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Abstract

The phenotypic effect of a gene is normally described by the mean-difference between alternative genotypes. A gene may,
however, also influence the phenotype by causing a difference in variance between genotypes. Here, we reanalyze a
publicly available Arabidopsis thaliana dataset [1] and show that genetic variance heterogeneity appears to be as common
as normal additive effects on a genomewide scale. The study also develops theory to estimate the contributions of variance
differences between genotypes to the phenotypic variance, and this is used to show that individual loci can explain more
than 20% of the phenotypic variance. Two well-studied systems, cellular control of molybdenum level by the ion-transporter
MOT1 and flowering-time regulation by the FRI-FLC expression network, and a novel association for Leaf serration are used
to illustrate the contribution of major individual loci, expression pathways, and gene-by-environment interactions to the
genetic variance heterogeneity.
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Introduction

A central question in genetics is to understand how genetic

polymorphisms in genes lead to trait variability in populations.

Complex traits are determined both by genes and environmental

factors. For these phenotypes, the genetic effects of allelic

variability are most often described as shifts in the mean

phenotype between individuals with different single- or multi-

locus genotypes. These mean effects will result in both additive and

non-additive genetic variance, but the main focus in most GWAS

studies to date has been to detect additive effects of loci and

consequently explain the contribution of individual genes to the

narrow-sense heritability (h2~VA=VP). Such analyses therefore

miss not only the contributions of mean effects to the non-additive

genetic variance, they also ignore other types of genetic effects that

influence the phenotypic variance. One such rather unexplored

level of genetic control, is that of the variance, i.e. how allelic

variants of genes regulate the amount of phenotypic variability

that individuals with a particular genotype can display.

The topic of genetic variance control has been under

investigation for many years in quantitative genetics, primarily

motivated by its potential importance in evolutionary biology and

agricultural selection programs. Both theoretical and empirical

work has improved our understanding of how the genetic

regulation of the environmental variance can contribute to

observations of fluctuating asymmetry, canalization and genetic

robustness [2,3]. More recent empirical work support the principal

idea that genetic control over variation is an inherent feature of

biological networks and genes are therefore expected to exhibit

control over the environmental variance (see e.g. [4] for a review).

Further studies have also provided insights to how genetic

variance-control contributes to e.g. capacitation [5,6] and main-

tenance of developmental homeostasis [7].

Already in the mid 1980s it was observed that it was possible to

identify QTL with effects the variance, rather than the mean [8].

It is, however, only recently that the topic of mapping of variance-

controlling loci contributing to e.g. environmental plasticity [7],

canalization [9], developmental stability [10] and natural variation

in stochastic noise [11] have started to receive more attention.

Although these first reports illustrate the usefulness of this

approach, we still know very little about how common the

variance-controlling genes are in the genome and how large total

contributions they make to trait variation in populations [3,12].

More studies are thus needed and several newly described

statistical methods will facilitate detection of variance-controlling

loci, and likely also G|G and G|E interactions [13], in both

future QTL [11,12,14] and GWAS [15,16] studies.

In this study, we perform a variance-heterogeneity GWAS, or vGWAS

for short, in a publicly available Arabidopsis thaliana dataset [1] to

identify novel variance-controlling loci that illustrate the biological

impact of genetic variance heterogeneity. Our study shows that

clear signals from a vGWAS can be obtained using a relatively

small, but well-designed, Arabidopsis thaliana population without

requiring measurements of within-line variation. The study also

includes an extension of the available quantitative genetics theory

to estimate contributions of variance differences between geno-

types to trait variation by individual loci. The vGWAS approach

facilitates detection of loci that are involved in the genetic control

of environmental variation (as discussed above). It also allows

mapping of loci where incomplete LD between the causal
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polymorphism and the tested marker, multiple functional alleles,

gene-gene or gene-by-environment interactions leads to a hetero-

geneity in variance, rather than a mean difference, between the

genotypes [13,14].

Results

Genetically regulated variance heterogeneity in
Arabidopsis thaliana

We re-analyzed a publicly available Arabidopsis thaliana dataset

[1]. The dataset contained 199 phenotyped ecotypes, for most of

which 107 phenotypes were measured. The phenotypes were

classified as either flowering (n~23), developmental (n~43),

defense (n~23) or ionomics (n~18) traits. All accessions were

genotyped using a 250K SNP chip, resulting in 216,130 SNPs that

passed quality control for use in the GWAS (http://arabidopsis.

usc.edu). The original GWAS [1] reported signals in several

annotated candidate genes across the genome and, in contrast to

most results from human association studies, many common alleles

were identified to be associated with the studied phenotypes,

although the population stratification present in the dataset will

affect the interpretation of the findings. The overlap between a-

priori candidates and the detected association signals was argued to

be a useful validation of the GWAS strategy in Arabidopsis thaliana.

Here, we performed a vGWAS for the 83, of the 107, measured

traits that were quantitative using a Brown-Forsythe test (Table A1

in Text S1). This test is based on an ANOVA of the absolute

deviation from the median and test for population-wide between-

genotype variance heterogeneity at each evaluated marker (for

more details see Methods) and does not account for potential

within genotype variance heterogeneity between repeated mea-

surements in the same inbred line. The impact of population

stratification was evaluated by comparing the distribution of the

genome-wide p-values observed in the vGWAS to their theoretical

expectation. The inflation factor for the observed p-values (l) was

calculated (see Methods) and found to vary for the traits

(0:82vlv4:27). Although this differential inflation across traits

might initially seem surprising, as the genomic relationship at the

DNA level is identical in all analyses, the observation that the

highest inflation-factors were observed for traits that are most

likely to have been under selection for local adaption might

explain why the analyses of those traits are most affected by

population stratification. We decided to report vGWAS results for

traits with high overall inflation of p-values (n~31, lw1:5) in Text

S1 only and not discuss them further in this report. For the other

traits, conservative significance thresholds were obtained by using

Bonferroni correction for multiple-testing and using genomic

control (GC) to correct for genomic inflation (n~52, lv1:5).

SNPs with a minor allele frequency (MAF) less than 10% were

removed. No correction for testing of multiple traits was used. This

procedure filtered out many traits and signals, leaving two strongly

evidenced variance-controlling loci (Table 1). The conservative

strategy is not recommended in studies aiming at a comprehensive

exploration of the genetic architecture of a complex trait; for

example only two loci of all reported in the original GWAS

analysis of this dataset [1] would have met these criteria.

To compare the genome-wide distributions for the p-values

obtained in the vGWAS and the GWAS, we subjected the results

for the Wilcoxon-based GWAS results to the same conservative

significance testing strategy employed in the vGWAS. The GC-

and Bonferroni corrected p-values from the two analyses showed

little correlation overall (Figure 1a) and no overlap among the

genome-wide significant loci. Even at sub-GWAS levels of

significance (Figure 1a), there is little overlap among the loci

detected in the two analyses. Using a sub genome wide

significance-threshold of {log10(p-value)~4, there are approxi-

mately three times as many significant SNPs in the vGWAS as in

the GWAS and only about 3 out of 1000 significant SNPs reach

this level of significance in both analyses. This indicates that by

using a vGWAS, one will identify a novel set of loci affecting

Author Summary

The most well-studied effects of genes are those leading to
different phenotypic means for alternative genotypes. A
less well-explored type of genetic control is that resulting
in a heterogeneity in variance between genotypes. Here,
we reanalyze a publicly available Arabidopsis thaliana
GWAS dataset to detect genetic effects on the variance
heterogeneity, and our results indicate that the environ-
mental variance is under extensive genetic control by a
large number of variance-controlling loci across the
genome. A straightforward extension of current quantita-
tive genetics theory was derived to estimate the contri-
bution of genetic variance heterogeneity to the pheno-
typic variance for loci detected in the vGWAS. This showed
that some variance-controlling loci explained more than
20% of the phenotypic variance. Genetic variance hetero-
geneity was detected in various biological processes,
including cellular control of ion levels in the plant and
regulation of flowering. Our findings indicate that further
studies of genetically determined variance heterogeneity
are important to further understand the extent of its
biological importance. Accounting for variance-controlling
loci in complex trait genetic studies is a useful way to
identify previously unexplained genetic variance, dissect
the genetic control of environmental variance, and gain
biological insight into the genetic regulation of complex
traits.

Table 1. Significant variance-controlling loci in Arabidopsis thaliana.

Locus Chr Traita Type Alleles/MAFb Distc (bp) Mean part Variance part

Name ID VM=VP (h2) Pd VV=VP P

VS AT1G32920 1 Leaf Serr 16 Developmental A/G/0.14 16 226 0.7% 0.350 7.2% 1:80|10{7

MOT1 AT2G25680 2 Molybdenum Ionomics C/G/0.31 0 4.6% 0.348 22.8% 2:56|10{8

aTraits with p-value inflation w1.5 and SNPs with MAF v10% were excluded, and significance was determined by a Bonferroni corrected significant threshold with
genomic control;
bMAF (Minor Allele Frequency = 1 - LAF (Low-variance Allele Frequency);
cDist: Distance. A positive/negative distance value indicates that the leading SNP is to the right/left of the gene with the given ID;
dThe p-values are from GWA (Wilcoxon) and vGWA (Brown-Forsythe) scans after genomic control.
doi:10.1371/journal.pgen.1002839.t001

Variance-Controlling Genes in A. thaliana
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primarily the variance heterogeneity and that neither the GWAS

nor the vGWAS will identify the loci with intermediate effects on

both the mean and the variance heterogeneity. The results,

however, also indicate that there are also a number of loci that will

not be significant in either of these analyses, but that might be

significant when simultaneously considering the effects on the

mean and the variance (Figure 1a). Also, a large number of the loci

that are significant in one analysis will also have effects on the

other variance component, although not on a genome wide level.

The potential importance of such earlier undiscovered effects for

loci detected in the original GWAS [1] will be discussed in more

detail later.

Genetic variance heterogeneity can account for a
considerable amount of unexplained residual variance

To estimate the contribution of genetic variance heterogeneity

between genotypes to the phenotypic variance, the following

model can be used:

VP~VMzVV zVR

where VM is the variance due to genetic effects on the mean, VV is

the variance due to heterogeneity between genotypes and VR is the

remaining environmental variance [3,17–20]. In the population

analyzed here, where only the two homozygous genotypes exist,

VM~VA and consequently:

VM~VA~pqa2

The contribution of the genetic variance heterogeneity is:

VV ~pqw2

where p and q are the frequencies for the low- and high-variance

alleles (LAF and HAF) and a and w are the differences in the

mean/standard deviation between the two homozygous genotypes

(see the Methods and Text S1 for more information). This straight-

forward single locus extension of available quantitative genetics

theory facilitate mapping of individual variance-controlling loci

and estimation of their contribution to the phenotypic variance. In

Table 1 we give the estimates of VM=VP and VV=VP for the two

most significant loci in the vGWAS. Using MOT1 as an example,

VM , VV and VR are calculated as:

VM~pq(mH{mL)2~0:69|0:31|(3:10{2:38)2~0:11

VV ~pq(sH{sL)2~0:69|0:31|(2:43{0:83)2~0:55

VR~(psLzqsH )2~(0:69|2:43z0:31|0:83)2~1:76

so that we have

VM

VP

~
VM

VMzVV zVR

~
0:11

0:11z0:55z1:76
~0:045

VV

VP

~
VV

VMzVV zVR

~
0:55

0:11z0:55z1:76
~0:227

which are the same as given in Table 1 (ignoring small rounding

errors). For some loci, the genetic variance heterogeneity can thus

explain a considerably larger proportion of the phenotypic

variance than the genetic effect on the mean.

In Figure 1b we plot VM=VP and VV=VP for all the genome-

wide evaluated loci across the 52 traits with inflation factor v1.5.

There is no overlap among the genome-wide significant loci and,

as discussed above, there is little overlap even at sub genome-wide

significance levels. Many loci thus have significant effects only on

the mean (significant and large VM=VP and non-significant and

small VV=VP) or the variance (large and significant VV=VP and

small and non-significant VM=VP). Figure 1a and Figure 1b,

however, indicate that a number of loci make substantial

contributions to the phenotypic variance if considering mean-

and variance effects jointly. By mapping loci that display a

variance heterogeneity between genotypes, and by also including

VV in the decomposition of the phenotypic variance for the loci

significant in the standard GWAS, it is possible to detect new loci,

account for non-additive genetic variance and genetically dissect

the environmental variance. In this way genetic effects that was

previously part of the residual variation can be accounted for and

more of the total phenotypic variance be explained (Table 1;
Figure 1b).

The power and false positive rate for the vGWAS
Our proposed vGWAS strategy is based on the Brown-Forsythe

test and we show empirically, and through simulations, that it is

powerful while still controlling the false-positive rate: The power of

the vGWAS is influenced by VV (Figure A3 in Text S1) and by the

low-variance allele frequency (LAF). VV has its maximum at LAF

~sH=(sHzsL), where sH and sL are the phenotypic standard

deviations for the high- and low-variance genotypes, respectively

(see Methods and also Figure A2 in Text S1). Given this, it is not

surprising that the most significant variance-controlling loci in the

vGWAS have high LAF (w0.5) as well as large VV (Figure 2,
Table 1). The false positive rate (FPR) of the vGWAS is very low

for any sample size and LAF, as shown by simulations (Figure A3

and A4 in Text S1), which supports the theoretical expectation of a

low false positive rate for the Brown-Forsythe test in a vGWAS

[16] and that GC is useful for filtering out false positive signals due

to population confounding [21].

vSNPs are enriched in candidate genes
Atwellet al. [1] introduced a method for evaluating the

enrichment of strong, but not necessarily genome-wide significant,

signals for SNPs in candidate genes. An enrichment of such signals

indicates that the analysis identifies true signals rather than

random noise. Here, we extended this analysis by combining the

Figure 1. Comparison of p-values (a) and proportions of the phenotypic variance explained (b) for loci detected in the GWAS and
vGWAS. Wilcoxon and Brown-Forsythe tests were applied for the GWAS and vGWAS analyses, respectively. Plotted GC-corrected p-values are for the
association of all SNPs with MAF w10% for all the quantitative traits with p-value inflation v1:5. The red dashed lines indicate the Bonferroni-
corrected significance threshold. The scatterplots are heat maps for the logarithm of the number of dots in each mesh cell. A sub genome-wide
significance threshold of 10{4 is marked in (a), and a cutoff of 15% is marked in (b). The value in each block shows the ratio of the number of points in
the block to the total number of points in the subfigure.
doi:10.1371/journal.pgen.1002839.g001

Variance-Controlling Genes in A. thaliana
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rank-order lists from the Wilcoxon- and EMMA [22,23] GWAS

analyses performed by Atwell et al. [1] with the results from our

vGWAS. In this combined rank-order list, where for each trait the

highest rank for the listed genes in the GWAS or vGWAS was

included, the average rank of the candidate genes listed by Atwell

et al. [1] improved considerably. For the traits with inflation factor

v1.5, the ranks of 31 (5.1%) of the listed candidate genes were

improved by introducing the vGWAS results and on average their

rank increased by *109 (from *188 to *79; the complete results

are available in Table 1–83 in Text S1). The vGWAS signals are

thus more frequent in regions of known candidate genes and the

two most significant signals in our vGWAS both map to candidate

genes listed by Atwell et al. [1] (Table 1).

MOT1 controls the variance heterogeneity for
molybdenum transportation in Arabidopsis thaliana

Several SNPs covering the only exon of the gene MOT1 were in

the vGWAS found to be associated with the molybdenum concentration

(Figure 3). MOT1 was top-ranked in the vGWAS while originally

ranked 31 in the GWAS [1] (Table 25 in Text S1). The level of

molybdenum in Arabidopsis is known to be regulated by the

mitochondrial molybdenum transporter encoded by this gene

[24,25] and here MOT1 explains *5% of the phenotypic variance

by its effect on the mean. The effect on the variance heterogeneity

between genotypes was larger (Table 1) and in total the locus explains

*27% of the phenotypic variance, i.e. 57% rather than 10% of the

earlier reported broad sense heritability for this trait [25].

Our finding that MOT1 affects the variance heterogeneity in this

population might initially seem surprising, as the original studies only

report an effect on the mean. However, a closer inspection of the

results by Baxter et al. (Figure 1B) [25] and Tomatsu et al. (Figure 2C)

[24], indicates that variance heterogeneity between genotypes was

present also in earlier studies. Using the Baxter et al. [25] data (http://

www.ionomicshub.org), we re-estimated the differences in the mean

(1.35 v.s. 0.22) and the standard deviation (0.59 v.s. 0.10) between

Col-0 (n~11) and Ler-0 (n~7) and found that both the differences in

mean and variance between the genotypes are signficant (p~0:0006
and p~0:025 respectively). Under the assumption that the difference

between Col-0 and Ler-0 is only due to the effects of MOT1, VM=VP

and VV=VP can be estimated using the formulae above to be 58.7%

and 11.0%, respectively. The lower effect on the mean and higher on

the variance heterogeneity in the Atwell et al. dataset [1] is most likely

due to the different experimental designs. The earlier studies were

based on comparisons between two inbred lines selected to have a

large mean difference in molybdenum levels, whereas the more

recent study was population-based including lines with highly

variable levels of molybdenum content. As the genetic background

differs between lines in the population-based studies, effects of

multiple alleles and genetic interactions are more likely in the

population based data. Given that other genes contribute to the

difference between the selected inbred lines, we might over-estimate

the mean contribution and under-estimate the variance contribution

in the data from Baxter et al. [25] and Tomatsu et al. [24]. Despite this,

these datasets still show evidence of genetic variance heterogeneity.

Variance heterogeneity in Leaf serration is under genetic
control

A novel locus affecting Leaf serration at 160C was identified on

chromosome 1 (Table 1; Figure 4a). The genetic variance

heterogeneity at this locus is due to a shift in the phenotypic

distribution from normal to uniform (Figure 4b). The locus is close

to the suggested candidate gene ANAC13 [1]. Earlier studies have

described similar effects on the phenotypic variance when

disruptive mutations lead to a loss of control in a developmental

pathway, leading to an unregulated system displaying a random

(uniform) occurrence of the phenotype [26–28]. A closer

inspection of the vGWAS evidenced region (Figure 4 c,d),

however, shows that the signal is very low in the coding region

Figure 2. Dissection of the variance for the two most significant variance-controlling loci. The variance due to mean shift (additive
variance) and variance heterogeneity are shown in blue and yellow, respectively. The cumulative bar for each locus shows the contributions of the
two components of the variance at the observed low-variance allele frequency (LAF). The dotted curves illustrate the change in the variance
partitioning as LAF changes.
doi:10.1371/journal.pgen.1002839.g002

Variance-Controlling Genes in A. thaliana
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of ANAC13 and also that the coding region is in low LD with the

SNPs that display the strongest association signals. This makes it

less likely that the causative mutation leading to the observed effect

on the phenotype is located in the coding region of this gene.

Further studies of this Variation in Serration (VS) locus, including e.g.

the regulatory regions of ANAC13, are needed to identify the

biological explanation for the observed effect.

Genetic control of expression variability in the FRI-FLC
pathway and downstream effects on variance
heterogeneity in flowering

The two main variance-controlling loci detected in the vGWAS,

MOT1 and VS, primarily affect the variance heterogeneity

between genotypes in this dataset and only have small effects on

the mean. When looking beyond these two loci to explore the total

contribution of the sub-vGWAS significant loci to the phenotypic

variance, many of these were found to also have effects on the

mean (Figure 1). Also, a number of the loci detected in the GWAS

were indicated to also affect the variance heterogeneity. To

explore this observation further, we estimated the mean and

variance controlling effects for the well-studied locus FRI (Frigida)

that had the highest significance in the standard GWAS [1].

Genetic variability in this locus is known to influence its own mean

expression level [1] and through effects on downstream loci

influence flowering as well. Here, we found that this locus also had

a significant effect on the genetic variance heterogeneity between

the alternative FRI-genotypes (VM=VP~26:1%, p~5:21|10{15,

and VV=VP~6:7%, p~1:07|10{4) for the trait FRI Expression.

It is known that the expression of FRI influences flowering by

inducing expression of Flowering Locus C (FLC), which in turn delays

Figure 3. Detection of the molybdenum transporter MOT1 as a variance-controlling gene using vGWAS. a: Manhattan plot for genetic
association with the Molybdenum concentration in the plant. The yellow dots in the front are the genomic controlled p-values from the Wilcoxon (difference
in mean) test. The other colored dots are the genomic controlled p-values from the Brown-Forsythe (difference in variance) test, where the colors are used
to separate the 5 chromosomes. The horizontal dashed line corresponds to a nominal 5% significance threshold with Bonferroni correction. b: Molybdenum
concentration distributions for the ecotypes with alternative homozygous genotypes for the only SNP typed in the exon of MOT1. The density curves were
smoothed using a standard Gaussian kernel. The box plots in the density shades shows the real data distribution for the genotype.
doi:10.1371/journal.pgen.1002839.g003

Variance-Controlling Genes in A. thaliana
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flowering (Figure 5) [29,30]. Here, we observe a variance

heterogeneity between FRI genotypes that is not only present for

FRI expression, but also for the other traits downstream in this

pathway, i.e. FLC expression and several flowering traits (Figure 5a;

Table 2).

In biology, it is often observed that the phenotypic variance

increases with the mean trait value. The mean shift is commonly

thought to be of primary functional importance and the change in

the variance a by-product of altering the mean. Adaption is,

however, driven by selection of individuals based on their

Figure 4. Detection of a variance-controlling locus (Variance in Serration - VS) affecting Leaf serration at 16 0C. a: Manhattan plot for
genetic association with Leaf serration at 160C in the plant. The yellow dots in the front are the genomic controlled p-values from the Wilcoxon
(difference in mean) test. The other colored dots are the genomic controlled p-values from the Brown-Forsythe (difference in variance) test, where the
colors are used to separate the 5 chromosomes. The horizontal dashed line corresponds to a nominal 5% significance threshold with Bonferroni
correction. b: Two overlapping histograms showing the phenotypic distributions per genotype of the VS locus. c: The distribution of LD across the VS
locus. d: Association signals around the VS locus where the annotated genes are illustrated by shades in red (gene-name available) or gray (gene-
name unavailable).
doi:10.1371/journal.pgen.1002839.g004

Figure 5. Propagation of variance heterogeneity in the FRI-FLC pathway. a: The horizontal bars show the variance in FRI-expression, FLC-
expression and flowering times under four different conditions (short (SD)/long (LD) days, with (V) or without (2) vernalization) as the phenotypic
mean +/2 1 S.D. within the two alternative genotypes at the FRI-locus. Deletion represents homozygosity for the loss of function allele and A
homozygosity for the wild-type allele. The mean and the variance are significantly larger for all traits among the inbred lines with the functional A
genotype (Table 2). The pathway is adapted from [37]. b: Scatterplots and Spearman’s rank correlation coefficients are given for the deviation of FRI,
FLC, and the flowering traits in (a) from the median of each phenotype. *** indicates that the corresponding correlation coefficient is significantly
different from zero with p-value less than 10{3 . (c): For all the phenotypes in the pathway, the values for individuals are connected by lines. The color
of the line for an individual is assigned based on its level of FRI expression. Individuals with FRI expression below the 25% quantile are in blue,
between the 25% and 75% quantiles in green, and above the 75% quantile in red.
doi:10.1371/journal.pgen.1002839.g005

Variance-Controlling Genes in A. thaliana
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phenotype and consequently both the mean and the variance will

affect this process. If the increase in the variance is not under

genetic control, it will not be able to contribute to adaption and

merely increase the noise in the phenotype and decrease the

efficiency in selection. If the the heterogeneity in variance on the

other hand is under genetic control, it might be selected for and

potentially be of adaptive value. It is therefore of interest to

understand the biological mechanisms leading to variance

heterogeneity between genotypes and how such effects might

impact the phenotype under selection. One example of where

genetic control of the environmental variance might be of adaptive

value is for variation in flowering time [31]. Under selection in a

stable environment, the optimum time to flower will be relatively

constant across years, suggesting a fitness advantage for alleles

decreasing the variability in flowering time for its offspring. In a

fluctuating environment, however, high-variance alleles are

potentially more adaptive as offspring will flower over a broader

time period, allowing a fraction of the offspring to reproduce every

season.

Here we observe a variance heterogeneity between FRI

genotypes in the downstream phenotypes in the FRI-FLC pathway.

Is there then also a functional propagation of the differential

variance in FRI expression through the downstream pathway? Or

is this the result of a mere increase in the stochastic noise? If there

is a quantitative, rather than threshold, transmission of signals

through the pathway, one could expect that the quantitative

differences among individuals in FRI levels would result in

quantitative differences also in FLC expression, resulting in a

potentially FRI driven adaptive variation in flowering. Such a

functional propagation through the pathway would result in a

phenotypic correlation between the individuals for the phenotypes

in the pathway, i.e. individuals for whom the levels of FRI deviate

most from the mean would also be those where the deviations were

the highest in FLC and flowering. The available data supports such

a transmission of effects, as there are moderate to high correlations

between the deviations from the trait median in the pathway

(Figure 5b). Furthermore, there is also a clear relationship between

the trait values throughout the pathway for individual accessions

(Figure 5c), where FRI expression levels are strongly associated

with high FLC expression and late flowering. Interestingly, other

empirical data also indicate that variance heterogeneity in the

FRI-FLC pathway might be of adaptive advantage. The low-

variance (loss of function) FRI allele has appeared and remained

multiple times in natural populations [32] without replacing the

wild-type high-variance allele globally, suggesting that the

alternative alleles have fitness advantages in different environ-

ments.

Genetic variance heterogeneity in flowering-time due to
gene-by-environment interactions involving the FRI locus

FRI plays a central role in the vernalization response in

Arabidopsis thaliana, where dominant alleles at this locus acts to

confer late flowering, which is reverted to earliness by vernaliza-

tion. Here, we find a gene-by-environment interaction effect

between FRI and vernalization on both the mean and variance in

flowering-time (Figure 6). FRI shifts the mean flowering time and

the degree of variance heterogeneity both in the presence and

absence of vernalization. The genetic effect of the wild-type FRI

genotype on the variance heterogeneity is, however, much more

dependent on the level of vernalization than the effect of the non-

functional genotype. The observed genetic variance heterogeneity

is not a mere general increase in the dispersion, but rather the

appearance of very late flowering among a smaller number of

accessions with the wildtype FRI genotype when there is less

vernalization (see also Figure 5c). In the absence of vernalization, a

bi-modal phenotypic distribution appears, indicating an underly-

ing strong interaction between the FRI-genotype, vernalization

and at least one more locus or environmental factor.

Discussion

We have validated the vGWAS strategy used in this study by

simulations and shown that it controls the false-positive rate well.

To avoid any potential strong influence of the population

structure, we focus our discussion on results for traits with lower

p-value inflation (v1.5) and also applied GC [15]. Our further

analyses of the obtained results, including the thorough investiga-

tion of the most significant loci in the vGWAS and the enrichment

analysis of a priori candidate genes indicate that the analysis

provides results of biological significance. Further studies are

needed to explore the extent of genetic variance heterogeneity in

the genetic architecture of other populations and traits as well as to

Table 2. Differences in mean and variance for traits in the FRI-FLC-flowering pathway.

FRI genotype

Traita Significance A Deletion VM=VP
f VV=VP

g

meanb/variancec mean+s.d.d CVe mean+s.d. CV

FRI expression ***/*** 1.36+0.64 0.47 0.41+0.16 0.40 26.1% 6.7%

FLC expression ***/** 1.15+1.16 1.01 0.36+0.67 1.87 7.0% 2.7%

LD ***/*** 80.3+68.2 0.85 31.2+5.5 0.18 8.0% 13.0%

LDV n.s./** 30.1+8.6 0.29 26.3+3.7 0.14 3.0% 5.2%

SD ***/*** 125.9+52.8 0.42 82.9+10.4 0.13 10.2% 9.9%

SDV */* 67.6+37.5 0.55 51.3+12.8 0.25 3.1% 7.0%

aFlowering-times LD (Long days), SD (Short days), V (Vernalization); ***/**/*/n.s.: Pv0:001/Pv0:01/Pv0:05/non-significant in significance test for.
bdifference in mean (Wilcoxon) and
cdifference in variance (Brown-Forsythe) between FRI-genotypes;
ds.d.: Phenotypic standard deviation;
eCV: Coefficient of variation;
fVM=VP : Proportion of the phenotypic variance (VP) due to the mean-controlling effect of FRI on the trait;
gVV : Proportion of the phenotypic variance due to the variance-controlling effect of FRI on the trait.
doi:10.1371/journal.pgen.1002839.t002
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develop methods for accounting for more severe effects of

population structure. Our results, however, strongly indicate that

the vGWAS is a promising approach for analyzing genome-wide

association data.

Several earlier QTL studies have shown that it is possible to

map loci that control the environmental variance of quantitative

traits and identify plausible candidate loci for these effects [9–

11,33]. These results are thus in line with what was shown in this

report. Previous applications of vGWAS in human populations

[15,16], have, however, only found weak signals. The reason for

this might be that human GWAS datasets normally contain noisy

phenotypic measurements on many genotypes (individuals),

whereas this and other datasets from experimental populations

contain phenotypic measurements with less non-systematic envi-

ronmental noise on fewer genotypes. Also, as all inbred lines in this

study were grown in the same environment for each phenotype

measured, phenotypic plasticity had no effect on the single

phenotypes in the study, which removes this as a potential cause

for variance heterogeneity between genotypes [34]. The low non-

systematic environmental noise, absence of effects from pheno-

typic plasticity and perhaps also an increased sensitivity of

homozygous lines to environmental variation (see [7] and

references therein), thus makes the current design a better choice

for mapping and exploration of genetic variance heterogeneity.

We have illustrated the biological impact of genetic variance

heterogeneity using three examples. MOT1 illustrates how an

individual gene can explain a large fraction of the phenotypic

variance by its genetic effect on the variance heterogeneity. The

VS locus illustrates the potential of the vGWAS to identify loci

underlying developmental stability, where the disruptions are

likely to cause a random occurrence, rather than a directional

shift, in the phenotype [26–28]. The FRI-FLC pathway is a well-

studied system in Arabidopsis thaliana, and here we indicate that this

pathway might not only regulate the average flowering time, but

also the heterogeneity in flowering times. This through a potential

propagation of genetic heterogeneity in gene-expression through

the pathway and a gene-by-environment interaction leading to a

differential variance heterogeneity in flowering times depending

on the FRI genotype and the extent of vernalization.

The dominant paradigm in current GWAS analyses is to

identify additive loci through their effect on the mean difference

between genotypes. The total contribution of the detected additive

loci to the narrow-sense heritability is then estimated as the sum of

their individual effects. The discrepancy between the estimates of

the heritability for the studied trait in the population and the sum

of the effects of the loci detected in the GWAS is often referred to

as the ‘‘missing heritability’’. As this discrepancy appears to be

large, even when large populations are analyzed, there has been an

intense discussion regarding the potential mechanisms underlying

this. The observation has also increased the interest in exploring

alternative approaches to analyze GWAS data. Identifying loci

contributing to the genetic control of the environmental variation

will allow us to better explain the genetic contribution to the

phenotypic variation, but not the narrow-sense heritability. Some

loci detected in the vGWAS might, however, be involved in gene-

gene or gene-environment interactions, result from an incomplete

LD between the causal polymorphism and the tested marker, as

well as contain multiple functional alleles. In such situations, the

loci might make contributions to the narrow-sense heritability that

are difficult to detect using a standard GWAS [14–16].

By accounting for genetic variance heterogeneity in future

analyses of GWAS data, we foresee that more genes that

contribute to the phenotypic variation through non-additive

genetic effects on the mean and genetic regulation of the

environmental variation can be mapped and functionally dissect-

ed. Consequently, the vGWAS will allow genetic analysis to

proceed beyond the current GWAS paradigm, dissect the genetic

regulation of the environmental variance and potentially also

detect loci contributing to the currently unexplained genetic

variance. The discussion in the field of quantitative genetics

regarding the potential importance of genetic heterogeneity

between genotypes have historical roots [35]. The results reported

Figure 6. The effect of the FRI | Vernalization interaction on flowering-time in Arabidopsis thaliana. The columns show the phenotypic
distributions for each FRI genotype x Vernalization combination. FRI:- represents the loss of function genotype and FRI:A the wild-type genotype.
Flowering-time was measured under long days without (0W)/with 2 (2W)/4 (4W)/8 (8W) weeks of vernalization.
doi:10.1371/journal.pgen.1002839.g006
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here provides insight to the genome-wide effects of variance

heterogeneity and show that the genome contain many loci that

contribute to the phenotypic variance through a genetic control of

the variance heterogeneity.

Earlier studies on the genetic control of robustness in gene-

expression indicates that it, at least to some extent, is under genetic

control by individual loci with measurable effects [12]. Our finding

that genetic variance heterogeneity might also be propagated in

gene-expression pathways could have further functional implica-

tions for studies of the regulation of gene-expression. Studies are

therefore needed to explore whether the extent of regulatory

control over variance heterogeneity in expression pathways is of

functional importance. If this regulation proves to be important, it

adds a new dimension to the complexity in regulatory models.

Such studies of the propagation of regulatory effects on the

variability of expression could e.g. be performed by mapping of cis-

regulated variance-controlling loci in genetical genomic studies

followed by subsequent identification of downstream variance

heterogeneity in known pathways, or by searching for co-

expression on the level of variance in traditional microarray

experiments. It will be interesting to see if this new way of

dissecting the regulatory control in the transcriptome, using data

that is already publicly available for many species, could provide a

new handle on this topic.

Methods

Dissection of the phenotypic variance accounting for
genetic variance heterogeneity

In a single-locus additive model, the phenotypic variance VP is

partitioned as

VP~VAzVE

here VA is the additive variance, and VE is the residual variance.

This model only accounts for effects of genes on the mean

difference between genotypes. For a single locus, we instead

suggest to dissect the phenotypic variance into the variance due to

the mean shift between genotypes, VM , the variance due to the

variance heterogeneity, VV , and the remaining residual variance

VR, i.e.

VP~VMzVV zVR

Since inbred lines are analyzed in this paper, there is no

dominance, and consequently VM~VA. We therefore have

VRƒVE , where equality holds if and only if VV ~0, i.e. VV

captures a part of VE that is not stochastic noise, but actually

contributions by genetics.

Several alternative quantitative genetics models have been

proposed for modeling the genetic effect on the environmental

variance (see e.g. [3] for a review). Here, we review and use the

well-established quantitative genetics estimation equation for VM

and also explicitly derive the proportion of VP due to variance

heterogeneity, VV , for a single locus in this quantitative genetics

framework. This is to clearly present and investigate the

properties of these quantities when applied in a vGWAS context

(For details on the derivations, see Text S1). H/L here denotes

the high/low-variance allele (HA/LA), respectively. Our quan-

titative derivation resembles the ‘‘standard deviation model’’ in

[3], which assumes an additive model for the standard deviation

per genotype.

Genotype

Xð Þ
Frequency Genotypic

Value Gð Þ
Genotypic

S:D: Sð Þ
LL p mL~m sL~s

HH q~1{p mH~mza sH~szw

VM is here the phenotypic variance explained by G and

identical to VA. From basic probability theory, we have

VM~Var(G)~pqa2:pq(mH{mL)2

Similarly, VV is measured as the variance of S,

VV ~Var(S)~pqw2:pq(sH{sL)2

The total variance of the phenotype is

VP~pq(mH{mL)2zps2
Lzqs2

H

where pq(mH{mL)2~VM , and ps2
Lzqs2

H~VE is the mean

environmental variance. VV is a part of VE , and the remaining

residual variance is

VR~VE{VV ~(psLzqsH )2

The proportion of VP due to variance heterogeneity is thus

VV

VP

~
pq(sH{sL)2

pq(mH{mL)2zps2
Lzqs2

H

We investigated properties of the above quantities in detail (see

Text S1), and it is worth noting that both the narrow sense

heritability h2~VM=VP and VV=VP are maximized when

p~
sH

sLzsH

which is §1=2 (see e.g. Figure 2). Only when no variance

heterogeneity exists, h2 is maximized at 1=2.

Screening the genome for variance-controlling loci—the
vGWAS

For testing variance-controlling SNPs in the vGWAS, we use

the Brown-Forsythe (Levene) test. The Brown-Forsythe is a

statistical test for the equality of group variances and is based on

an ANOVA of the absolute deviation from the median. It has

earlier been shown to be robust to deviations from normality of the

phenotypic distribution in GWAS applications [16]. If the

phenotypic value is yij for individual i with genotype j, where

i~1, . . . ,n, and j~1, . . . ,m, the absolute deviations from the

median of each genotype are

y�ij~Dyij{~yyj D

where ~yyj is the median of the phenotypic values of the individuals

that have genotype j. Performing a one-way ANOVA on y�ij , we

have the ANOVA F statistic
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F~
(N{m)

Pm
j~1 nj(y

�
:j{y�::)2

(m{1)
Pm

j~1

Pnj
i~1 (y�ij{y�:j)

2

where nj is the number of observations in group j. This F statistic

follows an F distribution with m{1, n{m degrees of freedom.

Usually, n is sufficiently large to approximate the F statistic as a x2

statistic with m{1 degrees of freedom. The nominal p-values

calculated using such x2-statistics are used in the vGWAS with a

Bonferroni corrected significance threshold.

Genomic control for vGWAS
In an ordinary GWAS, genomic control (GC) is used to shrink

any existing inflation of the test scores ({ log10 p-values). When

testing for the single genetic effect in the GWAS, the null

distribution of the test statistic for the nominal p-values is x2

with 1 degree of freedom. Since most of the SNPs are not

expected to be associated with the trait, the sample distribution

of the chi-squares across the genome should resemble the null

distribution. If there is inflation, the chi-squares are adjusted

using l, i.e. the inflation factor estimated by comparing the

distribution of the sample x2’s and x2 distribution with 1 degree

of freedom.

As the sample size in this study is sufficient to approximate the

F -statistic of the Brown-Forsythe test using a x2 statistic, the

ordinary GC methods can be applied. Here, we regress the sample

x2’s on the null x2’s with a zero-intercept and take the slope as an

estimate of l, which is the approach used in the current version of

the GWAS analysis package GenABEL [36]. This approach was

selected as it is expected to be more conservative than, or similar

to, the alternative way of estimating l using the ratio of the

observed median of x2’s to the theoretical median of x2 with 1

degree of freedom [21].
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Contributed reagents/materials/analysis tools: XS LR. Wrote the paper:

XS MP LR ÖC.
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