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Abstract: Acute myeloid leukemia (AML) carrying inv(16)/t(16;16), resulting in fusion transcript
CBFB-MYH11, belongs to the favorable-risk category. However, even if most patients obtain morpho-
logical complete remission after induction, approximately 30% of cases eventually relapse. While
well-established clinical features and concomitant cytogenetic/molecular lesions have been recog-
nized to be relevant to predict prognosis at disease onset, the independent prognostic impact of
measurable residual disease (MRD) monitoring by quantitative real-time reverse transcriptase poly-
merase chain reaction (qRT-PCR), mainly in predicting relapse, actually supersedes other prognostic
factors. Although the ELN Working Party recently indicated that patients affected with CBFB-MYH11
AML should have MRD assessment at informative clinical timepoints, at least after two cycles of
intensive chemotherapy and after the end of treatment, several controversies could be raised, es-
pecially on the frequency of subsequent serial monitoring, the most significant MRD thresholds
(most commonly 0.1%) and on the best source to be analyzed, namely, bone marrow or peripheral
blood samples. Moreover, persisting low-level MRD positivity at the end of treatment is relatively
common and not predictive of relapse, provided that transcript levels remain stably below specific
thresholds. Rising MRD levels suggestive of molecular relapse/progression should thus be confirmed
in subsequent samples. Further prospective studies would be required to optimize post-remission
monitoring and to define effective MRD-based therapeutic strategies.

Keywords: acute myeloid leukemia; CBFB-MYH11 fusion transcript; molecular measurable residual
disease monitoring; prognostic thresholds and timepoints; intensive chemotherapy; clinical outcomes
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1. Introduction

The latest 2017 European Leukemia Net (ELN) recommendations for the diagno-
sis and management of acute myeloid leukemia (AML) in adults [1] confirm AML with
inv(16)(p13.1q22) or t(16;16)(p13.1;q22) as a single entity in the category of AML with
recurrent genetic abnormalities. Together with AML with t(8;21)(q22;q22.1), they are col-
lectively referred to as core-binding factor (CBF) AML, cytogenetically and molecularly
defined by abnormalities involving genes encoding subunits of core-binding factors. CBFs
are a family of heterodimeric transcriptional elements implicated in the regulation of
hematopoiesis [2,3], containing a common CBFB subunit associated, in lymphoid and
myeloid tissues, with RUNX1, one of the three CBFA members. The translocation (8;21)
results in the creation of a chimeric gene RUNX1/RUNX1T1, while inv(16), or with signif-
icantly lower incidence t(16;16), leads to the fusion of the CBFB gene with MYH11, the
smooth muscle myosin heavy chain gene, resulting in the chimeric CBFB-MYH11 gene,
which occurs in approximately 8% of adults with de novo AML [4].

According to 2017 ELN risk stratification [1], CBF AML are classified in the favorable
risk category, with high CR rates after standard induction therapy and encouraging outcome,
in particular after consolidation regimens containing a repetitive cycle of high-dose cytara-
bine [5]. Nevertheless, the 5-year overall survival (OS) rate in patients with CBF AML is about
50–60% [6], suggesting that it would be required to detect markers of more aggressive disease
phenotypes, in order to optimize prognostic stratification-oriented treatments.

The effects on the long-term outcome of secondary cytogenetic abnormalities, de-
tected in approximately 40% of inv(16) AML patients [7,8], and additional molecular le-
sions, which have been demonstrated to be required for leukemogenic transformations [9],
remain controversial.

In the last decades, probably depending on the accessibility of increasingly sensitive
biomolecular tools, the focus has shifted to disease evaluation in terms of the dynamic
quantitative assessment of molecular measurable residual disease (MRD). Indeed, the
changing of MRD levels throughout cycles of therapy, in particular the reduction at a
specific timepoint compared to pre-treatment baseline levels, has proved to be the most
useful independent prognostic variable for survival, allowing one to identify patients at
high risk of relapse, as possible candidates for more intensive therapeutic approaches,
including allogeneic hematopoietic stem cells transplantation (allo-SCT).

The purpose of this manuscript is to offer an overview on the most prognostic factors
affecting the clinical outcomes of patients with AML harboring CBFB-MYH11, with a
special focus on the role of MRD monitoring in risk stratification and treatment guidance.

2. Patient- and Disease-Related Features at Diagnosis

In general, AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22), hereafter referred as
inv(16), exhibits some peculiarities, which also differentiate it when compared to AML with
t(8;21)(q22;q22.1), abbreviated t(8;21) [6–8,10], such as presentation with acute myelomono-
cytic leukemia bone marrow morphology accompanied with abnormal/dysplastic eosinophils.
Extramedullary disease, such as lymphadenopathy, hepatosplenomegaly, skin and gin-
gival infiltrates, is often associated with inv(16) [6,8], whereas myeloid sarcoma in other
extramedullary sites appears more frequently in t(8;21), and associated with worse
prognosis [11].

Focusing on clinical variables (Table 1) [6–8,10,12–33], age is recognized as a negative
prognostic factor, not only for a lower response to induction therapy, but also with regard
to survival. CBF AML is relatively more incident among younger patients, accounting for
only 5–8% of all AML over 60 years [34,35]. However, among the entire population, the
incidence of CBF AML increases with age, reflecting the rise of all AML cases in the general
population [22]. While elderly patients with CBF AML retain better prognosis compared to
those with other AML subtypes, in comparison to younger patients with CBF AML, they
reveal significantly worse outcomes. First of all, comorbidities and poorer performance
status might hamper management with a standard regimen of therapy. As a consequence,
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older patients show high therapy-related mortality [8] because of excessive toxicity from
chemotherapy. Nonetheless, it is demonstrated that when patients who die early within
the end of induction are excluded, trends of long-term survival are similar in younger
and older subgroups [22]. In addition, elderly patients seem to fail to clear leukemic cells,
suggesting a refractory attitude, due to modifications in pharmacokinetic and multidrug
resistance phenotype [36–38]. It has also been proposed that in older patients AML results
from a series of mutational events, leading to the development of multiple subclones
potentially showing chemo-escape mechanisms. Of interest, when treated with intensive
schedules, elderly CBF AML patients frequently obtain CR, also in the setting of rescue
therapy after relapse [23]. However, regarding long-term survival, the reported negative
impact of age on OS and RFS is attributable to more frequent additional chromosome
abnormalities, a possible indicator of genetic instability, as well as to attenuated post-
induction treatments [39]. As evidenced in Table 1, some studies identified statistically
significant age cut-offs; when considering data collectively, patients over 40 years of age
have a dismal outcome.

As reported in several studies, WBC counts and parallel bone marrow/peripheral
blood (BM/PB) blast percentages are higher in inv(16) than t(8;21) AML, at diagno-
sis [6–8,40], proposing a somewhat different type of proliferation kinetics, perhaps related
to additional genetic aberrations, such as receptor tyrosine kinase (RTK) mutations [19].
Several authors agree on granting a prognostic relevance to white blood cell (WBC) counts,
by recognizing, in some cases, cut-off points for statistical significance [10,13,17,29]. Nev-
ertheless, the negative impact of leukocytosis in terms of either response to therapy or of
long-term remission has not so far definitely assessed. Indeed, while a correlation between
induction failure and early death in inv(16) AML emerging with hyperleukocytosis [8,10]
has been documented, on the other hand, prolonged CR could also be observed regardless
of WBC counts at onset. Furthermore, even if an unfavorable effect of high WBCs in increas-
ing relapse rate has been demonstrated [41], no influence on OS was observed, probably
depending on deep responsiveness to alternative rescue strategies. Analogous observations
could be provided about platelets (PLT) count: the French AML intergroup [10] identified
an optimal PLT count threshold predictive of induction failure, without worsening the
subsequent risk of relapse. Although a documented WBC threshold indicating high risk
is not currently available [42], data recommend more prudent approaches in induction
treatment for patients admitted with leukocytosis and/or thrombocytopenia.

Hoyos et al. [17] confirmed both age and WBC count as variables associated with
decreased OS, when using these parameters to separate three groups with statistically
significant difference of survival, namely, 80% at 5 years for patients without adverse
factors versus 61% for patients with one factor and 36% for patients older than 50 years
and with WBC > 20 × 109/L.

A marginal role is conferred to sex and ethnicity. In fact, only Marcucci et al. [6] and
Paschka et al. [43] attributed a prognostic significance to sex. The former study showed
that male patients could survive longer, and the latter study reported that female patients
with inv(16), younger than 60 years, were more likely to maintain shorter remission.
Fewer reports addressed the prognostic impact of ethnicity. Inv(16) AML is somewhat
less frequent among non-whites compared to patients with t(8;21). Moreover, Black and
Hispanic patients have worse survival rates compared to white Caucasian patients [22].
These findings are possibly related to different biological behavior of the disease, because
the environmental disparities are not considered sufficient to justify an evident divergence
among patients treated according to the same protocols.
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Table 1. Prognostic impact of clinical features at diagnosis in patients with AML showing inv(16)/t(16;16).

Reference; Design
of Study

N. of Patients with
inv(16)

Median Age, Years
(Range); Median

Follow-Up, Months
Survival Outcome

Factors of Prognostic Relevance

Patient’s Characteristics and Clinical Features Genetic Features (Other
than KIT Mutations)

Delaunay et al. [10],
Blood 2003

retrospective
110 34 (0.7–64)

68.4

CR 93%
3-y OS 58%

3-y DFS 48%
3-y CIR 42%

UVA—WBC > 120 × 109/L: lower CR
PLT < 30 × 109/L: lower CR, OS in CR

Age >35: lower 3-y DFS, OS in CR; higher CIR
MVA—WBC > 120 × 109/L: lower CR

PLT < 30 × 109/L lower OS in CR
Age > 35: lower 3-y DFS, OS in CR

+22: lower CR

Schlenk et al. [8],
J. Clin. Oncol. 2004

prospective
201 42 (17–60)

36

CR 89%
CR2 78%

3-y OS 74%
3-y RFS 58%

Older age, higher WBC: increased early/hypoplastic death +22: higher RFS

Marcucci et al. [6],
J. Clin. Oncol. 2005

prospective
168 40 (17–77)

76.8
CR 87%

5-y OS 54%
5-y CIR 57%

Lower PLT, hepatomegaly: lower CR
Older age, lower PLT: lower OS

Older age: lower OS after relapse
In younger than 60, sex (male): lower CIR

+22: lower RR
In younger than 60,

secondary chromosome
abnormalities: lower CIR

Boissel et al. [12],
Leukemia 2006;

retrospective
47 33 (1–75) *

52.8 *
CR 89%

6-y OS 71%
6-y EFS 60%

NA FLT3mut: lower CR,
OS, EFS *

Appelbaum et al. [7],
Br. J. Haematol. 2006;

retrospective
196 41 (16–83)

108
CR 85%

5-y OS 50%
5-y RFS 44%

UVA—Older age, secondary AML: lower CR *
UVA—Older age, PB and BM blast %: lower OS *
MVA/UVA—Older age, PB blast%: lower RFS *

−7/7q-: higher RD *
+8, complex abnormality:

lower OS *

Wang et al. [13],
Biochem. Biophys.

Res. Commun. 2012
11 28 (16–64) CR 81.8% WBC >100 × 109: lower CR and OS * NA

Kim et al. [14],
Ann. Hematol. 2013

retrospective
39 38 (18–69)

27
CR 100%

2-y OS 57.1%
2-y EFS 47.5%

MVA—Older age: lower EFS NA

Allen et al. [15],
Leukemia 2013
retrospective

155 39 (15–70) *
99.6 * 10-y OS 54% NA

FLT3-TKDHIGH: lower
RR, higher OS

FLT3-ITDHIGH: higher RR,
lower OS *

CBLHIGH: higher OS *
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Table 1. Cont.

Reference; Design
of Study

N. of Patients with
inv(16)

Median Age, Years
(Range); Median

Follow-Up, Months
Survival Outcome

Factors of Prognostic Relevance

Patient’s Characteristics and Clinical Features Genetic Features (Other
than KIT Mutations)

Jourdan et al. [16],
Blood 2013
prospective

102 42 (18–60)
32

3-y RFS 61%
3-y CIR 34%
3-y OS 86%

UVA—Higher WBC: higher SHR *
Older age, BM blast %: lower OS *

MVA—3-log MRD2 reduction or MRD2 < 0.1%: lower CIR,
higher RFS, higher OS from CR *

RTKmut: higher CIR,
lower RFS *

Hoyos et al. [17],
Eur. J. Haematol. 2013

prospective
76 42 (18–68)

55

CR 84%
5-y CIR 29%
5-y DFS 58%
5-y OS 64%

Age > 50: lower CR, lower OS*
WBC > 20 × 109/L: higher CIR, lower DFS, lower OS *

High copies at diagnosis: higher CIR, lower DFS,
lower OS *

High MRD after induction: higher CIR, lower DFS,
lower OS

High MRD after consolidation: higher CIR, lower DFS,
lower OS

BAALC and MN1
overexpression: higher

CIR, lower DFS

Cairoli et al. [18],
Am. J. Hematol. 2013

prospective
58 42 (15–60)

50

CR 96.5%;
CR2 74%

5-y RI 48.4%
5-y OS 69.2%

UVA—Age > 43: lower OS
MVA—Age > 43: lower OS

Higher WBC: higher RI
NA

Paschka et al. [19],
Blood 2013
prospective

176 41 (18–74)
72.4

CR 90%
6-y RFS 52%
6-y OS 66%

MVA—Higher WBC: lower RFS
Older age: lower OS

UVA—+22: higher RFS
+8, FLT3 mutation:

lower OS
MVA—+8, FLT3 mutation:

lower OS

Yoon et al. [20],
Bone Marrow

Transplant. 2014
retrospective

71 39 (18–89) *
61.8 * NA

UVA—Age > 40: lower OS, higher CIR *
Post-induction MRD reduction < or =3-log: lower OS *

MRD after final treatment undetectable: higher OS

NK mosaicism: higher
OS, higher EFS §

UVA—additional
chromosome > or =2:

lower OS, higher CIR *

Jung et al. [21],
Anticancer Res. 2014

retrospective
16 47 (18–75)

NA
CR 92.3% *

Median OS 80.6 months *
Median RFS 68.4 months *

PLT < 20 × 109/L, PB blasts > 50%, BM blasts > 50%:
lower OS *

PLT < 20 × 109/L, BM blasts >50%: lower LFS *

Y deletion: higher OS
and LFS *
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Table 1. Cont.

Reference; Design
of Study

N. of Patients with
inv(16)

Median Age, Years
(Range); Median

Follow-Up, Months
Survival Outcome

Factors of Prognostic Relevance

Patient’s Characteristics and Clinical Features Genetic Features (Other
than KIT Mutations)

Brunner et al. [22],
Leuk. Res. 2014

retrospective
320 54 (15–84) *

NA

1-y OS 71.9%
3-y OS 57.3%
5-y OS 46.9%

Older age: higher early death rate, lower OS *
Black ethnicity, year of diagnosis before 2003: lower OS * NA

Mosna et al. [23],
Am. J. Hematol. 2015

retrospective
112 45.1 (15–73)

73.4

CR 93.8% §

5-y OS 67% *
10-y OS 63.9% *
5-y DFS 58.2% *

10-y DFS 54.8% *
5-y EFS 53.9% *

10-y EFS 49.9% *

UVA—PLT ≤ 20 × 103/mm3, failure to achieve CR1 after
induction therapy: lower OS

MVA—Age > 60, PLT ≤ 20 × 103/mm3: lower OS

+22, +8: higher OS and
DFS *

Additional cytogenetic
abnormalities > or =3:

lower DFS, EFS and OS *

Yui et al. [24],
Ann. Hematol. 2017

retrospective
28 45 (15–80) *

NA

3-y RFS 48.6% *
3-y OS 69.9% *
3-y CIR 46.7% *

Age > 60, no HDAC as post-remission therapy: lower OS
and RFS * NA

Prabahran et al. [25],
Eur. J. Haematol. 2018

retrospective
30 46.5 (17–73)

31.4

CR 97% *
5-y OS 71% *

5-y RFS 39% §

5-y RR 57% §

UVA and MVA—age > 50: lower OS *
UVA—WBC > 40 × 109/L: lower RFS *

RTKmut: no impact on
OS, RFS

Shin et al. [26],
Ann. Hematol. 2019

retrospective
111 45 (17–85)

NA
3-y EFS 47.1%
3-y OS 59.9%

UVA—Age > 60, number of induction cht > 1, not CR after
first induction, not CR before SCT: lower OS

MVA—not CR before SCT: lower OS
del(7q): higher OS (NS)

Opatz et al. [27],
Leukemia 2020 162 44 (17–83)

43.2
CR 97.1% UVA—Age > 60: lower OS UVA—+8, +22: higher OS

(NS)

Ishikawa et al. [28],
Blood Adv. 2020

prospective
67 37 (17–64)

52.2
2-y RFS 59.6% MVA—MRD ≥ 50 copies/µg RNA after 3 courses of

consolidation: lower RFS

MVA—Loss of X/Y,
NRAS mutation: lower

RFS

Ustun et al. [29],
Int. J. Lab. Hematol.

2020
retrospective

290 49 (5–78)
NA

Median EFS 25.5 m
Median DFS 29.5 m

MVA—Age > or =43: lower EFS, DFS, OS
WBC ≥ 98 × 109/L: lower EFS, DFS

NA
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Table 1. Cont.

Reference; Design
of Study

N. of Patients with
inv(16)

Median Age, Years
(Range); Median

Follow-Up, Months
Survival Outcome

Factors of Prognostic Relevance

Patient’s Characteristics and Clinical Features Genetic Features (Other
than KIT Mutations)

Jahn et al. [30],
Blood Adv. 2020

prospective
160 46 (18–77)

51.6 CR 92% Age: lower OS
WBC, t-AML: lower RFS

+8, FLT3-ITD, TET2,
DNMT3A: lower OS *
WT1wt: higher OS *

NRASwt: higher
OS (NS) *

Duan et al. [31],
Br. J. Haematol. 2021

retrospective
58 38 (17–66)

29.8
CR 98.3%

3-y CIR 29.4%
3-y CIM 24.4%

Age > 41: lower RFS
MRD > 0.1% after 2 courses of consolidation: lower

RFS, EFS
NA

Duan et al. [32],
Ann. Hematol. 2021

retrospective
68 39 (15–70) *

26 *
CR 99.5% *

3-y CIR 29.4% *
3-y CIM 27% *

MRD < 0.1% after 2 course of consolidation: higher RFS, OS NA

Han et al. [33],
Blood Adv. 2021

retrospective
290 50 (5–81)

39.6
CR 93%

5-y OS 68%
5-y DFS 47%

UVA—Age: lower OS, DFS

UVA—Hyperdiploidy, +8,
secondary chromosomal

abnormalities: higher DFS
MVA—Chromosomal

abnormalities
other than +8: lower OS

+8: higher OS

CR: complete remission after induction; CR1: 1st CR; CR2: 2nd CR; OS: overall survival; RFS: relapse-free survival; EFS: event-free survival; DFS: disease-free survival; LFS: leukemia-free survival; CIR:
cumulative incidence of relapse; CIM: cumulative incidence of mortality; RI: relapse incidence; RR: relapse rate; RD: resistant disease; cht: chemotherapy cycle; HDAC: high-dose cytarabine; mut: mutated; wt:
wild-type; UVA: univariate analysis; MVA: multivariate analysis; WBC: white blood cell count; PLT: platelets count; PB: peripheral blood; BM: bone marrow; MRD: measurable residual disease; MRD2: MRD
before second consolidation course; SCT: stem cell transplant; SHR: specific hazard of relapse; AML: acute myeloid leukemia; t-AML: therapy-related AML; NK normal karyotype; NA: not available data; NS: not
statistically significant data; * Data referred to entire cohort of the study; § Data referred to CBFB-MYH11 AML cohort.
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2.1. Secondary Additional Genetic Abnormalities

According to the latest evidence [30] formulated on the theory of multistep outset
of AML [3,44], CBF AML seems to result from the acquisition of a sequential order of
mutations, affecting firstly transcription and differentiation (such as CBF) genes, followed
by activating alterations that increase proliferation, such as class III RTKs. Additional
lesions in this latter gene family are the most common in CBF AML [30], involving pri-
marily the KIT gene (occurring in 17–38% of CBF AML [45]), whose significance on the
prognosis of AML has been widely debated. KIT aberrations could affect either the tyrosine
kinase domain, with substitution of a single amino acid at codon 816 or 822 within exon
17 (higher incidence among CBF AML [14,28]), or the extracellular domain, corresponding
to insertions or deletions in exon 8; more rarely, internal tandem duplications in exon
11 could impair the juxtamembrane domain. Due to the debatable negative impact at-
tributed to KIT mutation, CBF AML with KIT mutation was formerly assigned to the
intermediate category, whereas more recent guidelines only stated that prognosis may
be less favorable than CBF AML without such a mutation. When the two subtypes of
CBF AML are considered, the majority of reports agree in conferring adverse prognosis
in terms of relapse and sometimes [17,27] OS, mainly due to exon 17 mutation, in t(8:21)
AML, as documented in some analyses restricted to D816 alteration, compared to other KIT
mutations [14,26,32,41,46]. On the contrary, the impact of KIT mutations on inv(16) is less
well concerted (Table 2). Different to t(8;21) AML, most recurrent alterations affect exon 8,
in inv(16) AML [19,27,47]. Some authors recognize a correlation between KIT mutations
and other biological features, such as higher WBCs and circulating blasts at onset [43], as-
sisting the idea that RTK mutations lead to the enhancement of proliferation. Interestingly,
the most consistent evidence concerning the unfavorable influence of KIT mutations is
provided to influence the relapse rate [48,49], rather than the OS, probably owing to the
higher sensitiveness to salvage therapy [8]. Schwind et al. [50] investigated the survival
implication of non-type A fusion transcripts in inv(16) AML, documenting their association
to longer EFS, maybe not strictly depending on the type of transcript, but because of the
mutual exclusivity of non-type A and KIT mutations. In fact, in patients harboring the most
frequent type A fusion transcript, better prognosis is achieved in those with wild-type KIT.
The divergences among studies could be also related to allele burden, as demonstrated by
Allen et al. [15] In the total cohort of CBF AML, outcomes are improved in KIT-mutated
cases with a higher mutant level of 25%, in terms of relapse risk. Yoon et al. [20] illustrated
poorer OS in CBFB-MYH11 AML with c-KIT mutation, by including this genetic alteration
in a prognostic-risk scoring, combining age and additional chromosome abnormalities,
and attributing an important weight on survival. Moreover, Ishikawa et al. [28] observed
that c-KIT mutations correlated, statistically, to a lower reduction in fusion transcript levels,
after the completion of consolidation chemotherapy, similar to what Qin et al. [47] docu-
mented after the first induction, despite neither impacting OS nor RFS. The importance of
RTK mutations was related to the emerging possibility to target them by tyrosine kinase
inhibitors, based on their activity on different mutations: first-generation TKIs (such as
imatinib) work effectively against KIT variants of exon 8 and exon 17 mutants involving
codon N822, but not against mutants involving codon D816, successfully targeted by other
drugs, such as dasatinib and midostaurin [51]. However, the currently available data do
not support the routine use of TKIs in association with chemotherapy outside of clinical
trials [52]. Moreover, MRD status mainly outweighs the prognostic effects of additional
signaling mutations, so that several authors do not take any clinical action based on KIT
mutation status only. Overall, due to the lack of evidence about its impact on long-term
prognosis in AML, the assessment of KIT mutational status is not recommended as part of
the initial routine diagnostic workup, based on the international ELN recommendations [1].
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Table 2. Prognostic relevance of KIT gene mutation in AML positive for inv(16)/t(16;16).

Reference N. Median Age, Years
(Range) KIT Exons Analyzed Proportion of Patients with

KIT Mutations, % Prognostic Relevance of KIT Mutations

Care et al. [48],
Br. J. Haematol. 2003 63 43.9 (15–74) 8, 17 32 (20/63) Higher RR with KIT exon 8 mutation

Boissel et al. [12],
Leukemia 2006 47 33 (1–75) * 8, 17 22 (10/46)

No impact on OS, RFS, EFS
In t(8;21): negative impact on OS, RFS, EFS and association

to higher WBC

Cairoli et al. [41],
Blood 2006 25 51 (17–88) 8, 11, 17 48 (12/25)

No impact on RI, OS
In t(8;21): negative impact on OS, RFS, EFS for D816 and
association to higher WBC and extramedullary leukemia

Paschka et al. [43],
J. Clin. Oncol. 2006 61 NA 8, 17 29.5 (18/61)

Higher CIR in mutKIT patients, mainly in exon
17 mutations (six times RR)

Inferior OS in MVA in mutKIT patients
Association to higher PB blast percentage and older age

Marková et al. [53],
Leuk. Lymphoma 2009 26 29.3 (1.6–72.2) * 8, 9, 10, 11, 17, 18 50 (13/26) No impact on RFS, OS

Park et al. [49],
Leuk. Res. 2011 38 NA 8, 17 34 (13/38)

Lower CR with KIT exon 8 mutation; no impact on EFS, OS
In t(8;21): negative impact on OS, EFS with KIT exon

17 mutation

Wang et al. [13],
Biochem. Biophys. Res.

Commun. 2012
11 28 (16–64) 8, 17 28.9 (22/76) * Lower CR with KIT exon 17 mutation *

Lower OS, RFS in mutKIT patients *

Huh et al. [46],
Am. J. Hematol. 2012 35 41 (15–75) * 8, 10, 11, 12, 13, 17 23 (21/91) *

No impact on OS
In t(8;21): negative impact on OS, EFS, LFS with KIT exon

17 mutation (D816)

Kim et al. [14],
Ann. Hematol. 2013 39 38 (18–69) 8, 10, 11, 12, 13, 17 26.4 (32/121) *

No impact on OS, EFS
In t(8;21): negative impact on OS, EFS with KIT exon

17 mutation (D816)

Allen et al. [15],
Leukemia 2013 155 39 (15–70) * 8,9, 10, 11, 17, 18 35 (54/155) No impact on CIR, OS in MVA

In t(8;21): negative impact on CIR for KITHIGH mutant level
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Table 2. Cont.

Reference N. Median Age, Years
(Range) KIT Exons Analyzed Proportion of Patients with

KIT Mutations, % Prognostic Relevance of KIT Mutations

Jourdan et al. [16],
Blood 2013 102 42 (18–60) 8, 17 18 (18/102) Negative impact on CIR (p = 0.057) *

Hoyos et al. [17],
Eur. J. Haematol. 2013 76 42 (18–68) 8, 17 49 (19/39) No impact on CIR, DFS, OS

In t(8;21): negative impact on CIR

Cairoli et al. [18],
Am. J. Hematol. 2013 58 42 (15–60)

50 2, 8, 10, 11, 17 25.9 (15/58) No impact on CR, RI, OS

Paschka et al. [19],
Blood 2013 176 41 (18–74) 8, 10, 11, 17 37 (65/175) Lower RFS with KIT exon 8 mutation

Association to higher WBC and PB blast %

Riera et al. [54],
Oncol. Rep. 2013 14 42.7 (19–64) * 8, 9, 10, 11, 13, 14, 17 28.6 (4/14) No impact on CR, OS, DFS

Association to higher lactate dehydrogenase level

Schwind et al. [50],
Blood 2013 208 41 (17–74) 8, 17 24 (48/208) Lower OS, EFS

Yoon et al. [20],
Bone Marrow

Transplant. 2014
71 39 (18–89) * 17 25 (6/24) Lower OS

Park et al. [55],
Ann. Lab. Med. 2015 21 47 (16–82) 8, 17 14.3 (3/21) No impact on DFS, OS

In t(8;21): negative impact on DFS, OS

Qin et al. [47],
Leuk. Res. 2014 98 (0.5–73) 8, 17 29.6 (29/98)

No impact on CIR, DFS, OS
Less reduction in fusion transcript levels after first

induction therapy
In t(8;21): negative impact on OS, DFS, CIR

Mosna et al. [23],
Am. J. Hematol. 2015 112 45.1 (15–73) 8 10.2 (4/39) No impact on OS

In t(8;21): negative impact on OS

Yui et al. [24],
Ann. Hematol. 2017 28 45 (15–80) * 8, 17 16 (10/28) Lower OS, RFS with KIT exon 17 mutation (D816)

Prabahran et al. [25],
Eur. J. Haematol. 2018 30 46.5 (17–73) NA 58 (7/12) No impact on OS, RFS
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Table 2. Cont.

Reference N. Median Age, Years
(Range) KIT Exons Analyzed Proportion of Patients with

KIT Mutations, % Prognostic Relevance of KIT Mutations

Shin et al. [26],
Ann. Hematol. 2019 111 45 (17–85) 17 NA

No impact on OS, EFS
In t(8;21): negative impact on OS, EFS with KIT exon

17 mutation (D816)

Opatz et al. [27],
Leukemia 2020 162 44 (17–83) 17 26 (41/162)

No impact on RFS, OS
In t(8;21): negative impact on RFS with KIT exon

17 mutation (D816)

Ishikawa et al. [28],
Blood Adv. 2020 67 37 (17–64) 8, 10, 11, 17 31.3 (21/67)

No impact on OS, RFS
In t(8;21): negative impact on OS, RFS with KIT exon

17 mutation; association to higher WBC and BM blast %;
association to MRD level after consolidation

Jahn et al. [30],
Blood Adv. 2020 160 46 (18–77) 8, 17 26 In t(8;21): negative impact on OS with KIT exon

17 mutation

Duan et al. [31],
Br. J. Haematol. 2021 58 38 (17–66) 8, 17 27.5 (16/58) Lower RFS

Duan et al. [32],
Ann. Hematol. 2021 68 39 (15–70) * 8, 17 27.9 (19/68) Lower RFS, OS with KIT mutation, especially with KIT

exon 17 mutation (D816, D820) *

Han et al. [33],
Blood Adv. 2021

retrospective
290 50 (5–81) 17 13 In t(8;21): negative impact on OS, DFS with KIT exon

17 (D816) mutation

CR: complete remission after induction; RFS: relapse-free survival; OS: overall survival; RI: relapse incidence; RR: relapse rate; DFS: disease-free survival; EFS: event-free survival; LFS: leukemia-free survival;
CIR: cumulative incidence of relapse; MVA: multivariate analysis; MRD: measurable residual disease; WBC: white blood cell count; PB: peripheral blood; BM: bone marrow; NA: not available data. * Data
referred to entire cohort of the study.
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In second place for incidence, mutations in the RAS genes, mainly NRAS, are observed
in 17–53% of inv(16) AML, i.e., more frequently than in t(8;21) AML [12,15,16,19]. The
prognostic role for these RTK mutations has been proposed in only a few studies, such
as in the study by Ishikawa et al. [28], suggesting poor RFS for inv(16) patients with
NRAS mutation. RAS variants, belonging to activating mutations, lead to uncontrolled
proliferation, as shown by the correlation with higher WBC [15] and may potentially
increase sensitivity to chemotherapy [56].

Likewise, FLT3 is a member of class III tyrosine kinase receptors, and its mutations are
relatively rare in CBF AML. While internal tandem duplication (ITD) is the most frequent
in cytogenetically normal AML, holding an unfavorable prognostic impact depending on
allelic burden, FLT3 tyrosine kinase domain (TKD) point mutations represent the most
common alteration, in inv(16) AML, being associated with BM blast percentage [16]. A
clear-cut prognostic significance is not attributable to FLT3 mutations, because of their
negative impact on relapse risk, according to some authors [16,19], whereas Allen et al. [15]
showed a favorable role of FLT3-TKD high allelic variant on OS.

Remarkably, recent interest is growing about the mutational landscape associated
with the rearrangements of the CBF transcriptional complex. Beside the founding mutation,
cooperating molecular events contribute to define a distinct gene expression profile of the
specific CBF subtype [30]. In inv(16) AML, significantly less co-mutations are detected [25],
suggesting that CBFB-MYH11 promotes leukemogenesis without the need for increasing
evolutionary advantage.

2.2. Secondary Additional Chromosomal Abnormalities

Secondary karyotypic aberrations are present in about 40–70% of inv(16) AML, with
an incidence increasing with age [10]. In CBFB-MYH11 AML, most frequent additional
chromosome alterations are trisomy of 22 and 21, followed by +8. Similar to other genetic
mutations reported above, some authors correlate karyotype abnormalities to clinical man-
ifestations of the disease, such as higher WBC counts at onset [8]. There is consensus about
the prognostic favorable role of +22 [6,8] in conferring lower probability of relapse. In
contrast, conflicting results had been shown about trisomy 8: some authors documented
a negative impact on prognosis [7,19,30], while others reported association with longer
survival [23,30]. The number of supplementary chromosome lesions, especially when they
are more than 3, in line with other AML subgroups, is associated with a worse outcome [23],
according to the prognostic risk scoring by Yoon et al. [20]. Recently, Han et al. [33] have
retrospectively drawn up the largest cytogenetic dataset of CBF AML, therefore charac-
terizing and differentiating the genomic features of the two AML subtypes. Trisomies of
chromosomes 8, 21 or 22 recurred significantly more frequently in inv(16)-bearing patients,
in line with previous studies [6,8,19], such as hyperdiploidy. On the other side, del(9q)
and abnormalities in sex chromosomes were more common in t(8;21) AML. The survival
analysis of the study revealed different prognostic patterns of cytogenetic factors among the
CBF AML subgroups: in inv(16), chromosomal alterations other than +8 were associated
with decreased OS, while trisomy 8 was associated with longer survival. Differently, in
t(8;21), hypodiploidy was significant for DFS, whereas hyperdiploidy and del(9q) were
associated with improved OS [33]. In the current molecular era, these results confirm the
timeless relevance of conventional cytogenetic findings on CBF AML prognosis.

3. MRD Monitoring in CBFB-MYH11 AML

Traditionally, the determinant indicators of prognosis in AML have been identified
in the pre-treatment features described above, related to either the patient or the disease
features. Another relevant factor impacting on prognosis is represented by the response
to cytoreductive therapies, which direct subsequent disease management. Over the last
two decades, efforts have been made to improve the assessment of disease response and,
especially, the monitoring over time, because although being classified as a favorable risk
category, CBFB-MYH11 AML will experience relapse in nearly 30% of patients, with an
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estimated RFS rate of 42%, following standard care. The current definition of morphological
response lacks sensitivity, and the purpose has been to more accurately detect the residual
leukemic burden in BM, far below the 5% blast percentage detectable on microscopic
examination [57,58], by detecting what is defined measurable (formerly minimal) residual
disease (MRD). Persistent leukemic cells result from cellular resistance mechanisms [59].
Available qualitative molecular tools initially provided partial information about disease
status. Firstly, because of low sensitivity techniques, MRD levels below the detection thresh-
old could still be present, despite a negative qualitative reverse transcriptase polymerase
chain reaction (RT-PCR) [60,61]. Furthermore, MRD-positive patients will not inevitably
be destined to poor outcome, suggesting that monitoring trends of transcript during treat-
ment and further remission phases might be more useful in predicting prognosis [62,63].
As widely applied in other acute and chronic hematologic malignancies, such as acute
lymphoblastic or chronic myeloid leukemia [64,65], quantitative molecular methods have
become mandatory in longitudinal disease monitoring [66]. Submicroscopic amounts of
blast cells could be recognized from the distinct immunophenotypical pattern of lineage-
specific antigen expression, identified by multiparametric flow cytometry (MFC), through a
combined approach of stable leukemia-associated aberrant immunophenotype (LAIP) and
different-from-normal, with a sensitivity of 10−3–10−5 [67]. Furthermore, with an accuracy
up to 10−6, quantitative reverse transcriptase PCR (qRT-PCR) is currently considered the
gold standard in detecting MRD, applicable in 50–60% of AML patients showing distinct
molecular lesions. The ELN MRD working party afforded clinical issues in the application
of MRD monitoring in AML by updating recommendations with concepts of complete
molecular remission, molecular relapse, and molecular progression [68]. Interestingly, in
the same international consensus, MRD status has been recognized to be a better predictor
of relapse risk than the presence of cooperating mutations, such as KIT and FLT3-ITD in
CBF AML [1], supporting the essential inclusion of molecular MRD detection into clinical
management. Among newer molecular methods, targeted next-generation sequencing
(NGS) could provide a complete test of all leukemia-specific genetic aberrations at once,
with very high sensitivity. However, NGS data interpretation in MRD monitoring is ac-
tually complicated by incurring in some common mutations of any prognostic value but
is associated with clonal hematopoiesis of indeterminate potential [69,70]. To note, recent
studies have aimed to investigate the clinical relevance of NGS MRD detection, at differ-
ent timepoints, finding the stronger prognostic impact of NGS MRD status after the first
consolidation (2nd timepoint) than at first remission, which could help to identify patient
candidates for more aggressive treatment, even when MRD is undetectable by MFC [71].
Indeed, MFC and NGS might be suggested to be used in combination in monitoring the
disease, as also MFC and qRT-PCR, especially in the post-induction phase [72,73].

The above-mentioned ELN consensus document recommends timepoints and tools
for MRD assessment in CBFB-MYH11 AML. Nevertheless, the lack of technique standard-
ization and heterogeneity of available data results in non-firmly conclusive implications
for clinicians, mainly regarding the indication to assign patients to intensive therapeutic
approaches. In Table 3, we collected studies in which molecular MRD is found to play a
role in impacting outcomes, both in terms of copies of transcript or in terms of logarithmic
reduction/rise between different timepoints of detection.



Biomedicines 2021, 9, 953 14 of 30

Table 3. Molecular MRD monitoring in AML with CBFB-MYH11 fusion transcript.

Reference
N. of Patients;
Median Age,

Years

Median Follow-Up,
Months; Outcomes Timepoint PB or BM

Prognostic Transcript
Level Cutoff or Trend of MRD

Dynamics
Associated Risk Sensitivity of

the Assay

Marcucci et al. [74],
Leukemia 2001

16
NA

NA
CR 100% At the end of treatment BM CBFB-MYH11/18S × 106

>10 copies

Shorter CR duration and higher risk of
relapse for CBFB-MYH11/18S × 106

>10 copies
10−4

Buonamici et al. [61],
Blood 2002 2149

51
CR1 72%

3-y DFS 63%
3-y OS 82%

Any time during CR PB/BM
CBFB-MYH11/ABL < 0.12%

CBFB-MYH11/ABL
> 0.25%

High probability of durable
remission for

CBFB-MYH11/ABL < 0.12%
High risk of relapse for

CBFB-MYH11/ABL > 0.25%

10−5

Guerrasio et al. [75],
Leukemia 2002

36
35

27.5
NA After induction BM CBFB-MYH11/ABL × 104 >

100 copies

High risk of relapse for
CBFB-MYH11/ABL × 104

>100 copies
10−5

After consolidation BM CBFB-MYH11/ABL × 104 >
10 copies

High risk of relapse for
CBFB-MYH11/ABL × 104

>10 copies

At any time during CR BM CBFB-MYH11/ABL × 104 <
1 copy

Higher probability of CCR

Krauter et al. [76],
J. Clin. Oncol. 2003

15 §

39 *
19 *
NA

At least at one time
point after induction BM

CBFB-MYH11:GAPDH in
CR/CBFB-MYH11:GAPDH at

diagnosis > or = 1%
Shorter RFS * 10−5

Schnittger et al. [77],
Blood 2003

122 §

48.9 §
17.7 §

NA

At diagnosis
AND

after consolidation
BM

CBFB-MYH11/ABL × 102 < 75th
percentile at diagnosis

AND
CBFB-MYH11/ABL < 0.014 after

consolidation

2-y OS 100% (vs. 69% if initial level
>75th percentile and/or more than 0.014

after consolidation) §

2-y EFS 100% (vs. 40% if initial level >
75th percentile and/or more than 0.014

after consolidation) §

10−5

Perea et al. [73],
Leukemia 2006

35 §

43 §

34 *
2-y LFS 50% §

2-y OS 64% §

CR 84% *

After induction BM CBFB-MYH11/ABL × 104 < or =
100 copies

2-y CIR 35% (vs. 58% >100 copies) * (NS) 10−5

After intensification BM CBFB-MYH11/ABL × 104 < or =
10 copies

2-y CIR 36% (vs. 70% >10 copies) * (NS)
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Table 3. Cont.

Reference
N. of Patients;
Median Age,

Years

Median Follow-Up,
Months; Outcomes Timepoint PB or BM

Prognostic Transcript
Level Cutoff or Trend of MRD

Dynamics
Associated Risk Sensitivity of

the Assay

At the end of treatment BM CBFB-MYH11/ABL × 104 < or =
10 copies 2-y CIR 26% (vs. 100% >10 copies) §

At follow-up BM CBFB-MYH11/ABL × 104 < or =
10 copies

2-y CIR 13% (vs. 78% >10 copies) *

Stentoft et al. [78],
Leuk. Res. 2006

13 §

39 *
NA After induction PB/BM <2-log reduction of the fusion

transcript level Shorter EFS (p < 0.014) * 10−4

Lane et al. [79],
Leuk. Lymphoma 2008

17 §

35 §
34 *
NA At follow-up BM

> or = 1-log rise in transcript
levels in consecutive samples

in CR

Predictive for imminent morphological
relapse and shorter LFS (p = 0.008) * 10−6

Guièze et al. [80],
Leukemia 2010

59
36

26.5
2-y CCR 63%
2-y OS 88%

At CR achievement PB/BM CBFB-MYH11/ABL < 0.5% 2-y CCR 76% (vs. 36% > 0.5%) NA

After 1st consolidation
(MRD2) PB/BM CBFB-MYH11/ABL < 0.1% 2-y CCR 74% (vs. 40% > 0.1%)

PB/BM

MRD2 transcript level/
CBFB-MYH11 transcript level

at diagnosis
(deltaMRD2) decrease >3 log

2-y CCR 83% (vs. 28% if deltaMRD2
decrease < 3 log)

2-y OS 100% (vs. 67% if deltaMRD2
decrease < 3 log)

At the end of
consolidation PB CBFB-MYH11/ABL undetectable 2-y CCR 85%

(vs. 13% for detectable MRD)

Corbacioglu et al. [81],
J. Clin. Oncol. 2010

52
NA

47
NA

From 1st consolidation
until up to 4 weeks after

last consolidation
(checkpoint I)

BM At least 1 PCR negative sample
2-y RFS 79% (vs. 54% for patients who

never achieved PCR negativity
during consolidation)

10−4

From 1st consolidation
until up to 3 months

after last consolidation
(checkpoint II)

PB/BM At least 2 PCR negative samples 2-y RFS 91%
Longer OS
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Table 3. Cont.

Reference
N. of Patients;
Median Age,

Years

Median Follow-Up,
Months; Outcomes Timepoint PB or BM

Prognostic Transcript
Level Cutoff or Trend of MRD

Dynamics
Associated Risk Sensitivity of

the Assay

At follow-up BM
Conversion of PCR negativity

to positivity
(>10 copies/B2M × 106)

High risk of relapse

Yin et al. [82],
Blood 2012

115 §

38 §

36 *
CR 92% §

5-y CIR 23% §

At remission after
induction PB CBFB-MYH11/ABL × 105 <

10 copies

5-y CIR 21% (vs. 56% 10–500 copies) §

5-y survival after CR 89% (vs. 45%
10–500 copies) §

10−5

After courses 3 and 4 PB CBFB-MYH11/ABL × 105 <
10 copies 5-y CIR 36% (vs. 78% > 10 copies) §

At follow-up (4 weeks
after last treatment) PB CBFB-MYH11/ABL × 105 <

10 copies
5-y EoR 7% (vs. 97% > 10 copies) §

5-y EoS 91% (vs. 57% > 10 copies) §

BM CBFB-MYH11/ABL × 105 <
50 copies

5-y EoR 10% (vs. 100% > 50 copies) §

5-y EoS 100% (vs. 25% > 50 copies) §

Jourdan et al. [16],
Blood 2013

102 §

42 §

32 *
3-y RFS 61% §

3-y CIR 34% §

3-y OS 86% §

Before 2nd
consolidation (MRD2) BM > or = 3-log MRD2 reduction

3-y CIR 22% (vs. 54% for patients who
did not achieve a 3-log MRD2

reduction) *
3-y RFS 73% (vs. 44% for patients who

did not achieve a 3-log MRD2
reduction) *

3-y OS 90% (vs. 71% for patients who
did not achieve a 3-log MRD2 reduction)

(NS) *

NA

MRD2 < or = 0.1% Lower CIR and longer RFS

Hoyos et al. [17],
Eur. J. Haematol. 2013

76 §

42 §

55 *
CR 84% §

5-y CIR 29% §

5-y DFS 58% §

5-y OS 64% §

After induction BM CBFB-MYH11/ABL < 100 copies DFS 66% (vs. 34% > 100 copies) §

OS 82% (vs. 33% > 100 copies) § NA

After consolidation BM CBFB-MYH11/ABL < 82 copies
CIR 32% (vs. 75% > 82 copies) §

DFS 64% (vs. 25% > 82 copies) §

OS 86% (vs. 25% > 82 copies) §
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Table 3. Cont.

Reference
N. of Patients;
Median Age,

Years

Median Follow-Up,
Months; Outcomes Timepoint PB or BM

Prognostic Transcript
Level Cutoff or Trend of MRD

Dynamics
Associated Risk Sensitivity of

the Assay

Yoon et al. [20],
Bone Marrow

Transplant. 2014

71 §

39 *
61.8 *
NA After induction BM MRD qPCR reduction

> or = 3 log Longer OS * NA

At the end of treatment BM MRD qPCR undetectable Longer OS *

Wang et al. [83],
Ann. Hematol. 2014

10 §

40 §
11.2 *

CR 70% §
4 weeks after 3rd

consolidation BM CBFB-MYH11/ABL × 106

< or = 0.1%
2-y RFS 56.8%

(vs. 15.8% > 0.1%) * NA

4 weeks after last
consolidation BM CBFB-MYH11/ABL × 106

< or = 0.1%
2-y RFS 55.8%(vs. 25.4% > 0.1%) *

At follow-up BM CBFB-MYH11/ABL × 106

< or = 0.1%
2-y RFS 75% (vs. 0% > 0.1%) *

Qin et al. [84].,
Leuk. Lymphoma 2015

86
34

25
CR 95.3%

3-y CIR 33.7%
3-y DFS 62.2%
3-y OS 72.9%

After course 1 induction BM
CBFB-MYH11 transcript levels >
2.0% (corresponding to <2-log

reduction)

3-y CIR 68.5% (vs. 43.3% if
CBFB-MYH11 levels < or = 2.0%)

3-y DFS 31.5% (vs. 56.7% if
CBFB-MYH11 levels < or = 2.0%)

NA

After achieving CR by
induction BM

CBFB-MYH11 transcript levels >
2.0% (corresponding to <2-log

reduction)

3-y CIR 77.6% (vs. 40.5% if
CBFB-MYH11 levels < 2.0%)
3-y DFS 22.4% (vs. 59.5% if

CBFB-MYH11 levels < 2.0%)

After course 1
consolidation BM

CBFB-MYH11 transcript levels >
or = 0.2% (corresponding to < or

= 3-log reduction)

3-y CIR 69.8% (vs. 7.1% if CBFB-MYH11
levels < 2.0%)

3-y DFS 30.2% (vs. 92.9% if
CBFB-MYH11 levels < 2.0%)

3-y OS 48.9% (vs. 100% if CBFB-MYH11
levels < 2.0%)

After course 2
consolidation BM

CBFB-MYH11 transcript levels >
0.2% (corresponding to < or =

3-log reduction)

3-y CIR 88.3% (vs. 26.9% if
CBFB-MYH11 levels < or = 0.2%)

3-y DFS 11.7% (vs. 73.1% if
CBFB-MYH11 levels < or = 0.2%)

3-y OS 26.9% (vs. 88.3% if CBFB-MYH11
levels < or = 0.2%)
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Table 3. Cont.

Reference
N. of Patients;
Median Age,

Years

Median Follow-Up,
Months; Outcomes Timepoint PB or BM

Prognostic Transcript
Level Cutoff or Trend of MRD

Dynamics
Associated Risk Sensitivity of

the Assay

Ishikawa et al. [28],
Blood Adv. 2020

67 §

37 §
52.2 *

2-y RFS 59.6% §
At the end of
consolidation BM CBFB-MYH11 transcripts > or =

50 copies/µg RNA Lower RFS § NA

Duan et al. [31],
Br. J. Haematol. 2021

58
38

29.8
CR 98.3%

3-y CIR 29.4%
3-y CIM 24.4%

After 2nd consolidation BM CBFB–MYH11/ABL
< 0.1%

3-y RFS 100% (vs. 31.4% if
CBFB–MYH11/ABL > 0.1%)
3-y EFS 100% (vs. 33.1% if

CBFB–MYH11/ABL > 0.1%)

NA

Puckrin et al. [85],
Haematologica 2021

47 §

46.5 *
44.4 *

CR 99.1% *
At the end of
consolidation PB/BM

CBFB-MYH11 transcripts
reduction

> or = 3 log

RFS 61.1% (vs. 33.7% if CBFB-MYH11
transcripts reduction < 3 log) * 10−4

At the end of treatment PB/BM
CBFB-MYH11 transcripts

reduction
> or = 4 log

RFS 51.2% (vs. 29.3% if CBFB-MYH11
transcripts reduction < 4 log) *

Duan et al. [32],
Ann. Hematol. 2021

68 §

39 *

26 *
CR 99.5% *

3-y CIR 29.4% *
3-y CIM 27% *

After 2nd consolidation BM CBFB–MYH11/ABL
< 0.1%

3-y RFS 96.3% (vs. 34.6% if
CBFB–MYH11/ABL > 0.1%) *

3-y OS 94.1% (vs. 51.3% if
CBFB–MYH11/ABL > 0.1%) *

NA

CR: complete remission after induction; CR1: CR after first induction; OS: overall survival; RFS: relapse-free survival; EFS: event-free survival; DFS: disease-free survival; LFS: leukemia-free survival; CIR:
cumulative incidence of relapse; CIM: cumulative incidence of mortality; CCR: continuous CR; PB: peripheral blood; BM: bone marrow; MRD: measurable residual disease; PCR: quantitative polymerase chain
reaction; qPCR: quantitative PCR; B2M: beta2-microglobulin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; EoR: estimate of relapse; EoS: estimate of survival; NA: not available data; NS: not statistically
significant data. * Data referred to entire cohort of the study. § Data referred to CBFB-MYH11 AML cohort.
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4. ELN Recommendation for MRD Assessment
4.1. During the Treatment Phase, We Recommend Molecular MRD Assessment at Diagnosis

In all the studies reported in Table 3, CBFB-MYH11 fusion transcripts are detected by
quantitative molecular methods and normalized to endogenous reference genes. In general,
no significant differences in outcomes are observed, depending on the level of transcript at
diagnosis [16,75,80,82], based on the great heterogeneity of the fusion gene expression [76].
Marcucci et al. [74], as well as Corbacioglu et al. [81], described only a correlation between
copy number and high percentage of BM blasts at disease onset. No correlation was also
found with the type of fusion transcript, the type A mutation being the most frequently
observed [77,81]. Conversely, Schnittger et al. [77] brought out a strong prognostic impact
of the level of transcript on both OS and EFS. A score based on the median expression ratio,
after consolidation therapy, and the 75th percentile of the expression ratio at diagnosis was
formulated, although it was not possible to identify an absolute threshold to define an
early molecular response. However, even if no influence is demonstrated on prognosis, the
molecular quantitative assessment of fusion transcript is recommended, at least to evaluate
its subsequent modifications.

4.2. After Two Cycles of Standard Induction/Consolidation Chemotherapy

The earlier those patients at higher risk of disease relapse are identified, the better di-
versified therapeutic approaches may be engaged for them. Therefore, several groups have
investigated which could be the most relevant timepoint for prognosis during treatment.
Some studies proposed a threshold of copy number for discriminating subgroups with
shorter remission (i.e., 100 copies in BM [17,73,75], 10 copies in PB [82]). Others, instead,
concluded that early assessment of MRD did not predict the disease course [74,77,81],
contrary to what is generally thought for early morphologic response, possibly due to the
well-known good responsiveness of CBF AML to induction treatment, in addition to a
rather slow decline in the disease burden. Interestingly, the prognostic impact of MRD
after induction is mostly referred to relapse risk rather than to survival, emphasizing the
efficacy of salvage treatment in this category of AML. Of note, Stentoft et al. [78] and Yoon
et al. [20] attributed a prognostic relevance not to an absolute level of fusion transcript, but
rather to transcript levels, referred to a number of copies at disease onset, namely, a qPCR
reduction > or = 3 log, which was associated with longer OS.

Concerning consolidation therapy, the heterogeneity among studies renders highly
difficult the comparison among them. In fact, while there is agreement on cytarabine-based
consolidation therapy indication [5,78,86,87], controversial questions remain regarding the
number of cycles, the most appropriate dose and schedule, as well as the role of combination
with other agents. In most studies, two to four cycles have been administered after the
attainment of CR and after each cycle MRD was assessed. Early consolidation cycles recur
as relevant timepoints. Guièze et al. [80] reported poorer continuous CR (CCR) for values
of MRD2 (after first consolidation) > 0.1%; at the same time, the decrease in MRD2 relative
to transcript level at diagnosis (deltaMRD2) also strongly impacted the length of remission.
Accordingly, the French AML Intergroup [16] demonstrated that a more than 3-log MRD
reduction after first consolidation, such as an absolute MRD2 level < or =0.1%, could be
used to differentiate low-risk from high-risk patients. Moreover, the threshold of 0.1%
resulted to impact on survival also at the end of the second consolidation cycle, as reported
by the studies of Duan et al. [31,32] Corbaciouglu et al. [81] underlined the importance
of MRD detection in the time window of consolidation and early months after the end
of treatment: this timing turns out to be the most informative, in accordance with the
median time of relapse occurrence. An early prediction of prognosis allows the clinicians
to propose alternative strategies of consolidation. Jourdan et al. [16] recognized in MRD2
the timepoint to evaluate patients for transplant options. Qin et al. [84] recommended
allogeneic stem cell transplantation, if CBFB-MYH11 levels could not decrease to <0.2%
after two courses of consolidation, improving RFS and OS [31,32] in these patients at high
risk of relapse.
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4.3. And after the End of Treatment

MRD assessment is recommended at the end of the last consolidation cycle, but its
impact on outcome at this timepoint is not unequivocal [60]. If it could be assumed that
the majority of long-term survivors maintain PCR-negativity [75,88], it has likewise been
reported that a few of the patients in prolonged CR never clear MRD. On the contrary,
10–20% of PCR-negative patients would eventually relapse [89–91]. A molecular persis-
tence at low transcript level in BM is common in CBF AML, in the first period after therapy
as well as after stem cell transplantation. The possible presence of resistant leukemic clones
or quiescent preleukemic cells, potentially responsible for relapse, could be supposed.
The latter, called leukemic-initiating cells (LICs) [83] or leukemic stem cells (LSCs) [58,70],
are defined as cells capable of initiating disease, self-renewing, with chemo-resistance
properties. This subpopulation, usually CD34+/CD38-, may also contribute to subsequent
relapse. A combined flow cytometry and fluorescence in situ hybridization examination
could help in detecting LSC persistence, as reported by Wang et al. [83], given that the
presence of FISH+CD34+CD38- cells predicted OS and RFS. Furthermore, the interpretation
of residual rearranged copies is even more difficult because such molecular lesions carried
by cells resulting from age-related clonal hematopoiesis of unknown potential [92,93] may
not be indicative per se of disease recurrence. One possible explanation lies in biologic
mechanisms of a somewhat immunosurveillance effect in preventing disease reappear-
ance, similar to what is documented in the allotransplant setting, that might lead up to
the clearance of leukemic compartment, as suggested by the progressive decline of MRD
documented, in a timeframe up to 16 months, after consolidation, in some patients without
further treatment [62,75,94]. Those findings reinforce the caveat that patients with low
molecular burden of disease may need close monitoring, instead of urgent intervention [95].
The recent observation of CBFB-MYH11-specific T cells indicates that CBFB-MYH11 fusion
neoantigen is naturally processed and presented on AML blasts and enables T cell recogni-
tion and the killing of leukemic cells, supporting the hypothesis of a potential contribution
of specific cytotoxic cells in MRD control and CCR maintenance [96].

Hence, unlike other molecular rearrangements, the aim of treatment has to be the
transcript reduction below a specific level at definite timepoints, rather than the obtainment
of strict MRD negativity [97].

4.4. During Follow-Up of Patients with PML-RARA, RUNX1-RUNX1T1, CBFB-MYH11,
Mutated NPM1, and Other Molecular Markers, We Recommend Molecular MRD Assessment
Every 3 Months for 24 Months after the End of Treatment

Once treatments are completed, for patients not candidate to further therapy lines,
it will be necessary to set up, on a medium-long-term basis, a reliable follow-up in track-
ing either an ongoing response or, promptly, an impeding relapse. Even at this stage, a
consensus in monitoring MRD kinetics emerges from published studies. In fact, relapse
could effectively be predicted by a comparison between longitudinal sampling, rather
than by overcoming a definite threshold. ELN updated recommendations reflect such an
awareness: molecular relapse, as well as molecular progression, is defined by a logarith-
mic increase in MRD levels between two consecutive samples, underlining the dynamic
interpretation of a molecular parameter. In addition, this approach makes data more
comparable, despite methodological and clinical differences among studies. The use of a
logarithmic increase for defining relapse and progression is therefore operational in CBF
AML, because of the predominantly slow pattern of regrowth, depending on biological
factors, which allows one to observe evolutive trends before morphological relapse. Some
concordance exists in the proposed patterns of molecular values: as a reduction of 2–3 log
after induction/consolidation [75,78] is expected, a controlled disease is not supposed to
show a 10-fold increasing of MRD, during follow-up. A monitoring schedule is pivotal for
avoiding the missing herald of relapse, so that, at this point, a relevant interrogative matter
is about frequency in sampling. International guidelines indicate to assess MRD every
3 months for at least the first 2 years after the end of treatments, because relapse occurs after
2 years of complete remission, more rarely [79,81,85]. This timeframe has been consistently
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derived from several studies that described that in patients monitored at 3-month intervals
a clinical recurrence was predictable by rising MRD [70,77,80,83]. Krauter et al. [76], such
as other authors earlier [74], recognized two patterns of relapse: some patients obtained
molecular negativity directly after induction/consolidation, with a secondary transcript
level increase, whereas others maintained a detectable disease at the end of treatment, but,
in both instances, the median interval between increasing MRD and hematological relapse
was beyond 3 months. When the kinetics of transcript levels rising was evaluated, a slower
rate of MRD increasing for CBFB-MYH11 AML was observed, as compared to NPM1 or
PML-RARA positive AML, with a BM doubling time of 36 days and the longest lag before
morphological relapse (even 8 months) [98], suggesting the need for longer monitoring.
However, these considerations may be challenged because the possibility of more rapid
relapse kinetics cannot be excluded [79]. Relevant to this, Yin et al. [82] reported a median
increment in transcript levels of about 0.5 log10/month, so that a 3-monthly assessment
schedule might fail to identify a potential MRD increase up to 3 logs, impairing potential
pre-emptive therapeutic strategies, including SCT [99]. Puckrin et al. [85] emphasized
that the monitoring approach indicated by ELN could fail to detect, in a timely manner,
relapsing patients, because the majority of clinical recurrences occurred within 100 days
from molecular relapse. Reasons could be attributed to real-life limitations, such as difficul-
ties in fulfilling sampling intervals, differences in either specimen quality or sensitivity of
available molecular assays. This evidence warrants consideration about the informative
value of MRD, in terms of treatment decision: if, on the one hand, clear recommendations
have been formulated about timeframes of monitoring, no formal instructions are available
to indicate either therapy changes or pre-emptive interventions, leaving the precautionary
management of impending relapse at the single center’s discretion.

4.5. In BM and in PB. Alternatively, PB May Be Assessed Every 4–6 Weeks

Whether PB sampling can definitely succeed in replacing bone marrow sampling for
MRD testing remains an open point. Sensitive and reliable blood-based assays would be
an attractive possibility, given the less invasive nature compared to BM aspirations. The
two sources have been studied as alternatives in several studies, albeit the most clinically
relevant findings are derived from BM specimens. As detailed in Table 3, some authors,
in the identification of significant thresholds of fusion transcripts for prognosis, included
PB cut-offs about five times lower than in BM, taking into consideration the difference
in sensitivity. This interest has grown from evidence in other AML subtypes, namely,
NPM1-mutated AML, in which discrimination for survival was better by using PB rather
than BM [100]. Boeckx et al. [101] reported preliminary data in support of a moderate
correlation in PB-BM pairs, although generally higher levels are found in BM, suggesting
that PM examinations could be performed every 2–3 months during follow-up, with
further BM aspirations considered to be necessary only in the case of rising transcripts
in PB. Encouraging results also emerged from Stentoft et al. [78], who demonstrated a
convincing correlation between PB and BM, and from Ommen et al. [98], who provided
preliminary data suggestive of equal usefulness of either BM or PB sources. Moreover,
Guièze et al. [80] revealed a high degree of concordance for levels of MRD higher than 0.1%,
whereas for lower levels, BM appeared more sensitive. Interestingly, Corbacioglu et al. [81]
recommended to use BM samples during consolidation therapy, while, during follow-up,
MRD could be measured on PB for evaluation of longitudinal rising levels during CCR.
The UK MRC trial group [82] offered an optimal schedule for molecular monitoring and
confirmed that both BM and PB were comparable for MRD detection after the end of
treatment, even if in 10–15% of patients, negative PB showed discordance with MRD
positivity detection in BM.

Recently, Skou et al. [99] reinforced the notion that an effective surveillance of immi-
nent relapse could be achieved through frequent PB sampling. In fact, both the persistent
molecular positivity in BM, despite continuous remission, and the relative absence of
progenitors in peripheral blood should mean higher predictivity in detecting MRD in
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PB. A positive molecular finding from peripheral blood is more suggestive of imminent
relapse. Doubts might arise about whether PB monitoring provides sufficient lead time to
prevent clinical relapse. Despite earlier occurrence, no meaningful difference arose from
comparisons between the rate of leukemic regrowth between PB and BM. In addition, it
is possible to collect samples from peripheral blood with higher frequency [53] (possibly
monthly, during the first year following the completion of therapy), which, in turn, are
easily accessible and more acceptable by patients, outweighing the gap of molecular load
about 0.5–1 log10 between BM and PB. Furthermore, additional information from PB with
respect to BM could be provided, by gene expression assays and combined multiparameter
flow cytometry, able to detect with more specificity, even though with less sensitivity,
potential circulating leukemic cells, due to the background of less progenitor populations
compared to bone marrow [58].

Hence, not only a comparable but also a better disease surveillance could be assured
by monthly PB sampling, which allowed us to efficiently identify molecular relapse, as an
increase by 1 log10 between two positive samples, confirmed by paired BM and PM assay,
after 4 weeks [99].

4.6. MRD Should Be Assessed Pre Transplant. MRD Should Be Performed Post Transplant

Regarding the transplantation setting, although assessment is recommended before
and after procedure, no specific indication is provided about the interpretation of MRD
values. In consideration of the relatively satisfying long-term control of disease with re-
peated high or intermediate-dose cytarabine consolidation or alternatively autologous stem
cell transplantation (auto-SCT), CBF AML are not usually candidated for allo-SCT in first
CR, contemplating this procedure for patients in second remission [102], although data
about post-remission therapy still remain debated. As reported in some studies [103–105],
in first remission no differences have been found in terms of LFS and RI between auto-
SCT and allo-SCT, to the detriment of the higher TRM (therapy-related mortality) of the
non-autologous approach. On the other hand, some authors [20,106,107], comparing non-
allogeneic and allo-SCT consolidation treatments, underlined favorable OS for the latter,
encouraging the use of frontline transplantation for subgroups of CBF AML with adverse
risk characteristics, including cases showing MRD positivity. The negative impact on the
survival of residual disease prior to allogeneic SCT is demonstrated by several studies,
as showed in a meta-analysis of Buckley et al. [108]. In case of indication of allogeneic
transplantation in MRD-positive patients, haploidentical allograft seems to be superior
to match sibling donor, suggesting strong anti-leukemia effects in eradicating pre-SCT
residual disease [109–111]. Moreover, in this peri-transplant setting, rather than single
timepoint positive or negative status, a significant role is attributed to the MRD dynamic
trend among prior chemotherapy cycles. Interestingly, Qin et al. [84] identified as a sole
independent adverse prognostic factor for CIR, DFS and OS a transcript level reduction
less than 3 log after course 2 consolidation, and only in this poor MRD category of pa-
tients allo-SCT could significantly improve outcome, without any advantage for good
MRD patients. When MRD trend after second consolidation indicates an SCT approach,
several studies stress the negative impact of detectable MRD on the risk of post-transplant
relapse [112,113], and achieving MRD negativity might result in improved transplantation
outcome. However, it remains unclear whether patients with positive MRD should be
straightly directed to SCT or should receive further chemotherapy. In fact, precisely in poor
MRD responders, transplantation by exploiting intensive conditioning regimens, rather
than reduced-intensity schemes, and utilizing alternative or mismatched donors, theoret-
ically eliciting stronger GvL [114], could offer an advantage on outcome. Interestingly,
among a series of 58 unselected AML patients receiving SCT, Zhang et al. [115] proved
transplantation as a safe choice also for the treatment of refractory/relapsed (r/r) cases.
In details, while the 5-year OS of r/r AML patients was 54.21% lower that documented
in non-r/r patients (71.82%), the 5-year EFS was not statistically different between the
two groups (53.54% versus 62.07%). Of note, the 5-year OS rates of r/r AML patients
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who had subsequently obtained CR and those with persistent disease before SCT were
not different, 56.06% and 51.85%, respectively (p = 0.6408), due to the rapid and early
tapering of immunosuppression therapy after transplantation and prophylactic donor
lymphocyte infusion.

To reiterate the relative significance of positive MRD pre SCT, Zhao et al. [109] reported
that instead of MRD before SCT, the unfavorable effect on prognosis in multivariate analysis
is attributed to detectable MRD post haploidentical SCT, without the necessity of further
intensive chemotherapy for MRD-positive patients prior to transplantation. Yalniz et al. [95]
showed that there is no impact of the MRD level by qRT-PCR on the relapse incidence,
even in the patients with the highest disease burden. In addition, in this study, two MRD
checkpoints post SCT were identified: the presence of MRD on day +30 did not indicate
impending relapse, whereas patients who had detectable disease on day +100 had a 3-year
relapse incidence of 27.6% versus 9.7% for patients without residual disease, although not
reaching statistical significance. Monitoring MRD after the first 3 months of transplantation
rather than before could be more informative about the risk of relapse: lower LFS and
higher CIR resulted for a decrease of less than 3 logs compared to pre-treatment levels [116].
Pre-emptive therapeutic strategies, including approaches selectively increasing GvL (graft
versus leukemia), to target MRD persistence post allogeneic SCT in AML patients with
inv(16)/t(16;16) are warranted.

5. Novel Therapies

In recent years, the approval of several novel agents for treating AML was ob-
tained; the most remarkable for improving outcomes in inv(16) is the addition of the
anti-CD33 monoclonal antibody gemtuzumab ozogamicin (GO) to the remission induction
cycle [117–119]. To note, data have been published about the first steps toward specific
T-cell immunotherapy in fusion gene-driven AML [96]. CBFB-MYH11 protein could act
as neoantigen, giving rise to the potential development of a personalized adoptive TCR
T-cell strategy. Because of the early and essential role in leukemogenesis and the specificity
persistence in blast cells, CBFB-MYH11 should represent an optimal target, with minimal
risk of off-tumor toxicity. Recent translational studies are providing the basis for future
targeted therapeutic approaches. For example, advances in treatment would be warranted
focusing on the molecular processes involved in leukemogenesis driven by fusion protein
CBFB-SMMHC encoded by the CBFB-MYH11 founder gene, by the potential target of spe-
cific or indirect inhibitor [120], or exploring the disease mechanism of oncogene-induced
chromatin remodeling [121].

6. Conclusions

In recent years, the advances in molecular diagnostic and monitoring, with the si-
multaneous incoming of new therapeutic agents, have led to significant improvements in
clinical AML management. Awada et al. [122] recently integrated cytogenetic and gene
sequencing data from a multicenter cohort of nearly 7000 AML patients that were analyzed
using standard and machine learning methods to generate a novel AML molecular sub-
classification with biological correlates corresponding to underlying pathogenesis. Despite
the heterogeneity of AML genomics, non-random genomic relationships were capable of
identifying four novel unique genomic clusters with a distinct prognosis, regardless of the
availability of pathomorphological or anamnestic information. MRD monitoring actually
supersedes other well-recognized clinical features, with independent prognostic value, at
least in some AML subgroups. European Leukemia Net has offered recommendations
about quantitative and qualitative MRD monitoring, as part of the standard of care for
AML patients. MRD threshold levels might prelude worse outcome, as clinical relapse
could be accurately predicted by sequential sampling during follow-up in both BM and
PB. Increasing MRD value or molecular relapse ensures a window of opportunity to adapt
risk-directed interventions before overt progression. In CBF AML, the MRD-negative
groups displayed more favorable RFS than those with MRD positivity, and OS was also
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superior in the MRD-negative group. Moreover, the CIR was statistically significantly
lower in the MRD-negative group, when considering the most significant cut-off MRD
level of 0.1% [123]. Nevertheless, the standardization of molecular tools, including the
application of newer technologies, and timepoints of MRD investigations in CBF AML, in
order to guide therapeutic decisions, is still controversial. It is argued whether patients
in CR1 should be offered transplant, based only on early response, by considering an
estimated transplant-related mortality of 10% to 15%, while at least half of these patients
would not eventually relapse. Therefore, it is not actually confirmed that a pre-emptive
approach would be beneficial, when considering the slower kinetics of leukemic growth,
the real-life MRD monitoring limitations and the overall good responses achievable with
salvage therapy, in case of a full-blown relapse.

Ultimately, further studies are needed to improve knowledge about the best employ-
ment of MRD information to improve the clinical outcomes of CBF AML patients.
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