cochrane risk-of-bias assessments such

that these labels may not be the same as directly annotated

labels. Last, previous work has indicated discordance be-

tween reviewers who assess the same article, and this indi-

cates that the labels we have used from the Cochrane risk-

of-bias assessments may not always be correct.

An automated approach is limited by the degree of re-

porting in trial publications, as although the CONSORT

statement specifies that information relevant to risk of bias

should be described in a trial report, this is often not the

case.31 However, it is known that trial protocols can con-

tain information that is not reported in the study publica-

tions,32 hence risk-of-bias information could potentially be

extracted from these protocols.

To our knowledge, only recent work by a single re-

search group has investigated text mining for risk-of-bias

assessments.11,23–25 Similarly to our work, Marshall et al.

aim to predict the risk-of-bias value described in research

articles and to identify relevant sentences within these art-

icles, using linear models. Our work differs from this work

in the following ways. First, a key aspect of our work was

to identify and tackle three concise objectives that use ma-

chine learning to practically support risk-of-bias assess-

ments. We evaluate our models using metrics that are

appropriate for each of these objectives. Second, although

we use a different subset of the same corpus, our sentence

labelling uses sentences known to have a not-relevant label

(because the article has been described as containing no in-

formation), and we found our sentence labelling approach

gave an improved performance. Last, our work includes an

experimental comparison of performance using the full

text compared with using only the title and abstract from

the PubMed database.

We believe this work takes an important step towards

assisting risk-of-bias assessments using machine learning

methods. The performance of our models is encouraging,

but could be improved further by creating a larger dataset

with which to train the model parameters. Furthermore,

future work should involve user testing to evaluate these

assistive techniques in a practical setting.

Supplementary Data

Supplementary data are available at IJE online.
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