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Abstract: Currently, the detection of the allele asymmetry of gene expression from RNA-seq data
or the transcription factor binding from ChIP-seq data is one of the approaches used to identify
the functional genetic variants that can affect gene expression (regulatory SNPs or rSNPs). In
this study, we searched for rSNPs using the data for human pulmonary arterial endothelial cells
(PAECs) available from the Sequence Read Archive (SRA). Allele-asymmetric binding and expression
events are analyzed in paired ChIP-seq data for H3K4me3 mark and RNA-seq data obtained for
19 individuals. Two statistical approaches, weighted z-scores and predicted probabilities, were
used to improve the efficiency of finding rSNPs. In total, we identified 14,266 rSNPs associated
with both allele-specific binding and expression. Among them, 645 rSNPs were associated with
GWAS phenotypes; 4746 rSNPs were reported as eQTLs by GTEx, and 11,536 rSNPs were located in
374 candidate transcription factor binding motifs. Additionally, we searched for the rSNPs associated
with gene expression using an SRA RNA-seq dataset for 281 clinically annotated human postmortem
brain samples and detected eQTLs for 2505 rSNPs. Based on these results, we conducted Gene
Ontology (GO), Disease Ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses and constructed the protein–protein interaction networks to represent
the top-ranked biological processes with a possible contribution to the phenotypic outcome.

Keywords: allele-specific events; regulatory SNPs; Genotype-Tissue expression; eQTLs; enrichment
analysis; protein-protein interaction networks; molecular phenotype

1. Introduction

Single nucleotide polymorphisms (SNPs) are the most common type of sequence
variation. The number of SNPs so far contained in the NCBI dbSNP is over 150 million
(dbSNP. Available online: https://www.ncbi.nlm.nih.gov/snp/ (accessed on 31 May 2021).
Since it is highly likely that most SNPs lack any functionality [1], one of the major problems
in human genetics is the identification of the functionally relevant variants from the
multitude of available ones. The main and historically first approach to solving this
problem on a genome-wide scale is GWAS, genome-wide association studies, making it
possible to detect the association between genetic variations and traits. The advent of
GWAS has allowed approximately 70,000 SNP-disease/trait associations to be identified
in the last 15 years [2,3]. However, this approach fails to distinguish between causal
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polymorphisms and numerous marker SNPs detected according to linkage disequilibrium
(LD). Moreover, GWAS technology is unable to give any information about the molecular
mechanisms that determine the effect of these variants on the risks of diseases and, thus,
makes it necessary to perform laborious follow-up studies for each selected individual
variant [4–6]. This is especially important in the case of noncoding SNPs, which account for
about 90% of the GWAS-associated genetic variants [7,8] and the functional interpretation
of which is the most complex task. Note that the functional interpretation is necessary for
both an increase in the prognostic value of polymorphisms and the possibility to design
new methods for correcting the associated clinical outcomes.

To make molecular sense of GWAS, many recent studies are focused on functional
analysis of the SNPs with a known GWAS disease/trait associations, including both
(i) individual variants [9–15] and (ii) large SNP arrays, with the help of state-of-the-art
approaches of functional genomics. These methods comprise various functional annota-
tions, including transcription factor (TF) binding motifs, histone modifications, promoters,
enhancers, chromatin accessibility landscapes, and three-dimensional chromatin interac-
tions [16–20]; expression quantitative trait loci (eQTLs) mapping [21,22], and several other
approaches, such as massively parallel reporter assay (MPRA) [23], SNPs-seq [24], and
SNPs-SELEX [25].

Concurrently, alternative genome-wide approaches have beendeveloped with the
primary focus being thedetermination of the functionality of genetic variants [26–35]. In
these approaches, (i) the estimation of the effect of SNPs on TF binding using position
weight matrix (PWM) models [26,30]; (ii) falling of SNPs into regulatory regions [31,36,37],
and (iii) allele-specific expression (ASE) [32],and (iv) allele-specific binding (ASB) events in
ChIP-seq, DNase-seq, and ATAC-seq data [26–29,33–35] are used.

In our earlier work, we searched for ASB events in K562, MCF-7, and HCT-116
human cell lines by analyzing the ENCODE ChIP-Seq data for epigenetic histone marks
(H3K27ac, H3K4me1, H3K4me2, H3K4me3, and H3K27me3) and 456 different chromatin-
associated proteins, mainly TFs [33]. The ASE events were also assessed using RNA-Seq
and ChIA-PET data obtained using HCT-116, MCF-7, and K562 cells (ENCODE). This
allowed 1633 rSNPs simultaneously associated with both types of allele-specific events to be
identified. According to GWAS, 27 of them were associated with a risk of malignancy [33]
and 14 with cognitive disorders [38]. However, both of these studies, as well as most
others [27–29,35], used cancer cell lines with a high level of genomic instability (aneuploidy,
gene amplification, generation of extrachromosomal elements, and numerical chromosomal
defects) [39–42], which considerably complicates the search for allele-specific events in the
genome-wide data sets thus obtained. Moreover, when cancer cell lines are used, rSNPs
exhibit their functionality under conditions far from the biological context of normal tissue.

That is why we took the data of ChIP-seq and RNA-seq experiments with clinical
material, biopsies—human pulmonary arterial endothelial cells, PAECs [43]—the use
of which in the search for allelic asymmetry is free from this shortcoming. We have
used a modified approach, which allows the overall genome to be analyzed rather than
only certain selected regulatory regions as compared with the earlier used method [33]
and provides a more reliable identification of the rSNPs associated with both types of
allele-asymmetric events. In addition, we have attempted to relate the detected rSNPs
to molecular phenotype by comparing them to the known eQTLs [32], assessing their
ability to act as eQTLs in an independent transcriptome dataset [44], and constructing gene
networks via analysis of DEGs (differentially expressed genes) by functional annotations.

2. Results
2.1. Workflow for rSNP Identification
2.1.1. General Description

The NCBI datasets for biopsy material (PAECs) were analyzed here in several steps,
largely using those fromour earlier study of cancer cell lines [33]. Thus, the most important
differences in the search for rSNPs were (i) the use of NGS data for human tissue samples



Int. J. Mol. Sci. 2021, 22, 7240 3 of 19

instead of cell lines and (ii) analysis of the whole genome. Earlier, we focused on the
genomic regions containing two or more overlapping TF binding regions (OTFRs) [37].
Additionally, weighted z-scores (z-scores) and predicted probabilities were calculated to
aid rSNP filtering.

In general, the search algorithm processed two main inputs: the raw reads from
ChIP-seq and RNA-seq experiments separately for each PAECs sample (Figure 1) to assess
the regulatory SNPs associated with both ASB and ASE. It started with (1) preprocessing,
namely, the raw reads were trimmed and filtered; (2) the high-quality reads were mapped
to thehuman hg38 reference; and (3) personal alternative genomes for each sequencing
dataset were constructed using identified heterozygous SNPs variants to realign the ChIP-
seq or RNA-seq datasets to the appropriate alternative genomes to reduce the reference bias.
Because each individual could have multiple ChIP-seq or RNA-seq datasets, the alignment
was performed to the corresponding personal genome twice for each of 54 ChIP-seq and
88 RNA-seq experiments. As a result, the data were converted into tables, including
the frequency of the reference and alternative alleles for each heterozygous position and
coverage. (4) The ASB events were found from ChIP-seq profiling of H3K4me3, a signature
of active promoters. (5) The heterozygous SNPs with ASB were searched for in gene
promoter regions. The genes harboring ASB events in promoters were considered nearby
targets. (6) ASB events were also searched for within the validated enhancer regions
using EnhancerAtlas 2.0 tools. The genes harboring ASB events within enhancers were
considered distant targets. (7) The algorithm processed human PAEC transcriptomic data
to assess the ASE events in the target genes. (8) The SNPs associated with both ASB
and ASE (p-value < 0.1 in binomial test in both cases) in total in 19 PAEC samples were
designated as rSNPs. (9) Next, taking into account the errors, the summary z-score statistics
and predicted probabilities were imputed to assess the likelihood that the rSNPs identified
through a comprehensive analysis of independent ChIP-seq and RNA-seq experiments
did have an impact on gene expression and trait. The cutoffs were determined based on
GTExeQTL datasets and GWAS.

2.1.2. Using GWAS and eQTLs to Define Cutoff Thresholds

Analysis of promoter regions allowed us to identify 12,993 rSNPs associated with
allele specificity in both the distribution of histone modifications and transcriptome data.
Analysis of enhancers increased the total to 20,321. Our rationale was thatthe imputed
integral parameters (z-scores or predicted probabilities) should reflect the likelihood that a
certain rSNP is a true functional variant with the effects on target gene expression and/or
trait. If this is the case, the lower the z-score or, the higher the predicted probability value,
the more the resulting rSNP set is enriched in GWAS phenotype associations and/or eQTLs
(as the experimentally determined effects of SNP on gene expression).

We calculated the weighted z-scores [45] since this parameter is an integral charac-
teristic of statistical significance (p-values) for ASB and ASE. The enrichment is shown
in Figure 2.

Analysis of the data shown in Figure 2 allows us to conclude that the share of eQTLs
SNP slightly decreases with an increase in the cutoff threshold, while the share of GWAS
SNPs slightly increases. Selecting the cutoff threshold of z-score = 5 × 10−6,taking into
account the Bonferroni correction, we obtainedalist of 11,266 rSNPs, 2592 (23%) of which
wereGTEX eQTLs and 375 (3.3%) wereannotated in GWAS.



Int. J. Mol. Sci. 2021, 22, 7240 4 of 19Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 20 
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Figure 1. The stages of rSNP search assessing the likely molecular phenotypes and phenotypic outcomes.Arrows show
the utilization of sequencing data or publicly available resources; NGS:next generation sequencing; PAECs:pulmonary
arterial endothelial cells; SNP:single nucleotide polymorphism; rSNP:regulatory SNP; ASB:allele-specific binding bias;
ASE:allele-specific expression bias; PPI;protein-protein interaction.
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2.1.3. Setting Predicted Probabilities from Logistic Regression

A predicted probability is the probability of an event calculated from available
data [46]. First, we used logistic regression to predict the probability of each rSNP
to be a GTExeQTL using three independent parameters. Two parameters, |log2FC1|
and |log2FC2|, showed the degree of asymmetry in ChIP-seq and RNA-seq, respec-
tively (where FC is fold change). In other words, these parameters reflect the proportion
of the number of filtered reads containing different alleles of a polymorphic position
(rSNP). The difference between the between |log2FC1| and |log2FC2| was shown by the
|log2FC1/FC2| parameter. An eQTL was a binary label. The results are consolidated
in Table 1.

Table 1. Logistic regression analysis prediction parameters. |log2FC1| is the proportion between the
coverage of two alleles for the SNP with an ASB effect; |log2FC2|, the same for the position with
an ASE effect; |log2FC1/FC2| reflects the difference in asymmetry for SNP in independent ChIP-
seq and RNA-seq experiments; Sign:significance (* p-value < 0.05; *** p-value < 0.001), dispersion
parameter for binomial family was taken to be 1.

Parameter Regression Coefficient Std. Error p-Value Sign

|log2FC1| −0.547335 0.009193 <2 × 10−16 ***
|log2FC2| −0.022103 0.008592 0.0101 *

|log2FC1/FC2| −0.125600 0.010718 <2 × 10−16 ***

We additionally performed a logistic regression without using the |log2FC1/FC2|
parameter. ANOVA showed a significant influence of |log2FC1/FC2| on the likelihood
of an rSNP to be an eQTL (Chi = 138.29, p < 2.2 × 10−16), which means that the use of
|log2FC1/FC2| considerably increases the strength of prediction. Note that this implies



Int. J. Mol. Sci. 2021, 22, 7240 6 of 19

that if an rSNP is an eQTL, than the ratio between the degree of asymmetry value in
ChIP-seq and RNA-seq for it is not random.

Correspondingly, the predicted probabilities for all rSNPs were calculated using three
parameters (|log2FC1|, |log2FC2|, and |log2FC1/FC2|) and rank correlation was per-
formed (Figure 3a). Correlation analysis showed a moderate to strong positive correlation
between the predicted probabilities and the likelihood of rSNP being eQTL from GTEx
collection. The rank correlation for GWAS was calculated using the same model (Figure 3b).

Figure 3. Q-Q plots showing a significant positive correlation of the number of (a) eQTLs and (b) GWAS SNPs in the
resulting rSNP set with predicted probabilities. All rSNPs were divided into 100 equal parts or ranks (the abscissa); the
ordinate shows the number of (a) GTExeQTLs or (b) GWAS associations mapped to all SNPs of a particular rank.

We observed the trend of an increase in the number of eQTLs for the rank up to
the rank of 50. Thus, the corresponding minimum value of predicted probabilities of
>0.1929408 was chosen as the cutoff threshold to select the final rSNP set, which included
14,266 rSNPs. Note that a similar trend was observable for the GWAS associations per rank
up to the rank of 50; however, the correlation coefficient was lower, and the dispersion
was higher.

Next, we analyzed the proportion of the SNPs associated with GWAS traits and
GTExeQTL effects at four stages of our rSNP search.We found out that the proportion of the
SNPs contained in public collections gradually increased from ‘identifying all heterozygous
SNPs from the dataset’ to ‘using the cutoffs’ for both eQTLs and GWAS (Table 2). At the
step of ‘rSNP identification’ when the positions associated with both types of asymmetric
effects are considered, the eQTL enrichment at any p-value threshold almost doubled
when comparing with ‘searching only ASBs’ or ‘searching only ASEs’ stages. Note that
the enrichment further increased when ‘using the cutoffs’ for both z-score and prediction
probabilities. According to GWAS data, a similar trend was also observed; however, all
counts were noticeably lower at any step.

This confirms our preliminary conclusion that analysis of two types of allele-specific
events and the use of a certain threshold of predicted probability allows for an increase in
the efficiency of rSNP identification. Analysis of the data listed in Table 2 demonstrates that
the use of z-score is less efficient as compared with the predicted probabilities. Correspond-
ingly, we used only the predicted probabilities threshold for constructing the resulting
panel of rSNPs.
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Table 2. Gradual enrichment of SNP sets with GTExeQTLs and GWAS associations. ASB, allele-specific binding bias;
ASE:allele-specific expression bias; eQTLs:GTEx expression quantitative trait loci; GWAS:all available GWAS-derived SNP-
trait associations; n: the number of SNPs; %: percentage relative to the total number of SNPs; pp:predicted probabilities.

Identified SNPs n Overlapping with
All GTEX eQTLs, %

Overlapping withthe GTExeQTLs
with p-Value < 0.1, %

Positions Contained in
GWAS Catalog, %

Heterozygous SNPs ~4.3 × 106 13 8 2.1

SNPs with ASB
(p-value < 0.1) 58,191 15 10 2.5

SNPs with ASE
(p-value < 0.1) 230,553 15 10 2.7

SNPs with both ASB and ASE
(both p-values < 0.1) 20,321 23 18 3.0

SNPs with both ASB and ASE
(z-test p-values < 0.0005) 14,898 23 18 3.1

SNPs selected by predicted
probabilities, pp > 0.1929408 14,543 26 20 3.5

SNPs selected by log regression
and z-score 10,318 26 21 3.7

2.2. Characterization of the Resulting rSNP Panel

As is mentioned, the threshold was set at prediction probabilities of >0.1929408 beyond
which 14,266 rSNPs entered the final rSNPs panel (Supplementary Table S1). These rSNPs
are of different classes with respect to their location, namely, intronic (7202), located within
untranslated regions: 5′ UTR (1713) or 3′ UTR (481), promoter regions (7818) or CDS (618),
and intergenic regions (7969) (Figure 4). Our results on ASE suggest that the identified
rSNPs may influence the expression of 7852 nearby genes from one to five per position, and
4981 rSNPs are located within the consensus human enhancers from the EnhancerAtlas 2.0
collection [47].
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2.2.1. Search for rSNPs within Known TF Binding Motifs

When a TF motif houses SNPs, its DNA binding site may be affected; correspondingly,
it is assumed that the expression of the target genes is also changed. A motif analysis with
the motifbreakeR showed that 11,536 rSNPsaltered the binding motifs of 374 different TFs.
Additionally, we found that 205 rSNPs mapped to ChIP-seq peaks for the corresponding
TFs according to ENCODE data, and 68 rSNPs from these strongly altered the binding
motifs (Table S1).

2.2.2. Overlapping with GWAS Variants

To estimate the potential associations between an rSNP and a trait, we first searched
for our rSNPs in the GWAS Catalog. We found that 645 variants (4.5% of 14,266) contained
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in the GWAS Catalog. These variants were associated with various phenotypic GWAS
traits, including schizophrenia; the risk of various cancers; Alzheimer’s disease; asthma or
atopic dermatitis; inflammatory and autoimmune diseases; white matter microstructure;
and cardiovascular diseases (Table S2).

In order to expand the number of GWAS associations in our rSNP set, we imputed the
normalized Hamming distances (NHDs) (see Section 4) between rSNPs and 135,132 GWAS-
derived SNP markers available at the moment to measure the pairwise linkage. As a
result, 405 different linked SNP pairs were extracted for 293 GWAS-derived SNPs using
the 1000 Genomes data with a weighted Hamming distance of ≤0.001. Among them,
57 variants with an NHD of zero paired with themselves.

2.2.3. Finding rSNPs in GTExeQTLCollection

Then, we integrated our final rSNP set with the eQTL mapping data from the GTEx
Project. In total, we identified 4746 genome-wide significant eQTLs (unique SNP-gene
pairs with a false discovery rate of <0.05) [32] in different tissues. The maximum number
of eQTLs associated with an individual rSNP in all GTEx tissues was five. The results
showed no pronounced enrichment in any tissue (Figure 5). However, note that the ‘artery’
tissue close to PAECs in its type was among the GTEx tissues in which we found the largest
number of eQTLs (at least in the left part of the diagram).
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Figure 5. Normalized tissue distribution of the rSNPs mapped as GTExeQTLs.The ordinate shows the number of eQTLs
(padj < 0.1) identified for all rSNPs in the tissue normalized on the number of all GTExeQTLs mapped in the tissue with
padj < 0.1; the abscissa shows the tissue source with grouping by type.

2.3. Assessing eQTLs in Human Brain RNA-seq Dataset

To search for additional eQTLs, we analyzed a representative independent RNA-seq
dataset from the study by Ramaker et al. [44]. However, since most of the identified rSNPs
were located within noncoding genomic regions, we used the specific coding markers to
predict the allelic combination for rSNP positions in each individual.

We hypothesized that the presence of a certain SNP in the genomic coding region in
RNA-seq data could predict the presence of a linked rSNP in the same individual genome.
To that end, we called for SNPs within the transcribed regions of known human genes
based on 2504 individual genomes from the four 1000 Genomes Project super populations.
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The composite distance measure to determine the linked variants was an NHD of 0.1
(Section 4). As a result, 771,471 coding SNP markers were extracted for the identified rSNPs
from the 1000 Genomes project.

Then, the patients were genotypedin silico according to each rSNP separately and
were divided into ‘homozygous‘ and ‘heterozygous’ groups depending on the presence
of specific rSNP alleles where possible. The following criteria were used: (i) an rSNP or a
marker variant was found in no less than six individuals, and (ii) a minor rSNP allele was
found in no less than three individuals. If the coverage of the minor allele was <10%, the
genotype was considered homozygous, and if the coverage of the minor allele was ≥10%,
heterozygous. The coverage of up to the top ten coding markers for a certain rSNP was
combined with increasing the position coverage. Next, for each rSNP, differential gene
expression between groups of different genotypes was analyzed. As a result, differently
expressed genes (DEGs) were identified for 2505 rSNPs by DeSeq 2.0 with the Bonferroni
p-value correction (padj < 0.1). A network enrichment analysis was performed for rSNP
group with over a hundred DEGs.

To functionally interpret the resulting lists of DEGs, we further carried out functional
enrichment analysis using theclusterProfiler R tool. In the issue, we accessed the functional
annotations for 2246 rSNPs (Table S3), including 1398 in the KEGG pathway, 462 in GO, and
1237 in DO annotations. This made it possible to refill the list of potential rSNP annotations.

With the aim of further interpretation of the observed eQTL effects, we analyzed a
set of DEGs independently for each rSNP using protein-protein interaction (PPI) network
analysis. The subsets of the associated proteins for each rSNP were plotted as STRING
networks using STRINGdb with functional enrichment analysis when possible.

See the findings for rs6507 (Figure 6) as an example. In total, we identified 337 DEGs
for rs6507. This rSNP resides in the coding sequence of the CDC34 (ubiquitin-conjugating
enzyme E2 R1) gene, which is required for the ubiquitin-mediated degradation of cell
cycle G1 regulators and DNA replication initiation. The potential outcome given in the
KEGG functional categories was linked to (i) metabolism (biosynthesis of antibiotics,
pyrimidine, carbon metabolism, propanoate metabolism, and citrate cycle); (ii) GABAergic
synapse, which mediates the majority of synaptic inhibition in the central nervous system;
(iii) p53 signaling pathway, involved in multiple biological processes, including DNA
damage repair, cell cycle arrest, apoptosis, and senescence; and (iv) the broadest category
associated with these DEGs, namely, the pathways in cancer. In line with this, the root
node for the PPI subnetwork is CCNE1, cyclin E1, an increased expression of which is a
well-known tumorigenic factor and a prognostic biomarker in malignancies. Note that
CDC34-mediated ubiquitination has been shown to enhance the proliferation capabilities
of gastric cancer cells through an increased expression of cyclin E1 [48], that is, the target
gene that we determined for this rSNP and the gene for which the largest network was
constructed are functionally linked.

The additional description given in DO enrichment terms (Table S4) was an abnormal
muscle function (‘muscular dystrophy’), difficulty in controlling eye movements (‘ocular
motility disease’), and ‘congenital nystagmus’, which may either be a separate abnormality
or associated with different underlying visual sensory and systemic disorder [49]. We have
found that rs6507 strongly alters the binding motifs of two TFs, CTCF and ZBTB7B, and,
therefore, may alter TF binding. Moreover, rs6507 falls into the ChIP-seq peaks of TF CTCF
(Figure 6d), a multifunctional protein also shown to be involved in the development of
malignancies [50].
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Figure 6. rs6507 (C>T) findings. (a) PPI subnetwork for rs6507 with the ‘root’ CCNE1 protein using R STRINGdb. Nodes
are colored according to logFC value (green nodes: logFC < −0.5; orange nodes: logFC > 0.5; yellow nodes: |logFC| < 0.5)
and node sizes are proportional to |logFC|. (b) The enriched KEGG functional terms for 337 corresponding DEGs are
ranked according to the adjusted p-value and displayed in a tabular format. (c) Disruption of CTCF and ZBTB7B binding
motifs by rs6507 (C>T). The red bar shows the chromosome location of rs6507. (d) The genome region surrounding rs6507
with visualized ChIP-Seq signal tracks for CTCF as given by ENCODE annotation (ICGC Genome browser). The location of
rs6507 is highlighted with the red dotted line.

Two other examples of visualization of the functional annotations for rs16910241
and rs56119169 polymorphisms are shown in Figure 7; we have found associations with
Parkinson’s disease for both variants. Of special interest is the result for presynaptic
terminals (Figure 7a,b; left panels). The proteins highlighted for the genes of the KEGG
pathway acting at this stage for both rSNPs were guanine nucleotide-binding protein G(olf)
subunit alpha (Gnal, highlight Golf), GNAI1(G protein subunit alpha i1), and PKA (cAMP-
dependent protein kinase). However, these two rSNPs change the expression of these
genes in different directions; namely, rs16910241 elevates the expression of all three genes,
whereas rs56119169 decreases it. In addition, a set of DEGs with differently directed changes
in their expression caused by these two rSNPs has also been observed for the mitochondrial
stage, although the changes are somewhat less pronounced. Interestingly, rs16910241 and
rs56119169 have different effects on p53 expression, which plays a fundamental role in
the pathogenesis of neurodegenerative diseases [51]. Thus, our results suggest that many
rSNPs from our list may be related to a number of potential phenotypic outcomes.
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Figure 7. Graphical visualization of the KEGG pathway DEGs (Parkinson’s disease) was found to be associated with
(a) rs16910241 and (b) rs56119169 variants in this study.KEGG pathway diagrams show the genes grouped in different
functional units distributed along the pathway. Gene node colors show the direction of the change in expression.

3. Discussion

A key problem in modern human genetics is to identify the DNA sequence variants
(mainly SNPs) that influence different biomedical traits and to understand how genetic
variation leads to phenotypic differences and complex diseases. It is currently evident that
whole-genomeassociation study gives insufficient information for an adequate assessment
of the effect of genetic variants on phenotype. Unlike GWAS, the recently developed
approaches of functional genomics are initially focused on the detection of the SNPs
associated with a change in the gene expression level. These approaches are mainly
represented by eQTL analysis [32] and identification of allele-specific events [26,29,33,52],
as well as some other genome-wide methods, such as massively parallel reporter assay
(MPRA) [53]. An evident advantage of the analysis of allele-asymmetric events is that they
make it possible to use relatively small samples (and even a single individual) for assessing
the functional potential of most of the regulatory polymorphisms [54].

In this study, we sought to identify the functional variants that could affect gene
expression (rSNPs) using an integrated analysis of allele-specific events in ChIP-seq and
RNA-seq human datasets. To explore the functional relevance of rSNPs and their target
genes, we used GWAS, GTExeQTL information, and network enrichment analysis.

In our earlier work, as in the majority of similar studies, we used the data obtained
for cell lines [33]. However, the use of such material raises the question ofthe accuracy
of rSNP identification. As is mentioned above, most cell lines are of a cancer origin
with a characteristic high level of genome instability, which considerably complicates
the identification of allele-asymmetric events [55]. Moreover, an important shortcoming
when cancer cell lines are used is that an identified rSNP displays its functionality under
conditions very far from the body’s natural context. The use of biopsy and/or surgery
specimens of normal tissues resolves these problems. In line with this, the number of
identified rSNPs in our study is significantly larger, amounting to 14,266 versus 1622 rSNPs
found in our previous study on cell lines. However, the fact that we analyzed the whole
genome rather than the known regulatory regions has most likely also contributed to the
increase in the number of found rSNPs.
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One of the most interesting findings in this study is that the degree of asymmetry of
both ASB and ASE influences the effectiveness of rSNP search. This result suggests that a
comprehensive analysis of these two types of allele-asymmetric events makes it possible
not only to associate a genetic variant with the expression of certain target gene(s) but also
to increase the prediction accuracy of its functionality. However, it is rather difficult to
find some kind of phenotypic outcomes when using most of the functional approaches,
including ourmethod. GWAS data are widely used in order to find a significant and
statistically approved association of polymorphism with a phenotypic trait. In this work,
we succeeded in linking 800 rSNPs to the GWAS-derived traits, including the rSNPs with
strong LD according to NHD. The results are summarized in Table S2 and cover a number
of phenotypes, including diseases. Their number is not too big but note that the rate of
potentially functional variants annotated using GWAS data in other studies [28,29] usually
does not exceed 5% of identified variants.

In addition, the difficulty in mapping SNPs to the genes with altered expression
hinders the use of GWAS associations to clarify the molecular mechanisms underlying the
corresponding trait [56]. Commonly, eQTL analysis is used for this purpose. Although
this technique fails to reveal a direct association of an SNP with a phenotypic trait, it gives
information about the genes for which the expression levels correlate with genetic variants.
In theory, this makes it possible to reach a higher level of phenotypic outcome for at least
part of rSNPs by revealing the functional links between these genes and reconstructing
gene networks [57–59].

According to our data, 26% of the resulting rSNPswererepresented by the variants
affecting gene expression from the GTExeQTL collection. The enrichment with GWAS-
derived variants was considerably lower as compared with eQTLs when using any thresh-
old: p-value cutoffs, predicted probabilities, or z-scores. This was expectable since both our
approach and GTEx are aimed at the search for the correlation between a genetic variant
and a change in gene expression.

Unfortunately, the use of GTEx for associating the found rSNPs to gene expression
resulted in a few findings: we have found one to five eQTLs per one rSNP. Presumably,
this is associated with the constraints used by the authors when forming the collection [60].
In addition, the GTEx Consortium analyzes only the genetic variants within 1 Mb of the
target gene transcription start site to report an eQTL effect. Another factor is that very
strict reliability thresholds were used when forming the collection. We were free from
these constraints.

In addition, although GTEx is the largest eQTL database and currently may be the
most actively used resource, not all eQTLs are included in GTEx. For example, Stolze
et al. [61] identified thousands of eQTLs unique to endothelial cells but skipped by GTEx
Project. Note that they used biopsy specimens rather than postmortem samples, as in the
GTEx collection. We used the data for biopsy material and similarly succeeded in finding a
considerable number of new eQTLs. We have not observed any significant prevalence of
the rSNPs that overlap with eQTLs in any tissue from the GTEx collection; this may result
from both the restrictions of the collection and the fact that the tissue-specific effect is not
always considerably pronounced.

We searched for additional eQTLs using a representative independent RNA-seq brain
dataset [44]. Our analysis of these RNA-seq data allowed us to detect much more links of
rSNPs with genes up to 1000 eQTL effects per position. As an example of predicting the
associated phenotypes, we considered three rSNPs from the set: rs6507 (C>T), a coding
sequence variant within the CDC34 transcript; rs16910241 (C>A), a coding sequence mis-
sense variant in the gene H2AJ; and rs56119169 (C>A), a variant residing in the regulatory
region of the MYL6 gene. The found eQTLs allow these rSNPs to be regarded as associated
with neurological phenotypes. Presumably, this result reflects the fact that the RNA-seq
data obtained for the brain were used as the initial data. Besides neurological phenotypes,
other KEGG categories associated with the found polymorphisms, such as metabolic traits
(Table S3), most likely reflect the best coverage of certain biological processes and the
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corresponding high abundance of these data in databases. Note that when conducting
your own study, you can lower the thresholds and try to discover the way from an rSNP to
a molecular phenotype with a certain increase in the overprediction error.

Thus, analyzing the public ChIP-seq and RNA-seq data, we have formed a new
collection of rSNPs and functionally interpreted them. The phenotypic outcomes potentially
associated with the found rSNPs were determined using the GWAS Catalog, analysis of the
GTExeQTLs associated with these rSNPs, and functional analysis of the genes differentially
expressed in the brain of the individuals with the genotypes differing in these rSNP alleles.

4. Materials and Methods
4.1. Human NGS Data

No experiments involving human subjects conducted by the authors are described
in this paper. All used human datasets from the open access are under ethical consent
agreements as stated in authorized submissions.

ChIP-seq profiling of the active promoter mark H3K4me3 obtained for PAECs and
transcriptome sequencing data for the same samples were available at NCBI under acces-
sion number GSE126325. We used only the data for controls (donor lungs, n = 19) [43].
A total of 9.4 Gb of data was obtained, which was, on average, 170 Mb of data per each
ChIP-seq library and 320 Kb per each RNA-seq library.

Transcriptome sequencing of 281 clinically annotated human postmortem brain tis-
sues (anterior cingulate gyrus, dorsolateral prefrontal cortex, and nucleus accumbens) for
five conditions (schizophrenia, bipolar disorder, major depressive disorder, autism, and
controls) [44] wasavailable at NCBI under accession number SRP073813. In total, 14.3 Mb
of data were obtained; on average, 48.2 million reads per library.

Genome sequencing data of 2504 individual genomes sampled from five super popu-
lations (AFR, EAS, SAS, AMR, and EUR) were available from the 1000 Genomes Project
release Phase 3 [62].

The SNP calls were downloaded in VCF format from the release directory on the
EBI FTP site (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/, accessed on
29 April 2020).

4.2. Open Access Resources

The categories of gene elements, such as promoters, untranslated regions (UTRs), and
transcription start sites (TSSs), for autosomal human genes were obtained from GENCODE
release 37 [63].

The list of consensus human enhancers was obtained from the EnhancerAtlas 2.0
database [47]; all items were experimentally validated by a dozen of high-throughput tech-
nologies. The enhancer–target gene interactions were predicted using the EnhancerAtlas
2.0 computational tools.

The SNP-trait associations were obtained from the GWAS Catalog [3] with the sum-
mary statistics of 248,356 associations as of January 2021. The associations were not
segregated by trait.

The eQTLs for human postmortem tissues were obtained from the GTEx portal on
11/19/20 and dbGaP accession number phs000424.v8.p2. The significance level threshold
for eQTL effects was reported in [64].

4.3. NGS Data Preprocessing
4.3.1. Quality Filtering

The raw reads from ChIP-seq and RNA-seq experiments were trimmed for quality
(phred ≥ 20) and length (bp ≥ 32) using Trimmomatic v. 3.2.2 [65]. Illumina adapters were
cut off.

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/
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4.3.2. Genomic Alignment and SNP Calling

Then, Bowtie2 was used to align the reads to the GRCh38 human reference assem-
bly [66]. PCR duplicates were discarded with Picard tools to reduce their effect on the
accuracy of subsequent variant calls. The threshold of QMAP of at least 25 by SAMtools [67]
was set for mapping quality.

After the first alignment step, the high-quality sequencing reads that passed thresholds
were assembled for further SNP discovery pipeline using SAMtools pileup, R tools (https:
//www.r-project.org/, accessed on 2 April 2021), and Perl scripts. The sex chromosomes
and mitochondrial DNA were not analyzed.The SNPs located 5 bp from both ends of short
insertion–deletion variants were also removed. For a specific set of variant calls (in VCF
format), the GATK FastaAlternateReferenceMaker was used to replace the reference bases
in polymorphic positions with the bases representing the alternative alleles discovered in
each sample from PAECs and brain datasets. The final alternative reference sequence was
separately reported for each ChIP-seq or RNA-seq sample. Then the read alignment was
improved through the second alignment step to both GRCh38 and appropriate alternative
references. Locations of all heterozygous SNPs were converted to a standardized format
that described the alleles. The position was considered heterozygous when the minor allele
coverage was no less than 10.

4.4. Assessing Allele-Specific Binding and Expression Events

A bias analysis was performed as earlier described [33]. Briefly, after the re-alignment
step, we counted the number of reads covering each allele at heterozygous positions (SNPs
with ASB in ChIP-seq data and heterozygous SNPs within targeted genes in RNA-seq data)
using both custom Perl scripts and SAMtools. The ASB and ASE events were determined
as the share of reads with the reference allele based on statistically significant enrichments
(odds ratio≥ 1.5) or depletions (odds ratio < 1.5), respectively (padj≤ 0.1). The significance
of the bias was determined according to a binomial model implemented in R with the
null hypothesis that both alleles of a heterozygous SNP would be equally covered and
represented in the data. The degree of asymmetry for allele-asymmetric events, such as
ASB and ASE, was determined by the parameter |log2FC|, where FC is a fold change.

4.5. Z-Test

Different approaches are used to combine the results of hypothesis testing from several
independent experiments. We used a weighted z-test [45] to calculate the combined p-value
of two binomial tests by ChIP-Seq and RNA-Seq experiments.

4.6. Evaluation of Linked SNP Pairs by HAMMING Distance

According to the concept of Hamming distance from coding theory [68], defined as
the number of different bits at the same positions of two linear datasets, we assumed that if
two alleles of two different SNP positions occurred in the same haplotype combination in
the population than these two SNPs should be closely linked. The normalized Hamming
distance (NHD) was used to measure LD and was calculated as in [69]:

NHD (cSNP, rSNP) =
∑n

i=1|Ri, rSNP− Ri, cSNP|
∑n

i=1|Ri, rSNP + Ri, cSNP|

where Rij = 0, 1, or 2 is a number of rare alleles in the jth position of the ith person from the
1000 Genomes dataset (n = 2504). The Hamming distance measurement was normalized to
the number of rare alleles found in the 1000 Genomes dataset for each position. The less the
Hamming distance, the more strong relationship is observed between two SNP markers.
The minimum of NHD is zero if the rare alleles in one position correspond in all cases to
rare alleles in another position; otherwise, NHD amounts to unity if one SNP from the pair
is associated with the major allele and the other, with the rare allele for all individuals.

Estimation of conditional probability is another way to predict an rSNP based on the
existence of a linked coding SNP in RNA-seq.

https://www.r-project.org/
https://www.r-project.org/
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Assume that allele “A” for the rs738904 genotype is obtained in RNA-seq (Table 3).
What is the probability that the same person has the “G” allele of this polymorphism
in at least one copy of chromosome 22? For the rs738904, let us denote as “A*” the
genotype of an individual who carries one “A” allele, while the other allele can be (in
this case) “A” or “G”. In an analogous manner, for the rs7289432, let us denote as “G*”
the genotype of an individual who carries one “G” allele, while the other allele can be
(in this case) “A” or “G”. Then, we can use the conditional probability equation to find
P{“G*”|“A*”} = P{“G*”,“A*”}/P{A*}.

Table 3. Contingency table of the rs7289432 and rs738904genotypes for a sample of 2504 individuals from the 1000 Genomes
dataset.

rs7289432
22chr:19171209

cSNP (rs738904) 22chr:19179872
Total Number of Genotypes in 1000 Genomes

CC AC AA

AA 1084 5 0 1089
AG 9 1042 5 1056
GG 0 7 352 359

Total number of genotypes in 1000 Genomes 1093 1054 357 2504

The probability estimates werecalculatedfor the sample of 2504 individuals as:

P{“G*”,“A*”} = (1042 + 5 + 7 + 352)/2504 = 1406/2504 and

P{“A*”} = (1054 + 357)/2504 = 1411/2504.

Then, P{“G*”|“A*”} = 1406/1411 = 0.996.

Thus, if the “A” allele is obtained in RNA-seq for the rs738904 polymorphism, the “G”
allele for the rs7289432 polymorphism will be present at a high probability.

When predicting the presence of regulatory polymorphisms, we used a conditional
probability of at least 0.9 and selected the polymorphisms with the least NHD from all
predicted regulatory polymorphisms.

4.7. Transcription Factor Motif Disruption Analysis

We used motifbreakR package [70] to predict the effect of rSNPs on TF motifs. Position-
specific weight matrices of the candidate TFs retrieved from the HOCOMOCO database [71]
were used to generate the motif consensus sequences.

The list of rSNPs that strongly altered the motifs was then overlapped with the
Transcription Factor ChIP-seq Peaks track, a comprehensive set of 340 human factors in
129 cell types from ENCODE 3 [72] using R. We additionally selected a set of rSNPs breaking
TF motifs and falling to the ChIP-seq peaks for the same TFs according to ENCODE data.

4.8. Differential Expression Analysis

We used the DeSeq2 R package [73] to identify the genes differentially expressed
between the groups of people of different genotypes (at least three individuals in the group
for each genotype). RNA-Seq data for three brain structures for each individual were
analyzed separately [44].

4.9. Construction of Protein–Protein Interaction Networks and Functional Annotation

We used STRINGdb R package [74] as an interface to the STRING database (https:
//www.string-db.org, accessed on 2 April 2021) to construct PPI networks for the rSNPs
associated with eQTLs, for each separately, and to perform further functional annotation.

We used theclusterProfiler R package [75] for additional annotation of the DEGs
when analyzing the brain RNA-seq dataset. The DEGs for each analyzed rSNP position
were tested independently for representation in Gene Ontology (GO) Biological Process

https://www.string-db.org
https://www.string-db.org
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terms [76], Disease Ontology (DO) terms [77], and associated Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways [78].

4.10. Statistical Analysis

The statistical analysis was performed using R software. Correlation rank-based
metrics were applied to the calculated z-scores and predicted probabilities under the null
hypothesis of a positive correlation between the means of the integral parameter and the
incidence of rSNP to be a GTEx eQTL or a GWAS trait-associated SNP. The outcome results
were interpreted according to the degree of association as strong (r = 0.7–1), moderate
(r = 0.5–0.7), or low (r = −0.5) after taking into consideration the significant correlation
values. The data on logistic regression were subject to one-way ANOVA using R to analyze
the parameters that influence the probability of the rSNPs entering GTEx eQTLs or GWAS.
The predictions of the logistic regression models calculated taking into account two or three
parameters were set as independent variables. Benjamini–Hochberg [79] false discovery
rate adjustments were applied to significant values to correct for multiple testing with a
threshold of padj<0.1 using p.adjust function in R (unless otherwise stated).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22147240/s1.
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