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Abstract: The identification of transcription factor binding sites is essential to the understanding of the regulation
of gene expression and the reconstruction of genetic regulatory networks. The in silico identification of cis-regulatory
motifs is challenging due to sequence variability and lack of sufficient data to generate consensus motifs that are of
quantitative or even qualitative predictive value. To determine functional motifs in gene expression, we propose a
strategy to adopt false discovery rate (FDR) and estimate motif effects to evaluate combinatorial analysis of motif
candidates and temporal gene expression data. The method decreases the number of predicted motifs, which can
then be confirmed by genetic analysis. To assess the method we used simulated motif/expression data to evaluate
parameters. We applied this approach to experimental data for a group of iron responsive genes in Salmonella
typhimurium 14028S. The method identified known and potentially new ferric-uptake regulator (Fur) binding sites.
In addition, we identified uncharacterized functional motif candidates that correlated with specific patterns of
expression. A SAS code for the simulation and analysis gene expression data is available from the first author upon
request.
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Introduction

Gene expression exhibits temporal and spatial patterns in response to environmental changes
and as part of developmental and differentiation processes. The binding of transcription factors
(TFs) to regulatory elements of genes controls when and where specific genes will be expressed.
The rate of gene transcription is regulated largely by the TFs that bind and affect the affinity
of RNA polymerase for the transcription initiation site of the gene. The identification and testing
of relevant TF binding sites remains a significant challenge in functional genomics (Tompa
et al. 2005).

Traditionally, TF binding sites have been characterized by experimental methods. The availability
of complete genome sequences enables us to use computational tools and advanced statistical methods
to predict new potential TF binding sites. In addition, recent advances in high throughput gene expres-
sion analysis technologies can provide large amounts of detailed expression data. These techniques
include DNA microarray(Conway and Schoolnik 2003; Eisen et al. 1998; Spellman et al. 1998), SAGE
(serial analysis of gene expression) (Angelastro et al. 2000) and in vivo gene expression using promoter
reporters(Anderson et al. 1988; Bjarnason et al. 2003; Blouin K. 1996; Kalir ef al. 2001; Setty et al.
2003; Van Dyk et al. 2001; Zaslaver et al. 2004) and in vivo TF binding techniques(Beer and Tavazoie
2004; Braas et al. 2003; Elemento and Tavazoie 2005; Pritsker et al. 2004; Rosenfeld et al. 2005)
(Ui et al. 1998).

Thorough the comparison of expression profiles, genes or putative genes can be grouped based
on similarity of expression profiles by cluster analysis. Within the same cluster, genes are assumed
to be transcriptionally co-regulated, and upstream regions of these co-expressed genes can be
searched for shared sequence motifs. High conservation of upstream sequence motifs has lead to
the widespread use of multiple alignments to search for conserved upstream nucleotide sequences
(Conlon et al. 2003; Eskin and Pevzner 2002; J. van Helden 2000; J. van Helden 1998; Sinha and
Tompa 2000) for motif discovery in several eubacterial species (McGuire et al. 2000) and
Sacchromyces. cerevisiae (Frederick P. Roth 1998; Hughes et al. 2000). Although the strategies
can identify many significant repeats or conserved sequences upstream of the coding region, the
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statistically significant meaning of the putative
motifs is based solely on the frequencies of the
nucleotides or patterns against the genome spe-
cies. It doesn’t indicate the probability that the
putative motifs are TF binding sites or have bio-
logical relevance for gene expression (Caselle
et al.2002; Cora et al. 2004), and these putative
TF sites must be confirmed by wet-bench genetic
analysis. Compared with relatively simple bac-
terial genomes, the TF binding sites in eukary-
otes tend to be much shorter and the size of the
potential regulatory region much larger, conse-
quently the number of the predicted putative
motifs will be greater. Confirming all putative
motifs in all organisms by wet bench experimen-
tal analysis becomes challenging. Therefore
approaches that would decrease the number of
putative sites and efficiently obtain functional
motifs are crucial issues in the in silico analysis
of regulatory sites. Using the combined analysis
of complete genome information with gene
expression data it is possible to identify statisti-
cally significant putative motifs. However, the
current motif discovery methods enable us to
overestimate the putative motifs compared to
what we expect to be significant from biological
data (Cora et al. 2004; Cora et al. 2005). Using
traditional statistical methods, the identification
and testing of functional motifs involves multiple
comparison tests, and the avoidance of Type I
error, where a null hypothesis is incorrectly
rejected, can be problematic. Although some
researchers have tried to explore analysis tech-
niques to address these issues (Keles et al. 2002;
Kessler and Witholt 2001), the present status of
research suggests that the exploration and appli-
cation of the new analysis techniques would be
advantageous

In this paper, we adopted the method of control-
ling the false discovery rate (FDR) (Benjamini
1995) to decrease type I error and estimated motif
candidate effects with longitudinal model (Wolfin-
ger et al. 2001). We are interested in identifying
putative functional motifs within co-regulated
genes derived from temporal expression data. In
the current study, we demonstrate that controlling
the FDR and motif effect estimation are more
appropriate for functional motif detection, and
illustrate the strategy via a simulation study and
time series gene expression data in Salmonella
typhimurium.

Materials and Methods

Definition of false of the false

discovery rate (FDR)

The FDR is the expected proportion of true null
hypotheses erroneously rejected out of the total num-
ber of null hypotheses rejected (Benjamini 1995). In
theory, if R null hypotheses are rejected in multiple
comparison tests, V is the number of true null hypoth-
eses erroneously rejected. FDR is defined as:

FDR = E(V|R|R>0)P(R>0)

Assume that m, the number of multiple com-
parison tests, are simultaneously tested, there are
m null hypotheses H,, H,, ..., H,, on basis of inde-
pendent test statistics Y, Y, ..., ¥, from each ¥,
figuring out corresponding p-values, P,, P, ..., P, ,
then denoting the ordered values as P;, =P, = ...
= P,), P), being the most significant and P, the
least significant in the usual terminology. The
values to control FDR when P, are independently

distributed are given by the step-up formula:

k=max{l:F, < (I|m)q}.

We reject Py, Py ovor Py, if no such k exists,
we reject none. It has been proven that the FDR
could be controlled at some level, ¢ (Benjamini
1995). That is, out of k hypotheses rejected, it is
expected that the proportion of erroneously rejected
hypotheses is not greater than the FDR adjusted
p-value.

Analysis of simulated data

The simulated data was generated by Monte Carlo
simulation. We simulated 10 promoters that were
associated with 50 sequence motifs: 8 func-
tional motifs (two motifs with negative effect and
six motifs with positive effects) and 42 non-
functional motifs. The simulation was run 50 times
and the simulated gene structure is shown in
Figure 1. We assume that each gene has a con-
served expression profile, three motifs upstream
of the gene, and that motif effects are additive.
A positive effect indicates that the TF site would
work to enhance or activate gene expression, and
a negative effect indicates that the TF site works
to repress or hinder gene expression.
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-35 -10 G

Figure 1: The simulated gene structure. M, ,M, and M,
are three simulated transcriptional factor binding sites
and the basal promoter element represented by the -35
and -10 regions. The combination of the three motifs
with the basal promoter element was random. The motif
effects could be negative, positive or have no effect.

Here we temporarily ignore non-linear interaction
among motifs and assume that the effects of multiple
motifs are additive. All combinations between promot-
ers and motifs have random uniform distribution. The
simulated parameters are shown in Table 2; the simu-
lated model is as follows:

Y, =G, + Y Y Motif, + . ¥ Motif, * Motif , +¢,
ok Jj ok

Here, Y, is gene i expression level; G, is the ith gene
conserved expression profile, i=1,2, ..., 10; Motz’]?k
is the Ath motifs additive effects in the jth cluster;
J,k are the number of cluster and motifs, respec-
tively. €i is the ith normal random effects.

To check family-wise error rate (FWER), we
shuffled the motif order against gene expression
level 50 times to obtain the permutated data. For
the simulated motifs, we tested by #-test for each
of 50 motifs in both the simulated data and the
permutated data. Under the assumption of unequal
variances, the approximate sig statistic is com-
puted as

) X —-X
szg:—(’ )

JW +w,

2 2

h | _S2

where w =—,w, =—,

1 n,

(w, +w)2
1 2

df =— 2
[wy /(n, =D]+[w; /(n, =1)]

sig is the significant value of statistics; X, is the
mean of the ith candidate motif in a cluster and
given gene expression experiment; x is the mean
of'a cluster and given gene expression experiment;
n, is the number of the ith candidate motif in a
given cluster and gene expression experiment; 7,
is the total number of a given cluster and gene
expression experiment.

After the 50 tests were ordered by P;, the
FWER and the FDR were determined as described
above.

Analysis of real gene expression
data and estimation of motif effect

in S. typhmurimum

A previous study by our group (Bjarnason et al.
2003) identified iron responsive genes in
S. typhimurium by screening a random promoter
library in hogh and low iron. Expression profiles
for the iron response clones were further organized
on the basis of their expression profile across 11
conditions and 5-8 time points using cluster
analysis (Eisen et al. 1998). Cluster analysis
arranges genes according to their similarity in pat-
terns of gene expression. Genes previously dem-
onstrated to be repressed by the transcriptional
regulator Fur were found within one of the larger
clusters. Fur is primary transcriptional regulator
involved in the regulation of iron uptake and
metabolism.

We took 300 base pairs (bp) of upstream
sequences of each gene in this cluster and tried
to find sequence patterns from the unaligned
DNA sequences. We adopted the Mismatch Tree
Algorithm (MITRA) and MEME — approaches
to obtain composite regulatory patterns that are
groups of monad patterns that occur near each
other (Bailey 1999; Eskin and Pevzner 2002).
The MITRA found 58 dyad motifs of length 6bp
or greater in this set of co-regulated genes. We
used unequal variance #-test where a significant
t-value is indicative of a putative motif or com-
posite pattern affecting the gene expression in
the condition of that time point. The FDR
adjusted p-value was computed as described
above.

Table 1: Outcomes when testing m hypotheses

H, NOT H, rejected Total
rejected
H, True U \ Mg
H, False T S m-m
Total m-R R m

Note: V = number of Type | errors(false positive),T =
number of type Il errors(false negative).
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In the screened motif candidates we obtained
consensus candidates. In order to quantitatively
evaluate the motif candidates, we estimate the
motif candidates with a longitudinal model.
Let the random variable Y; = Y (z,) denote the
gene expression level of ithgene, measured at
7;; in each experiment. We then assume that ¥,
satisfies

Y, =B+ Pt + Pt + €, =1,....n,

Where n, is the number of longitudinal measure-
ments available for the ith gene, and where all error
components &, are assumed to be independently
normally distribution with mean zero and variance
o’ The Y, can be rewritten as

Yi:Zilﬂi-l_‘S;‘

Where Y, equals (Y, Y, ..., ¥,,,), & equals (&,
Ep - €)> Pi equals (By;, By, By)', and Z; is the
(n; X 3) matrix, the columns of which contain
only ones, all time points 7, and all squared time
points tzij. The above model can now be seen as
a linear regression model, and the vector f3; of
unknown parameters can be estimated by replac-
ing Y, in the ordinary least squares estimator
Bos =(Z'Z)"'Z'Y,, by the vector Y, of observed
value, leading to 3.

All analysis processes were implemented by
SAS.

Results and discussion

Simulated data

In order to evaluate the different statistical anal-
ysis methods, a simulated data set was generated
by combining regulatory motifs with basic pro-
moter elements, as illustrated in Figure 1. The
false discovery rate (FDR) adjusted p-value,
familywise (or experimentwise) error rate
(FWER) and comparison-wise error rate (CWER)
computed from the z-probabilities in the simulated
data set with ten genes and eight functional motifs
are plotted in Figure 2A. The first 13 comparisons
in the simulated data and first seven comparisons
in permutated data are shown in Table 3. From
Figure 2A, at very low probabilities of null

hypotheses, FDR adjusted p-value, CWER and
FWER are very close. With increasing numbers
of rejected hypotheses, the FDR adjusted p-value
is always lower than the FWER and higher than
the CWER. From Table 3, at i = 12, FDR
adjusted p-value = 0.2016, FWER = 0.91096,
CWER=0.04837, based on ¢-probability or
CWER, 12 motifs are detected, which could be
considered “true” functional motifs. Based on
FWER<O0.5 criteria, the FDR adjusted p-value
=0.01778, nine functional motifs would be
detected, all of the eight true motif in simulated
data are in the detected motif list, at i = 8,
FWER=0.1478, FDR adjusted p-value = 0.0200,
CWER=0.0032. Thus, FDR adjusted p-value

Simulation Unequal Variance

0.8

pt

0.6 alpha

FDR adjusted p value|

0.4

1 3 57 91113151719 21 2325 27 29 31 33 35 37 39 41 43 45
Number of Null Hypothesis

Simulation Permutation Unequal Variance

—_

alpha

FDR adjusted p-value

13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Number of Null Hypothesis

Figure 2: A. The plot of FDR adjusted p-value,
experiment-wise type | error (FWER)(alpha) and
comparison-wise type | error (CWER)(pt) in the simu-
lated data set with ten genes and eight functional
motifs and 50 motif-gene expression combinations.
The x-axis is the number of hypotheses rejected and
the y-axis is he probability level for the different sta-
tistical tests. B. The plot of FDR adjusted p-value,
experimentwise type | error (FWER) (alpha) and com-
parisonwise type | error (CWER)(pt) in the shuffled
simulation data set with ten genes and eight functional
motifs and 50 motif-gene expression combinations.
The x-axis is the number of hypotheses rejected and
the y-axis is he probability level for the different sta-
tistical tests.
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Table 2: Parameter values for the transcription
elements for the simulated dataset.

Basal Promoter Activity Motif Effects’
10 Negative Motifs
50 -40
90 -80
130 Positive Motifs
163 20
180 40

200 60
250 800
300 120
500 150

Note': In addition to these two negative and six positive
motifs, 42 motifs with no effects were included in the
simulated dataset

Table 3: The Tests in Simulated Population and Permuta

controlled FDR, the FDR is similar to the family
wise rate, so in such a situation controlling the
FDR adjusted p-value is same as the controlling
of FWER. When the number of null hypotheses
is less than that of all hypotheses under testing,
the FDR adjusted p-value is much smaller than
that of FWER.

Permutation data

In order to generate a negative data set, the puta-
tive motif and condition-time point associations
calculated above were randomly permutated. The
FDR adjusted p-value, FWER and CWER were
determined and plotted in Figure 2B and also
shown in Table 3. Because the relationships
among the putative motifs and gene-condition-
time points have been randomized, no null

ted Population

Obs tvalue DF Motif CWER Exp FWER FDR adjusted p-value
1 12.61 331 2 <0.0001 0.0000 0.0000 0.0000
2 -12.07 352 7 <0.0001 0.0000 0.0000 0.0000
3 -17.63 341 8 <0.0001 0.0000 0.0000 0.0000
4 —-7.68 325 6 <0.0001 0.0000 0.0000 0.0000
5 -5.73 353 5 <0.0001 0.0000 0.0000 0.0000
6 4.48 322 1 <0.0001 0.0005 0.0005 0.0001
7 -3.56 378 4 0.0004 0.0206 0.0204 0.0029
8 -2.97 325 3 0.0032 0.1600 0.1479 0.0200
9 -2.97 325 33 0.0032 0.1600 0.1479 0.0178
10 2.14 359 42 0.0328 1.6410 0.8062 0.1641
1 2.05 304 23 0.0417 2.0854 0.8758 0.1896
12 1.98 333 40 0.0484 2.4187 0.9110 0.2016
13 1.75 356 42 0.0817 4.0858 0.9832 0.3143
Permutation Results

1 217 147 17 0.0320 1.5996 0.79802 1.5996

2 2.07 165 32 0.0401 2.0069 0.8656 1.0035

3 -1.76 144 34 0.0807 4.0367 0.98234 1.3456

4 -1.73 134 16 0.0853 4.2632 0.98592 1.0658

5 1.71 154 14 0.0892 4.4588 0.98842 0.8918

6 1.62 147 21 0.1071 5.3558 0.99528 0.8926

7 1.5 124 1 0.13669 6.8346 0.99892 0.9764
Evolutionary Bioinformatics Online 2005:1 88



Song et al

hypotheses should theoretically be rejected. As
we can see in Figure 3, when the association
between the putative motifs and expression data
was shuffled, the FWER sharply increased. From
Table 2, ati =2, FDR adjusted p-value =1.00346,
FWER = 0.8656, CWER = 0.04014. Based on
the CWER criteria, two motifs were tentatively
detected which could be considered “true” func-
tional motifs. However from FWER < 0.5 and
the FDR adjusted p-value, nothing of signifi-
cance was detected. The FDR adjusted p-value
larger than one would imply that the number of
Type I errors exceed the number of rejected
hypothesis. These results illustrate how unreli-
able the CWER is in multiple comparison tests
of motif discovery.

Expression data from an iron-regulated

cluster from S. typhimurium

We have previously characterized iron respon-
sive genes in S. typhimurium (Bjarnason et al.
2003). Iron responsive genes were clustered on
the basis of their expression profiles across 11
conditions and time points via cluster analysis-
(Eisen et al. 1998), and one significant cluster
containing known Fur responsive genes was
selected for analysis. Fur mediates the majority
of transcriptional repression to iron in bacteria
(Earhart 1996). We adopted the Mismatch Tree
Algorithm (MITRA) (Eskin and Pevzner 2002)
to search for composite regulatory patterns in
the 300bp sequence upstream of each gene. The
MITRA found 58 dyad putative motifs of length
6bp or greater and the unequal variance #-values
and their corresponding probabilities were

calculated from the time series gene expression
experiment. For the 3886 (67 time points by 58
dyad putative motifs) pattern-condition-time
point association tests of the genes in the iron
regulated cluster, the FDR, CWER and FWER
are plotted in Figure 3. The behaviors of the
indices are similar to those in Figure 2. At very
low probabilities of null hypotheses, FDR
adjusted p-value, FWER and CWER are very
small and similar. For analysis of this real data,
we take the FWER < 0.5, in this case, i = 63,
FDR adjusted p-value = 0.0088, FWER=0.4260
and CWER=0.0001, that is only 63 null hypoth-
eses out of 3886 association tests would be
rejected. Adopting these criteria we would
accept 22 significant DNA patterns out of 58
predicted MITRA DNA patterns. If extending
criteria to the FDR adjusted p-value <0.05, then
i = 132, FDR adjusted p-value = 0.04894,
FWER=0.9984, CWER=0.0017, then 132 null
hypotheses would be rejected and 39 DNA pat-
terns out of 58 putative DNA patterns would be
accepted. We examined all of the 22 and 39 pat-
terns from the two criteria, respectively, and
using WebLogo (Crooks GE 2002) they could
be grouped into three subgroup motifs based on
overlapping sequence patterns. The averages of
FDR adjusted p-value, CWER, and FWER val-
ues for the motif candidates are shown in Table
4, the minimum of FDR adjusted p-value is
0.0043. It is worth noting that the motif A can-
didate in the Table 4 is similar to reported Fur
motif binding sequences (Earhart 1996).

Graphical representations of the consensus
sequences derived from WebLogo (Crooks GE
2002; Schneider and Stephens 1990) are shown

Table 4: The Functional Motif Candidates in the Fur-related Cluster

Type tvalue CWER exp FWER FDR adjusted p- Motif Sequence
A -10.53 0.0000 0.0000 0.0000 0.0000 GATAATAATTAT
A -10.53 0.0000 0.0000 0.0000 0.0000 ATAATTATTATC
A 4.69 0.0001 0.2300 0.2064 0.0043 TAATGATTATC
B -10.53 0.0000 0.0000 0.0000 0.0000 CGTAACGC
B -5.58 0.0000 0.0000 0.0000 0.0017 CGTGACGC
B -5.58 0.0000 0.0000 0.0000 0.0017 GCGTCACG
C 16.9 0.0000 0.0000 0.0000 0.0015 GCCGGA
C 16.9 0.0000 0.0000 0.0000 0.0015 TCCGGC
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Figure 3: The plot of FDR adjusted p-value, experiment-
wise type | error (FWER)(alpha) and comparison-wise
type | error (CWER)(pt) in the fur-related clusterin a time
series gene expression experiment in S .typhimurium
with 3886 motif-gene expression combinations. The x-
axis is the number of hypotheses rejected and the y-axis
is he probability level for the different statistical tests.

The motif identification in the FUR related cluster

1.29

1

0.8+

pt
alpha
FDR adjusted p-value|

0.6+

0.4

0.2

0

1298 595 892 1189 1486 1783 2080 2377 2674 2971 3268 3565 3862 4159 4456
Number of Null Hypothesis

in are Figure 4. Each logo consists of stacks of
wDNA symbols for each position. The overall
height of the stack indicates the sequence
conservation (nucleotide presence/conservation)
at that position, while the height of symbols within
the stack indicates the relative frequency of each
nucleic acid at that position. The sequence logo
provides a visual description of a binding site. The
predicted consensus for Motif A matches that of
the published Fur consensus site (Earhart 1996).
In addition to the known Fur binding sites in this
set of promoters, additional Fur sites are predicted.
Motif candidate B and C did not match any known
transcription factor binding sites and may repre-
sent a new TF binding sites. This potential
regulatory motif is currently being investigated
experimentally.

Figure 4: The LOGO graphical representation (Schneider and Stephens 1990) of predicted motif candidates in
the iron regulated gene cluster. The images were generated using WebLogo (Crooks GE 2002) using the over-
lapping aligned patterns from the MITRA analysis and DFDR prediction. . The relative height of the base reflects

the degree of conservation.
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The estimation of the motif candidates

via longitudinal model

In order to quantitatively describe the motif can-
didates, we estimated motif effects with a longi-
tudinal model. Motif effects are defined as the
motif candidates take effects for their locating
genes over time, Table 5 shows motif effects which
contain hypothesis tests for the significance of
each of the motif and interaction effects which
contain hypothesis tests for the interaction between
time and motif, and indicates that fixed effects of
the motif candidates and the interactions among
motif candidates, time and quadratic time are very
significant. Subsequently, the maximum likelihood
(ML) and restricted maximum likelihood (REML)
and minimum variance quadratic unbiased estima-
tion (MIVQUEQO) are used to estimating for all
parameters in the longitudinal model. From
Table 6, the estimations of the three methods for
the parameters are the same, but the standard errors
of the ML estimates are less than that of the REML
and MIVQUEQO, and the estimates and standard
error of the REML are the same as that of
MIVQUEDQO.

Further investigation of the estimates for the
parameters shows that significant effects seem
to be present among the motif candidates A and
B, although they have opposite effects. The
motif candidate C has the weakest effects
(0.0438). There are significant positive interac-
tions between motif candidate B and time
effects, and weaker interactions between motifs
A and C and time effects. The results also indi-
cate that the interaction of all motif candidates
and quadratic time effects are negative and weak,
and suggest that motif influences gene expres-
sion level over time.

Diagrams of functional motifs

and predicted promoters

To illustrate the distribution of the predicted motif
candidates and the relationship between the func-
tional motifs and promoters, we used BCM Search
Launcher (Smith et al. 1996) to predict the position
of the promoters. The positions of the potential
motifs were mapped upstream of coding region.
A motif occurrence is defined as a position in
the sequence with a match that has a significant
p-value and significant effects for gene expression
levels (FDR<C0.05). The ordering and spacing of

all non-overlapping functional motif occurrences
and the highest score promoters are shown for each
upstream sequence in Figure 5. We find the distri-
bution of the motifs is neither normal nor uniform.
We also find that most of the genes are predicted
to be regulated by more than one TF binding
site, consistent with the control of transcription
by comprehensive interactions among the DNA
binding sites.

Discussion

The past few years have witnessed a dramatic
increase in our knowledge of primary genetic
information at the level of genome sequences,
which has been complemented by the development
of methodologies for genome scale analysis of gene
expression. The merging of these two knowledge
bases provides an opportunity for rapid in silico
analysis of genetic regulation. In principle there
are many potential TF binding sites that can exist
for any given gene. One of the fundamental chal-
lenges is the accurate prediction of TF binding sites
and ultimately the estimation and evaluation of
their qualitative and quantitative effects on gene
expression. In addition to the specific TF binding
site, contextual information can influence the
quantitative effects of a particular site. This infor-
mation includes surrounding DNA sequence effects
(influencing such processes as DNA flexibility and
intrinsic curvature), spacing with respect to pro-
moter elements and combinatorial effects of mul-
tiple TF elements. These influences are not readily
predicted from our current understanding of gene
regulation and experimental verification is still
required for many predicted TF sites. By combin-
ing gene expression data with motif prediction and
the application of statistical analysis, the number
of predicted TF binding sites can be significantly
reduced with a greater degree of confidence (Cora

Table 5: type 3 tests of fixed effects

Effects NDF DDF F value Pr>F
Motif 3 262 9.99 <0.0001
Time*Motif 3 262 23.67 <0.0001
Time? 3 262 18.00 <0.0001

Note: NDF: numerator degrees of freedom; DDF:
denominator degrees of freedom
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Figure 5: The distribution of motifs in the iron regulated genes cluster. The ORF is open reading frame starting point. The
annotated or predicted promoter is indicated in blue and black, respectively. The positions of predicted motifs are indicated

by the colored ovals.
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et al. 2004; Cora et al. 2005) Here we have dem-
onstrated that using an adjusted False Discovery
Rate (FDR) and estimation of motif effects as a
statistical strategy improve the prediction of real
relative to false TF binding sites.

The combined analysis of motif prediction and
gene expression data is complex, involving thou-
sands of multiple comparison tests. Avoidance of
type I error and efficiently identifying functional
TF binding sites is not only of theoretical impor-
tance but will also reduce the amount of experi-
mental work required for verification. The
traditional approach to dealing with multiple
comparisons is through the control of family-wise
error rate (FWER), rather than controlling the
“comparison-wise error rate” (CWER). FWER is
the probability of one or more false rejections
of true hypotheses, regardless of how many
hypotheses are true and what value the parameters
of the false hypotheses take. FWER is controlled

--.——

I Predicted Promoter

Predicted Motif B Predicted Motif C

by strictly setting the specific rejection threshold,
so that the probability that any of the null hypoth-
eses tested are erroneously rejected is below a
specified low level. The false discovery rate
(FDR), the expected ratio of erroneous rejections
to the number of rejected hypotheses, gives us an
alternative choice. In our simulation experiment,
as documented by other researches (Dudoit 2003;
Reiner et al. 2003; Storey and Tibshirani 2003a;
Storey and Tibshirani 2003b), the FDR adjusted
p-value is very similar to FWER when the number
of null hypotheses is tested. In such a situation,
controlling the FDR adjusted p-value is similar
to controlling the FWER. Multiple comparison
procedures controlling the FDR adjusted p-value
are more powerful than the commonly used mul-
tiple comparison procedures based on FWER and
CWER. FDR is well suited to large multiple
comparison problems in which existing proce-
dures lack power, especially for the preliminary
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identification and tests of functional motifs in
large scale gene expression data and bundles of
putative motifs.

The identification of putative regulatory
motifs is another challenge in this research. The
methods for discovering DNA patterns are
directly related to the quality of putative motifs
and the accuracy of building genetic networks.
DNA pattern discovery methods (Alvis Brazma
1998; Eisen et al. 1998; Eskin and Pevzner 2002;
J. van Helden 2000; J. van Helden 1998; Szymon
M. Kielbasa 2001; Tompa et al. 2005; Zhou Zhu
2002), look at the significant patterns (J. van
Helden 1998), monad or spaced dyads (Eskin
and Pevzner 2002; J. van Helden 2000; Lars
M.Jakt 2001) over the whole genome and are
based on nucleotide frequencies and sampling
probabilities; each one with its own advantages
and disadvantages. Applying pattern discovery
to a cluster of genes based on the similarity of
their gene expression profiles is more advanta-
geous than the strategy of using the entire
genome (Eskin and Pevzner 2002; Hao Li 2002)
and upstream DNA sequence multiple alignments
(Frederick P. Roth 1998; Hertz and Stormo 1999;
Sinha and Tompa 2002). Expression profile clus-
tering associates genes controlled by a regulatory
cascade even if it may involve many different
TFs and binding sites (Harmen J. Bussemaker
2001).

To estimate motif effects, we used a longitudinal
model. Longitudinal data means when the same

measurement is made repeatedly on experimental
units over time, inducing correlation in the mea-
surements within an experimental unit. As com-
pared with cross-sectional data analysis, modeling
of longitudinal data presents additional difficulties
in that we must specify the time trend of the
population mean and the correlation structure of
the observations, and how covariates affect both
of these. The linear mixed models are extensions
of linear regression models for longitudinal data.
It contains fixed and random effects where the
random effects are used to model between-subject
variation and the correlation induced by this
variation; it is an extremely flexible analysis tool.
The estimation of motif effects by longitudinal
model analysis that we present provides a method
to obtain functional motifs from large scale of
gene expression data sets. The gene expression
longitudinal data is characterized by repeated
observations over time on the same set of genes,
and the main feature is that the repeated observa-
tions on the same gene tend to be correlated; the
longitudinal model gives us an method to over-
come the issue.

Identification of TF binding sites remains prob-
lematic. Combining gene expression data with
motif searching techniques provides improved
identification of regulatory sites. In the strategy
presented here, the adjusted FDR and estimation
of motif effects are demonstrated to provide a bal-
ance between false positive and false negative
predictions. In the future, we will adopt this
technique for genomic expression patterns

Table 6: The estimations of main effects and interaction of the motif candidates

Effects ML(s.e.) REML(s.e.) MIVQUEO(s.e.)
Motif A 0.3278(0.0854) 0.3278(0.0869) 0.3278(0.0869)
Motif B -0.3569(0.0887) -0.3569(0.0901) -0.3569(0.0901)
Motif C 0.0438(0.1482) 0.0438(0.1507) 0.0438(0.1507)
Time * Motif A 0.0636(0.0436) 0.0636(0.0443) 0.0636(0.0443)
Time * Motif B 0.2965(0.0452) 0.2965(0.0460) 0.2965(0.0460)
Time* Motif C 0.6006(0.1129) 0.6006(0.1148) 0.6006(0.1148)
Time? * Motif A -0.0036(0.0047) -0.0036(0.0048) -0.0036(0.0048)
Time? * Motif B -0.0166(0.0049) -0.0166(0.0050) -0.0166(0.0050)

Time? * Motif C

-0.1222(0.0185)

-0.1222(0.0188)

-0.1222(0.0188)

Note: ML: maximum likelihood method. REML: Restricted maximum likelihood method. MIVQUEO: minimum
variance quadratic unbiased estimation method. S.E.: standard error.
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(Lee et al. 2004; McCarroll et al. 2004) and control
the proportion of false positive (Fernando et al.
2004) to improve the accuracy of functional motifs,
these are likely to help us in functional footprinting
of the regulatory motif, and the building of genetic
networks.
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