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A B S T R A C T   

Objective: Papillary thyroid carcinoma (PTC) accounts for the majority of thyroid cancers and has 
a high recurrence rate. We aimed to screen key genes involved in PTC to provide novel insights 
into the mechanisms of PTC. 
Methods: Seven microarray datasets of PTC were downloaded from gene expression omnibus 
database. Differentially expressed genes (DEGs) between PTC and normal samples were screened 
in the merged dataset. Then, protein-protein interaction (PPIs) functional modules analysis and 
weighted gene co-expression network analysis (WGCNA) were utilized to identify PTC-associated 
key genes. The identified key genes were then characterized from various aspects, including gene 
set enrichment analysis (GSEA) and the associations with immune infiltration, methylation levels 
and prognosis. 
Results: A large numbers of DEGs were identified, and these DEGs are involved in several cancer 
pathways. Nine key genes (including down-regulated genes GNA14, AVPR1A, and WFS1, and up- 
regulated genes LAMB3, PLAU, MET, MFGE8, PRSS23, and SERPINA1) were identified. Patients 
in the AVPR1A and GNA14 high expression groups had better disease-free survival (DFS) than 
those in the low expression group. Key genes were mainly involved in P53 pathway, estrogen 
response, apoptosis, glycolysis, NOTCH signaling, epithelial mesenchymal transition, WNT_beta 
catenin signaling, and inflammatory response. The expression of key genes was associated with 
immune cell infiltration and corresponding methylation levels. The verification results of key 
gene proteins and mRNA expression levels using external validation datasets were consistent with 
our expectations, implying the involvements of key genes in PTC. 
Conclusion: The key genes may serve as potential therapeutic targets for PTC. This study provides 
novel insights into the mechanisms underlying PTC development.   

1. Introduction 

Thyroid cancer is the ninth most common cancer worldwide and is three times more common in women than in men [1]. In the last 
few years, the incidence of thyroid cancer has continuously increased, mainly because of the increased detection rate of papillary 
thyroid carcinoma (PTC) [2], which is the most common thyroid malignancy, accounting for approximately 84% of all thyroid cancers 
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[3]. As an indolent tumor, there is still a risk that some cancer cells will metastasize to the lymph nodes around the thyroid gland [4], 
and lymph node metastasis is independently associated with an increased risk of recurrence and distant metastases [5,6]. Fine-needle 
aspiration biopsy (FNAB) and cytological assessment are the foundation for the diagnostic management of thyroid nodules; however, 
they cannot provide definitive diagnoses in 20–30% of patients, and further diagnostic surgery is needed to identify the characteristics 
of thyroid nodules [7]. Suitable molecular markers are helpful for guiding surgery and monitoring cases of uncertain FNAB [7]. 
Therefore, the identification of key genes involved in the pathogenesis of PTC is important for the improvement of clinical diagnosis 
and application of precision medicine in PTC [8]. 

In the last few years, a large number of molecular genetic studies have provided new insights into PTC, and molecular markers, such 
as RAS and BRAF(V600E) mutations and RET/PTC rearrangements, have improved the diagnosis and treatment of PTC [9]. For 
example, Kasko et al. showed that molecular marker-based stratification of thyroid lesions with indeterminate FNAB results con
tributes to the delivery of a more tailored therapy [9]. These findings highlight the necessity of identifying the key genes involved in 
PTC pathogenesis. Owing to the progress in RNA sequencing and microarray technology, gene expression profile analysis has widened 
our understanding not only in terms of the molecular mechanism of PTC but also in identifying molecular markers. Several studies 
have investigated key genes in PTC based on integrated bioinformatics analyses. However, these studies were conducted based on 
either a single dataset or a single level of analysis [10–12]. 

Weighted gene co-expression network analysis (WGCNA) is an algorithm that analyzes the correlation patterns among genes based 
on gene expression data and can help identify not only the potential modules of highly correlated genes but also the associations of 
these gene modules with various clinical traits [13]. WGCNA is widely used to identify diagnostic candidates for various diseases 
[14–16]. In this study, seven PTC datasets were used, and key genes were screened using differential expression analysis, topological 
analysis of the protein–protein interaction (PPI) network, and the WGCNA algorithm. Additionally, based on miRNA expression 
profiles and online databases, miRNAs targeting the identified key genes were predicted to uncover their possible regulatory networks. 
Most importantly, based on TCGA data, the identified key genes were characterized from various aspects, including associated 
pathways, immune associations with gene expression and gene copy numbers, associations with methylation levels, and prognostic 
values, which were not investigated in any of the previous studies. 

2. Methods 

This is an integrated bioinformatics analysis, and the workflow for this analysis is shown in Supplementary Fig. 1. 

2.1. Data collection and preprocessing 

Seven gene expression datasets were downloaded from the Gene Expression Omnibus (GEO) database [17], of which six 
(GSE33630, GSE53157, GSE54958, GSE151179, GSE73182, and GSE151180) were used as discovery datasets, and GSE64912 was 
used as the validation dataset. Among these discovery datasets, GSE73182 and GSE151180 were miRNA expression profiles and the 
rest were gene expression profiles. The standardized probe expression matrix were downloaded, and the probes were annotated based 
on the annotation files provided on the corresponding platform. The probes and gene symbols were individually matched. For different 
probes mapped to the same gene symbol, the average expression value of diverse probes was determined as the expression value of the 
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gene. For GSE64912, the normalized RPKM values were downloaded and log2 transformed. Detailed information on the dataset is 
provided in Supplementary Table 1. Four gene expression datasets and two miRNA expression datasets were merged separately, and 
the batch effect among diverse datasets was eliminated using the sva package [18]. Merged datasets were used for subsequent analyses. 

2.2. Differentially expressed gene (DEG)and differentially expressed miRNA (DEMI) screening 

The limma package [19] was used to identify the DEGs and DEMIs between the PTC and normal groups. The false discovery rate 
after Benjamini-Hochberg correction (<0.05) and |log2FC (fold change)| > 1 were set as the thresholds for screening DEGs and DEMIs. 

2.3. Pathway and function enrichment analysis of DEGs 

The biological functions of the DEGs were explored by functional enrichment. Specifically, the DAVID [20] tool was used to analyze 
the gene ontology biological process (GO_BP) [21] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [22] pathways involved in 
DEGs. To obtain comprehensive enrichment results, terms with p value < of 0.05 [23] and enrichment count ≥2 were considered as 
significantly enriched terms. 

2.4. PPI network analysis 

The STRING database [24] was used to predict interactions among the proteins encoded by DEGs. DEGs were entered into the 
STRING database and the species were set to homo. PPI score was set to 0.9 (highest score). Cytoscape software [25] (version 3.4.0) 
was used to construct a PPI network based on the obtained interactions. CytoNCA [26] (version 2.1.6) was used to analyze the 
connectivity between nodes without weight. In addition, MCODE [27] (version 1.5.1) of the Cytoscape software was used to screen 
functional modules from the PPI network. The default parameters were as follows: degree cutoff = 2, node score cutoff = 0.2, k-core =
2 and maximum depth = 100. KEGG analysis was performed for genes in the PPI modules using clusterProfiler [28] (version 3.8.1) in 
R. P significance was set at P < 0.05.3. Modules enriched in multiple pathways were considered as key modules. 

2.5. WGCNA 

After performing variance analysis on the expression matrices of all genes, the top 20% of genes with inter-sample variability were 
analyzed using WGCNA (version 1.61) [13] in R to identify highly coordinated gene set modules. WGCNA is a comprehensive bio
logical algorithm that has significant advantages for analyzing association patterns between genes. Module clustering of genes with 
similar expression patterns and correlation analysis between modules and clinical traits are the two highlights of WGCNA [29]. First, a 
soft threshold was selected to ensure that the constructed network conforms to a power-law distribution. Second, a scale-free weighted 
gene co-expression network was constructed using a blockwise module function. Third, module partition analysis was performed to 
identify gene co-expression modules that could group genes with similar expression patterns. To identify co-expressed gene modules, 
we chose minModuleSize = 30 and MEDissThres = 0.2 as thresholds. For important genes, GS > 0.6 and MM > 0.8 were set as the 
thresholds. The intersecting genes of the important genes obtained in WGCNA and the PPI module were defined as key genes related to 
the disease for subsequent analysis. 

2.6. Gene set enrichment analysis (GSEA) 

Based on the combined gene expression profile, after eliminating the batch effect, we performed GSEA using hallmark gene sets (h. 
all.v7.4. symbols. gmt) [30]. The Pearson correlation coefficients of the key genes and other genes were calculated and ranked. The 
significant enrichment threshold was set at a nominal p value < 0.05. 

2.7. Relationship between key genes and immune cell infiltration abundance 

Gene modules in the TIMER database [31] were used to show the relationship between the abundance of immune infiltration and 
expression of each key gene. The analysis parameters were set to default values. In addition, compared with normal samples, the effect 
of different gene copy numbers on immune infiltration was analyzed based on the data of GISTIC2.0. We also used the SCAN module in 
TIMER to explore the relationship between somatic copy number variation and immune infiltration of each key gene. 

2.8. Key genes’ protein expression and methylation analysis 

The Human Protein Atlas (HPA) database [32] was used to determine the expression of key genes in TCP and normal tissues. 
MEXPRESS [33] is a data visualization tool used to simplify the visualization of TCGA expression, clinical data, and DNA methylation 
and to analyze the relationship between them. In this study, we used the online website MEXPREWSS to analyze the correlation 
between each key gene and its corresponding methylation site. The parameters used were the default settings on the website. Tumor 
histology samples for classical/uterine examination were selected for further study. 
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2.9. Predictive analysis of upstream miRNAs of key genes 

Based on the miRWalk, Microt4, miRanda, PITA, and RNA22 databases, miRNAs upstream of key genes were predicted using 
mirwalk2.0 [34]. If a predicted miRNA-target relationship pair appeared at least three times in the prediction results of the six da
tabases, it was considered that this miRNA regulated the corresponding target gene. The intersection of the predicted miRNA and DEMI 
was selected to further identify miRNA-target pairs related to PTC. 

2.10. Verification of the expression of key genes and miRNAs 

GSE64912 was used as the validation set for key gene verification. P value was obtained using a t-test. The expression of miRNAs 
between the two groups was verified using the UALCAN online tool. We also used the online tool gene expression profiling interactive 
analysis (GEPIA) to verify the expression of key genes and miRNAs. GEPIA is a web-based tool for mining and understanding gene 
functions in tumors based on RNA-Seq data from TCGA and GTEx [35]. |Log2FC| cutoff was set to 1, p value cutoff was 0.01, and it 
matched TCGA normal data. 

2.11. Prognostic analysis of key genes and correlation analysis with clinical factors 

Patients with PTC were divided into high and low expression groups according to the median expression value of the key genes. To 
explore the relationship between gene expression levels and prognosis of PTC patients, Kaplan-Meier (K-M) curves between the two 
groups were drawn using GEPIA2 [36]. The p value < 0.05 was set as significant. The expression of key genes in different clinical factor 
(tumor stage, tumor histology, and nodal metastasis status) groups of patients was determined using the online tool UALCAN [37]. We 
also downloaded the clinical information of PTC patients, including age, sex, TNM stage, tumor stage, and survival information, from 
TCGA database. Univariate Cox regression analysis was used to analyze the correlation between clinical factors, key genes, and disease 
free survival (DFS). Multivariate Cox regression analysis was used to screen for independent prognostic factors for PTC. 

Fig. 1. Differential expression analysis and functional enrichment A-B, 
Volcano plots of differentially expressed genes (A) and differentially expressed miRNAs (B); C-D, top 20 GO BP terms (C) and 16 KEGG pathways (D) 
enriched in differentially expressed genes. 
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3. Results 

3.1. Identification of DEGs and DEMIs 

Four mRNA expression datasets (GSE33630, GSE53157, GSE54958, and GSE151179) and two miRNA datasets (GSE73182 and 
GSE151180) were merged into larger datasets for subsequent analyses. After eliminating batch effects, there was no obvious separation 
among the diverse datasets, as shown in the principal component analysis (Supplementary Fig. 2). A total of 478 DEGs (264 upre
gulated and 214 downregulated) and 11 DEMIs (5 upregulated and 6 downregulated) were identified between PTC and normal 
samples (Fig. 1A–B). 

3.2. Enrichment analysis of DEGs 

In total, 478 DEGs were involved in 124 GO BP terms and 16 KEGG pathways. The top 20 GO BP terms and all KEGG pathways are 
shown in Fig. 1C–D. These DEGs were mainly involved in signal transduction, cell adhesion, inflammatory response, cancer pathways, 
cytokine-cytokine receptor interactions, and proteoglycans in cancer. 

Fig. 2. Protein–protein interaction (PPI) analysis. 
A, PPI network. B, PPI modules. C KEGG pathways enriched by genes in the modules. Green nodes represent downregulated genes and red nodes 
represent upregulated genes. The darker the color, the greater the absolute value of the difference multiples. 
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3.3. PPI construction and module analysis 

The PPI network comprised 196 proteins and 449 interacting edges (Fig. 2A). Further module analysis yielded six modules with 
node degrees greater than five. MCODE1–MCODE6 contained 16, 12, 9, 7, 6, and 9 proteins, respectively (Fig. 2B). MCODE1 is mainly 
involved in the ECM-receptor interaction pathway, and MCODE2 is enriched in apoptosis. Most genes in MCODE3 are involved in 
neuroactive ligand-receptor interactions, and genes in MCODE3 are mainly involved in cell adhesion. Genes in MCODE6 were mainly 

Fig. 3. WGCNA. 
A, Calculation of soft threshold (power) in WGCNA by balancing mean connectivity and scale independence; B, Clustering dendrogram of the top 
20% genes with a greater degree of variation. C Module–trait relationships. D, Gene significance for disease status (GS) and module memberships in 
the green module (MM) correlation scatter diagrams of brown and green module genes. The genes in the upper right corner represent the key genes 
of the module; E, Venn plot of common genes between the PPI and WGCNA modules. 

L. Pan et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e27928

7

encoded by proteoglycans in cancer and focal adhesion pathways (Fig. 2C). Module 5 was not significantly enriched in any of the 
pathways. Considering that MCODE5 had no enrichment results and MCODE2 had fewer enriched pathways, MCODE1, MCODE3, 
MCODE4, and MCODE6 were the focus of follow-up analysis. These four modules contained 41 genes. 

3.4. WGCNA and key gene identification 

The top 20% genes with large variants were selected for WGCNA. To calculate the adjacency matrix, the optimal soft-threshold 
power was set at 10 (Fig. 3A). A cluster dendrogram with the adjacent matrix was constructed, and finally 10 color modules 
(magenta, pink, grey, purple, red, black, blue, brown, green, and green yellow) were identified. The grey module included genes that 
could not be included in any of the other modules (Fig. 3B). Next, we performed a correlation analysis between the color modules and 
traits. As shown in Fig. 3C, the four modules (magenta, pink, brown, and purple) were significantly positively correlated with PTC and 
negatively correlated with the control. The three modules (green-yellow, green, and red) were significantly negatively correlated with 
PTC and positively correlated with the control (|R| > 0.3). Modules green and brown, which were significantly positively correlated 

Fig. 4. Level of immune cell infiltration of key genes in different variation types. 
Level of immune cell infiltration of AVPR1A (A), GNA14 (B), LAMB3 (C), MET (D), MFGEB (E), PLAU (F), PRSS23 (G), SERPINA1 (H) and WFS1 (I) 
in different variation types. 
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with PTC and control, respectively, were selected for correlation analysis with genes that were significantly related to disease status. As 
shown in Fig. 3D, both the brown and green modules were significantly positively correlated with genes that were significantly related 
to disease status (cor = 0.92, p < 1e-200). These results indicate that the genes in these modules may participate in PTC. 

Furthermore, the common genes in the green and brown modules and genes in the four PPI modules were screened using Venn 
analysis (Fig. 3E). Finally, three downregulated genes (GNA14, AVPR1A, and WFS1) and six upregulated genes (LAMB3, PLAU, MET, 
MFGE8, PRSS23, and SERPINA1) were identified as key genes associated with PTC. 

3.5. GSEA of key genes in cancer related pathways 

GNA14, AVPR1A, WFS1, LAMB3, PLAU, MET, MFGE8, PRSS23, and SERPINA1 were significantly enriched in 0, 1, 4, 9, 14, 7, 13, 2, 
and 9 significantly cancer-related pathways, respectively. AVPR1A expression was significantly negatively correlated with the P53 
pathway. WFS1 expression was significantly positively correlated with the reactive oxygen species pathway. Six up-regulated genes 
were related with P53 pathway, epithelial mesenchymal transition, estrogen response, apoptosis, glycolysis, NOTCH signaling, 
TGF_beta signaling, inflammatory response, and WNT_beta catenin signaling (Supplementary Table 2). 

3.6. Association analysis between key genes and immune cell infiltration abundance 

We calculated the correlation coefficient between immune cells infiltration and key genes to evaluate the correlation between the 
two (Supplementary Fig. 3). There was no significant correlation between the three downregulated genes (GNA14, AVPR1A, and 
WFS1) and the six immune cell types. The expression of LAMB3 and MET was significantly and positively correlated with that of B cells, 

Fig. 5. Immunohistochemical staining of key gene proteins in normal tissues and papillary thyroid cancer tissues. 
Immunohistochemical staining of MFGEB (A), PLAU (B), MET (C), LAMB3 (D), GNA14 (E) WFS1 (F) in normal tissues and papillary thyroid 
cancer tissues. 
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CD4+ T cells, macrophages, neutrophils, and dendritic cells (p < < 0.05, r > 0.3). The expression of MFGE8, PLAU, PRSS23, and 
SERPINA1 was significantly positively correlated with that of B cells, CD4+ T cells, neutrophils, and dendritic cells (p < < 0.05, r >
0.3). 

Furthermore, we analyzed the level of immune cell infiltration of key genes with different mutation types (Fig. 4A–I). Except for 
GNA14 and LAMB3, there were significant differences in the level of immune cell infiltration under different mutation states for the 
other key genes (p < < 0.05). 

3.7. Protein expression and methylation level of key genes 

The HPA database was used to retrieve immunohistochemical staining results for key gene proteins in normal thyroid and PTC 
tissues. As shown in Fig. 5A–F, the staining of MFGE8, PLAU, MET, and LAMB3 in cancer tissues was deeper, indicating a higher 
protein expression of these four genes in cancer tissues. In contrast, the staining of GNA14 and WFS1 in cancer tissues was lower than 
that in normal tissues, indicating relatively low protein expression of these two genes in cancer tissues. Immunohistochemical staining 
data for the other three genes were not retrieved from the HPA database. 

It is generally considered that DNA methylation within the CpG island region of a gene’s promoter region correlates with gene 
expression, whereas DNA methylation within the gene body is associated with chromosomal integrity [38]. The correlation between 
the methylation site level of the key gene and the expression level of the corresponding gene was analyzed using MEXPREWSS 
(Fig. 6A–I). The results indicated that the expression levels of most key genes were significantly negatively correlated with DNA 
methylation (p < 0.05). 

3.8. Construction of miRNA-target network 

A total of 4323 miRNA-target relationship pairs were predicted for the nine key genes, and the miRNA-target relationship pairs 
were further screened by taking the intersection with the 11 DEMIs above. These 11 DEMIs included six downregulated (hsa-miR-451a, 

Fig. 6. Correlation between DNA methylation and expression level of key genes. 
Correlation between DNA methylation and expression level of AVPR1A (A), GNA14 (B), LAMB3 (C), SERPINA1 (D), MET (E), MFGEB (F), PLAU (G), 
WFS1 (H) and PRSS23 (I). 
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hsa-miR-7-5p, hsa-miR-144–3p, hsa-miR-199b-5p, hsa-miR-204–5p, and hsa-miR-100–5p) and five upregulated (hsa-miR-551b-3p, 
hsa-miR-21–5p, hsa-miR-222–3p, hsa-miR-221–3p, and hsa-miR-146b-5p) genes. The expression of these 11 DEMIs was validated 
using the UALCAN database and consistent results were obtained (Fig. 7A). 

Eleven miRNA-target relationship pairs were screened, involving six key genes and six miRNAs (Fig. 7B). A regulatory relationship 
existed between hsa-miR-7-5p and PRSS23, SERPINA1, and MFGE8. hsa-miR-204–5p regulated the expression of PRSS23, MFGE8, and 
WFS1. MET and PLAU were regulated by hsa-miR-144–3p and hsa-miR-199b-5p, respectively. hsa-miR-221–3p regulated WFS1 
expression and hsa-miR-222–3p targeted PRSS23 and WFS1. 

3.9. Verification of the nine key genes using validation dataset and TCGA data 

The GSE64912 dataset was used to verify the expression of nine key genes (Fig. 7C). Consistent with the predicted results, the 
expression levels of GNA14, AVPR1V, and WFS1 in the tumor tissues were significantly lower than those in the control group (p ≤
0.05), whereas the expression levels of LAMB3, PLAU, MET, MFGE8, PRSS23, and SERPINA1 in the tumor tissues were significantly 
higher than those in the control group (p < < 0.01). 

In addition, the expression of nine key genes was verified in TCGA database. As shown in Fig. 7D, the expression levels of these nine 
genes were significantly different between the papillary carcinoma and normal samples. Among these, GNA14, AVPR1A, and WFS1 
were significantly upregulated in papillary carcinoma samples, whereas LAMB3, PLAU, MET, MFGE8, PRSS23, and SERPINA1 were 
significantly downregulated in papillary carcinoma samples, consistent with our previous prediction. 

3.10. Prognostic value of key genes 

The expression levels of key genes in the subgroups were divided according to clinical factors (Supplementary Fig. 4). The 
expression of two downregulated genes (AVPR1A and GNA14) in the late stage (stages III–IV) of the tumor was lower than that in the 
early stage (stages I–II), and the other seven upregulated genes showed the opposite trend. Except for AVPR1A, GNA14, and WFS1, all 
other key genes showed high expression levels in follicular thyroid papillary carcinoma. Furthermore, the expression of two down
regulated genes in the non-metastatic group (N0) was higher than that in the lymph node metastasis group (N1), whereas the 

Fig. 7. miRNA-target analysis. A, verification of the expression of miRNAs in the TCGA data using UALCAN; B, miRNA-target interaction network. 
C, verification of the expression of key genes in the GSE64912; D, verification of the expression of key genes in the TCGA data using GEPIA. Red 
hexagons indicate upregulated genes, and green hexagons indicate downregulated genes. The yellow arrow indicates upregulated miRNA, and the 
purple arrow indicates downregulated miRNA. 

L. Pan et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e27928

11

expression of six upregulated genes showed the opposite trend. These results imply that the expression of these nine key genes is 
correlated with clinical factors. Therefore, we further investigated the prognostic values of these genes. The results indicated that 
patients in the AVPR1A and GNA14 high expression groups had better DFS than those in the low expression group (Fig. 8A–B). To 
identify independent prognostic factors, clinical factors and key genes were analyzed using univariate Cox regression analysis 
(Fig. 8C). The results indicated that pathologicT, pathologicN, and GNA14 levels were significantly correlated with DFS (p < 0.05). 
Further multivariate Cox regression analysis revealed that only the pathological T stage was an independent prognostic factor (Fig. 8D) 
(p < 0.05). 

4. Discussion 

As the most common type of thyroid cancer, PTC has a better prognosis than other malignant tumors, but there are still about 30% 
of patients with PTC who will relapse after treatment [39]. This study aimed to provide new insights into the pathogenesis and 
treatment of PTC by studying the roles of key genes in PTC. 

By integrating the data from multiple datasets and eliminating batch effects, 478 DEGs were identified. The 478 DEGs were mainly 
involved in signal transduction, cell adhesion, and some cancer pathways. A previous study has shown that common mutations in PTC 
(BRAF mutations and RET/PTC1 rearrangements) have different sensitivities to MEK1/2, suggesting different signal transduction 
pathways [40]. Many studies have shown that in malignant tumors, tumor progression is related to changes in cell adhesion, which can 
affect the biological characteristics of the tumors [41]. This result indicated that the screened DEGs may participate in the occurrence 
and development of PTC. 

Ten modules were screened for genes with a large degree of variation using WGCNA. Further analysis found that the green module 
had a significant negative correlation with PTC (r = − 0.82, p = 4e-42) and a significant positive correlation with control (r = 0.82, p =
4e-42). The brown module showed opposite results to those of the green module. By integrating the brown and green modules with the 
PPI network modules, we identified nine key genes. GNA14 encodes the G protein subunit alpha 14, and its mutation can upregulate 
the MAPK pathway to make cell growth factors independent [42]. A previous study reported that a high expression level of GNA14 is 
positively related to a better prognosis of thyroid cancer S [43], which is consistent with our findings. However, in another study, 

Fig. 8. Prognostic analysis. A, KM curves of disease free survival (DFS) for the expression of AVPR1A. B, KM curves of DFS for the expression of 
GNA14. C, univariate Cox proportional hazards analysis. D, multivariate Cox proportional hazard analysis. 
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GNA14 was found to stimulate the expression of KLF7 in endometrial cancer (UCEC) cells, while Krüppel-like factor 7 (KLF7) promoted 
the proliferation and migration of UCEC cells and inhibited apoptosis [44]. Therefore, the specific mechanism of GNA14 action re
quires further experimental validation. Arginine vasopressin receptor 1A (AVPR1A) is a receptor for arginine vasopressin. Arginine 
vasopressin is a hormone that regulates water balance in mammals and is associated with social behavior [45]. This study found that 
patients with PTC and high AVPR1A expression had better DFS than those with low expression group. Further experiments are needed 
to confirm the role of AVPR1A in PTC. Wolframin ER transmembrane glycoprotein (WFS1) is associated with diabetes, deafness, optic 
nerve atrophy, and mental retardation [46]. Laminin subunit beta 3 (LAMB3) is a risk factor of PTC. LAMB3 upregulation can increase 
the proliferation and metastasis of PTC [47]. It has also been reported that metastatic tumor behavior in PTC could be mediated by 
LAMB3 based on c-MET/Akt signals [48]. In this study, the expression level of LAMB3 positively correlated with the infiltration levels 
of macrophages, neutrophils, B cells, CD4+ T cells, and dendritic cells. Plasminogen activator urokinase (PLAU) is a type of protease. 
PLAU activates the MAPK and Jak-STAT signaling pathways. This activation is achieved indirectly by direct binding of PLAU to uPAR 
or by activating plasmin [49]. Researchers have demonstrated that PLAU plays an important role in the early process of tumor cell 
dissemination, which is the initial deliberation of cancer cells from primary sites [49]. Wang et al. showed that the inhibition of PLAU 
expression suppressed the migratory and invasive abilities of cervical cancer cells by downregulating MMP2 expression [50]. Studies 
have reported that PLAU can be used as a biomarker for PTC therapy [51]. MET encodes the product of the proto-oncogene MET and is 
a member of the receptor tyrosine kinase family of proteins. Fusion of MET and multiple genes (RET, NTRK3, ALK, NTRK1, and BRAF) 
has been found in children with PTC [52]. Milk fat globule EGF and factor V/VIII domain-containing (MFGE8) oncogenes are potential 
targets for ovarian cancer treatment [53]. Xue et al. reported that MFGE8 was overexpressed in PTC tissues [54], which is consistent 
with the results of our study. Serine protease 23 (PRSS23) is upregulated in TPC [55]. Serpin family member 1 (SERPINA1) is a po
tential diagnostic marker of PTC [56]. We also screened for miRNAs that could regulate key genes. These genes are widely reported to 
be associated with a variety of cancers [57,58]. 

Prognostic analysis of the key genes showed that only AVPR1A and GNA14 were significantly associated with DFS, and none of the 
nine key genes were found to be independent prognostic factors. These results suggest that these nine genes are only suitable diagnostic 
factors rather than prognostic factors. Our study has several advantages. First, we integrated multiple datasets, and the results from big 
data were more reliable. Second. we eliminated batch effects from the consolidated data. Finally, key genes were verified using both 
the proteome and transcriptome. This study had some limitations. Because our results were predicted using datasets from public 
databases, more in vitro and in vivo experiments are needed in the future. 

In conclusion, nine key genes and related miRNAs were screened, and multiple analyses indicated that they may be therapeutic 
targets for PTC. This study provides novel insights into the mechanisms underlying PTC development. 

Funding 

This research was supported by the National Natural Science Foundation of China (No. 82072184). 

CRediT authorship contribution statement 

Lingfeng Pan: Writing – original draft, Formal analysis, Data curation, Conceptualization. Lianbo Zhang: Writing – review & 
editing, Methodology, Formal analysis. Jingyao Fu: Resources, Investigation. Keyu Shen: Writing – review & editing, Resources. 
Guang Zhang: Writing – review & editing, Project administration, Formal analysis. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e27928. 

References 

[1] H. Sung, J. Ferlay, R. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries, CA Cancer J Clin 71 (2021) 209–249. 

[2] C.M. Kitahara, J.A. Sosa, The changing incidence of thyroid cancer, Nat. Rev. Endocrinol. 12 (2016) 646–653. 
[3] J. Yu, Y. Deng, T. Liu, J. Zhou, X. Jia, T. Xiao, S. Zhou, J. Li, Y. Guo, Y. Wang, Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer 

learning radiomics, Nat. Commun. 11 (2020) 1–10. 
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