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Models that describe the trace element status formation in the human organism are essential for a correction of micromineral
(trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal
mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance.
So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in
urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium.
Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial
neural network use is suitable for constructing a model in the best way because it can take into account all dependencies
in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe
the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the
body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide
the population with safe drinking water.

1. Introduction

It is known that there is a complex dependence between
water and food intake and trace element retention with the
formation of their individual statuses, and this dependence
has generally a nonlinear nature. Therefore, linear modelling
methods in multivariate regression tasks are not able to
describe with sufficient precision the whole range of relations
among significant factors appearing in the models developed
for the human body [1–8].

A number of studies [9–18] assert that trace elements
enter the body primarily through water and food intake, then
they are carried by the blood by binding them to specific pro-
teins; however, a certain portion of them (which is different
for different elements) is present in the blood in an ionized
form. The kidneys regulate the trace elements balance by

excreting them in the urine. At the same time, the proportion
of trace element forms not bound to proteins drastically
increases in the setting of an excessive admission from the
outside due to homeostatic limits to the possible presence
of transport proteins and, as a consequence, lack of reserves
for binding. Under these conditions, the excretory function
of the kidneys grows and the concentration of elements in
urine increases.

The modelling of the dynamics of trace elements concen-
tration in the serum as well as the process of excretion of
minerals in the urine are an important stage that character-
izes the processes associated with trace element retention.
Thus, this research is aimed at creating models that ade-
quately reflect the balance of the essential elements, as well
as the processes of their intake, excretion, and, especially,
retention in the body.
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The possibilities of neural network methods, which auto-
matically take into account both explicit and implicit depen-
dencies, exist among initial data [19–21]. In addition, neural
networks, in contrast to traditional modelling methods, allow
for using incomplete and inaccurate input data and are able
to reflect nonlinear dependencies and choose the right cor-
rection coefficients [22]. However, the use of neural networks
is restricted to simple networks of direct distribution. More-
over, scientific publications in the recent years do not contain
information regarding the use of neural networks for the
assessment and correction of the balance of trace elements
in the body. The use of neural networks of “multilayer
perceptron” type, self-organizing maps (Kohonen maps or
Kohonen networks) and probabilistic neural networks, as
well as hybrid and cascade networks (multilayer neural net-
work experts, neural network cascades, etc.), allows for
reducing calculation errors from tens to a few percent and
even to tenths of percent.

2. Materials and Methods

In order to model the processes of retention of trace ele-
ments in the body, we analyzed more than 2000 samples
of dynamic internal media of children and adolescents
living in the city of Kazan (Russia) and more than 750
samples of drinking water consumed by them to assess
the concentration of the most common trace elements
(Zn, Cu, Fe, Pb, Cr, and Sr).

The blood samples tested in the research were centri-
fuged for 15 minutes at 3000 rev/min. The calibration
solutions (stock and working) were prepared based on
the State Standard Samples by the standard method. To
measure the metal concentrations in the blood, we previ-
ously diluted the serum with bidistilled water at 1 : 2 ratio
(to detect Zn, Cu, and Fe) or in a TCA filtrate (in the
case of Pb, Cr, and Sr). To obtain the TCA filtrate, we
hydrolyzed whey proteins in hydrochloric acid (reagent
grade), adding 0,75ml of 1,5% HCl solution to 1,5ml of
serum and incubating for 1 hour at 37°C. After hydroly-
sis, the proteins were precipitated by 0,75ml of 20%
TCA (trichloroacetic acid), with a final dilution at 1 : 2
ratio, and after 1 h were centrifuged for 10 minutes at
1500 rev/min. The supernatant fluid (TCA filtrate) was
collected for analysis.

In those cases when the concentration of a certain
trace element was below the detection level and could
not be detected directly in the TCA filtrate, we used the
concentration/extraction method: added 0,5ml of 2%
sodium diethyldithiocarbamate solution and 2 drops of
TRITON-X-100 detergent to 2,5ml of serum and vigor-
ously shook the mixture for 10 seconds. Then, we let the
mixture settle for 10 minutes, added 1,5ml of butyl ace-
tate, shook it for 1 minute, centrifuged it, and analyzed
the extract. This way, we managed to reduce the detection
level by a factor of 1,5 for chrome and by a factor of 2,5
for strontium and lead.

In order to determine the trace elements in urine, we col-
lected daily urine samples and examined the concentrations
of metals in them by direct analysis.

It is known that the ionized forms of trace elements
entering the body with consumed water are effectively
assimilated. Trace element salts dissociated in water are
characterized by a high biological activity; the adsorption
of these salts in the gastrointestinal tract is very quick
and complete. Therefore, the fraction of trace elements
entering the body in a dissolved form must manifest itself
in some way in the change of their concentrations in the
serum [5].

During preparation of drinking water samples, we
evaporated 1 litre of water in a water bath and then dis-
solved the solid residue in 50ml of 1N nitric acid (reagent
grade). The obtained aliquot part was analyzed by the
AAS method.

As the analytical method for determining trace ele-
ments in the examined media, we chose the AAS method,
since it is known as one of the most selective and repro-
ducible methods and is recognized for its high selectivity
and speed of execution, which becomes a very important
factor when performing a research at a population level.
This method is especially adequate for the analysis of solu-
tions, since in this case the dissociation of the analyzed
substance into atoms can be achieved by heating in a
Bunsen burner. The detection of trace elements in a highly
oxygenated air-acetylene flame is highly selective and
characterizes itself by an insignificant influence of the sam-
ple composition on the analysis result. The primary statis-
tical processing of the results was performed using the
software package “STATISTICA 6.” We evaluated the con-
fidence intervals, variances, quartiles, the normality of
distributions, and the statistical significance (t-test). The
significance of the results was determined using a 95%
confidence interval (p < 0,05).

MLP-type neural networks were chosen as the para-
digm of the regression model [23]. The structure of this
type of neural networks is defined empirically and is
determined by the complexity of the information con-
tained in the data. For training the neural networks, we
used a network reduction method based on multiobjective
optimization [24].

3. Results

A wide concentration gradient was detected for all trace ele-
ments in the tested media. Results from previous experi-
ments show that knowing the content of trace elements in
drinking water is not enough to build adequate models
describing how these elements enter the blood and subse-
quently are excreted in the urine. For this reason, we decided
to supplement the model with information on some physio-
logical characteristics of the human organism. The height
and weight of the tested individual were taken as anthropo-
metric factors affecting directly the processes of accumula-
tion of metals in the organism and their excretion from it.
These factors define a key morphometric parameter widely
used in toxicology and human physiology, and known as
the body surface area (1), which characterizes indirectly the
length of the circulatory system:
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Sbody =
P × B
3600 , 1

where Sbody is the body surface area, measured in m2, Р is the
height, measured in cm, and В is the weight, measured in kg.

In order to increase the accuracy of the calculation of the
concentration of ionized trace elements in the urine, we
introduced a characteristic determined by the excretory func-
tion of the kidneys, namely, the “daily diuresis,” which is the
total volume of urine (in ml) produced by the human organ-
ism per day.

Thus, to calculate the retention level, we used data tuples
of the following form: “[Concentration of trace elements in
drinking water] & [Concentration of trace elements in
serum] & [Concentration of trace elements in urine] −
[Retention level in the body]”. The input parameter, “Con-
centration of trace elements in drinking water” was deter-
mined by direct measurement, whereas the parameters
“Concentration of trace elements in serum” and “Concentra-
tion of trace elements in urine” were computed in a cascade-
like manner, on the basis of separated neural networkmodels.

The model for assessing the retention level is based on a
fuzzy inference system [25], since the models of this kind
take into account the blurred boundaries of the notions of
“low” (coded with 0) and “high” (coded with 1) for the
trace element levels in water, blood, and urine, and also
reflects the nonlinear nature of the dependence of the fac-
tors that determine the retention. The linguistic values are
correlated with the quantitative values of the concentration
of trace elements in drinking water, blood and urine (mg/l)
by means of Gaussian membership functions with centres
computed as the boundary between the first (lower) and the
third (upper) quartiles on the basis of a series of outdoor
measurements (see Table 1).

4. Discussion

The following reasoning allows to determine the character
and values of the output parameter “Retention level.” After
analyzing the regression coefficients of the obtained linear
models describing the correlation between the concentra-
tions of trace elements in drinking water, serum, and
urine, it may be noted that they are in the ratios
(“Water” : “Blood” : “Urine”) 5 : 2 : 3. In particular, if we con-
sider the regression of the ratios of the indices of excess rate,
which are the values, reduced with respect to the median of
the series, of each element of the sample (Rretention, Rwater,
Rblood, Rurine), then it has the form

Rretention = 0,327 + 0,52 × Rwater + 0,19
× Rblood − 0,33 × Rurine

2

If we take a conventional unit as maximum intensity of
the retention, then the weighting coefficients of the factors
of the sequence “Water” => “Blood” => “Urine” are distrib-
uted as follows:

(i) a high level of trace elements in blood (coded with 1)
corresponds to a weight of 0,2, whereas a low level of
trace elements in blood (coded with 0) corresponds
to a weight of −0,2;

(ii) a high level of trace elements in drinking water
(coded with 1) corresponds to a weight of 0,5,
whereas a low level of trace elements in drinking
water (coded with 0) corresponds to a weight of
−0,5;

(iii) a high level of trace elements in urine (coded with 1)
corresponds to a weight of 0,3, whereas a low level of
trace elements in urine (coded with 0) corresponds
to a weight of −0,3.

Table 1: Correlation between linguistic and quantitative values of
the input parameters.

Input parameter
Trace
element

Linguistic
value

Centre value of
the membership

function

Trace elements
concentration in
drinking water

Zinc
Low level 0,016

High level 0,022

Chrome
Low level 0,0012

High level 0,0045

Iron
Low level 0,0735

High level 0,1

Strontium
Low level 0,107

High level 0,17775

Copper
Low level 0,0012

High level 0,0018

Lead
Low level 0,012

High level 0,0165

Trace elements
concentration
in serum

Zinc
Low level 0,6355

High level 0,8275

Chrome
Low level 0,04

High level 0,08525

Iron
Low level 1,1375

High level 1,9635

Strontium
Low level 0,08925

High level 0,156

Copper
Low level 0,715

High level 0,99275

Lead
Low level 0,0475

High level 0,079

Trace elements
concentration
in urine

Zinc
Low level 0,239

High level 0,4895

Chrome
Low level 0,012

High level 0,028

Iron
Low level 0,0745

High level 0,2195

Strontium
Low level 0,087

High level 0,222

Copper
Low level 0,022

High level 0,084

Lead
Low level 0,028

High level 0,055
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As we see, the intensity of retention varies from −1, in
cases of excessive excretion, to +1, when the retention level
is maximal. When the retention level equals to 0, no concen-
tration changes occur in the body, and the system stays in a
state of equilibrium.

Thus, the rules of inference take the following meaning
and describe the intensity and direction of the retention pro-
cesses (“Water” : “Blood” : “Urine”):

(1) IF (Concentration of trace elements in drinking
water = “low”) AND (Concentration of trace ele-
ments in serum= “low”) AND (Concentration of
trace elements in urine = “low”) THEN Retention
level =−0,5− 0,2 + 0,3 =−0,4, so it is “moderately
reduced”.

(2) IF (Concentration of trace elements in drinking
water = “low”) AND (Concentration of trace ele-
ments in serum= “low”) AND (Concentration of
trace elements in urine = “high”) THEN Retention
level =−0,5–0,2–0,3 =−1,0, so it is “minimal”.

(3) ... , and so on.

Considering the adopted codes, the basic set of rules can
be represented as seen in Table 2.

This distribution gives a dynamic characteristic of the
retention levels of trace elements in the body, with an empha-
sis on the state balance.

There are two fuzzy inference systems that can be rea-
sonably considered as suitable for solving this problem: a
Mamdani system with a fuzzy and/or defuzzification of
the output and a Takagi-Sugeno system with defuzzifica-
tion of the linear output. In the case of the Mamdani
inference system, the quantitative expressions of the lin-
guistic values of the output variable “Retention level” are
either the centre points of the output Gaussian membership
functions or singletons. In the case of the Takagi-Sugeno
fuzzy system, the quantitative values obtained are the con-
stant terms (y-intercepts) of the linear combinations of the
inputs having zero coefficients [26].

We constructed a hybrid intelligent model consisting of
two cascade-coupled neural networks [27] as a practical real-
ization of the proposed approach to determining concentra-
tions of metals in serum and urine, respectively, based on
data on the concentrations of trace elements in drinking

Table 2: Table of rules of inference.

Trace elements concentration
in drinking water

Trace elements concentration
in serum

Trace elements concentration
in urine

Retention level
Value Linguistic value

0 0 0 –0,4 Moderately low

0 0 1 −1 Minimal

0 1 0 0 Equilibrium state

0 1 1 −0,6 Low

1 0 0 0,6 High

1 0 1 0 Equilibrium state

1 1 0 1 Maximal

1 1 1 0,4 Moderately high

Daily diuresis

Weight

Height

Concentration
of TE in water

Re
te

nt
io

n 
of

 T
E 

Computation of
the body surface

 area

Model computing the
concentration of TE

in blood

Model computing
the concentration

of TE in urine

Water

Urine

Blood

System

(Mamdani)

Retention

Figure 1: Structure of the model assessing the retention of trace elements.
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water and on the physical anthropological characteristics of
the tested individuals. The third element of the model is a
Mamdani inference system with a definition of the Gaussian
membership functions for the output parameter (retention
level) based on fuzzy initial data on the concentrations of
trace elements in drinking water, serum, and urine obtained
in the previous stages. The model assessing the retention of
any of the tested trace elements (TE) features the structure
shown in Figure 1.

The practical approval of the trace elements retention
model was carried out in a test group of children and adoles-
cents. Tables 3–5 provides some results of experiments in the
case of zinc.

As a result of cascade modelling, we obtained the follow-
ing values for zinc concentrations in serum and urine:
0,892mg/l and 0,433mg/l, respectively (Table 3). These
values were input to the Mamdani system. The results of
the data processing are shown in Figure 2.

As a result, the value of zinc retention was found to be
0,407mg/l, which corresponds to a moderately high level.

As a result of cascade modelling, the following values
were obtained for zinc concentrations in serum and urine:

0,867mg/l and 0mg/l, respectively (Table 4). The results of
the data processing are shown in Figure 3.

The value obtained for zinc retention was 0,708mg/l,
corresponding to a high level.

We obtained, as a result of cascade modelling, the follow-
ing values for zinc concentrations in serum and urine:
0,778mg/l and 0,527mg/l, respectively (Table 5). The data
processing results are shown in Figure 4.

The negative value obtained for the zinc retention
(−0,463mg/l) is an evidence of excessive excretion of zinc
and corresponds to a moderately low level.

5. Conclusions

The method we propose here for assessing and expressing
quantitatively the retention of trace elements in the human
body is based on a cascade hybrid intelligent system that rec-
ommends itself by its high degree of accuracy and reliability.
This method does not require expensive laboratory studies
and allows for assessing the value of the retention in the body
using easily accessible information. The simplified structure
of the neural network regression model (its reduced number

Table 3

Weight (kg) Height (cm) Body surface area (m2) Daily diuresis (ml) Zinc concentration in drinking water (mg/l)

40,15 164 1,352 750 0,04

Table 4

Weight (kg) Height (cm) Body surface area (m2) Daily diuresis (ml) Zinc concentration in drinking water (mg/l)

41,8 170 1,450 1300 0,04

Table 5

Weight (kg) Height (cm) Body surface area (m2) Daily diuresis (ml) Zinc concentration in drinking water (mg/l)

57 159 1,587 720 0,017

Figure 2: Results of the data processing for Table 3 using the Mamdani system.
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of inputs) provides sufficient accuracy, and the reduction of
the neural networks increases the adequacy of the models.

This method for assessing the retention can be used in the
subsequent determination of the balance of trace elements in
the human body and the choice of an appropriate method for
imbalance correction, both at individual and population levels.
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