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ABSTRACT

The HLA genes, the most polymorphic genes in the
human genome, constitute the strongest single ge-
netic susceptibility factor for autoimmune diseases,
transplantation alloimmunity and infections. HLA im-
putation via statistical inference of alleles based on
single-nucleotide polymorphisms (SNPs) in linkage
disequilibrium (LD) with alleles is a powerful first-
step screening tool. Due to different LD structures
between populations, the accuracy of HLA imputa-
tion may benefit from matching the imputation ref-
erence with the study population. To evaluate the
potential advantage of using population-specific ref-
erence in HLA imputation, we constructed an HLA
reference panel consisting of 1150 Finns with 5365
major histocompatibility complex region SNPs con-
sistent between genome builds. We evaluated the
accuracy of the panel against a European panel in
an independent test set of 213 Finnish subjects. We
show that the Finnish panel yields a lower imputa-
tion error rate (1.24% versus 1.79%). More than 30%
of imputation errors occurred in haplotypes enriched
in Finland. The frequencies of imputed HLA alle-
les were highly correlated with clinical-grade HLA
allele frequencies and allowed accurate replication
of established HLA–disease associations in ∼102
000 biobank participants. The results show that a
population-specific reference increases imputation
accuracy in a relatively isolated population within
Europe and can be successfully applied to biobank-
scale genome data collections.

INTRODUCTION

The major histocompatibility complex (MHC) is regarded
as a super-locus for genes playing central roles in the initia-
tion and regulation of the immune system (1). The number

of HLA alleles has exploded during the past 5–10 years be-
cause of advanced DNA sequencing techniques; today >20
000 alleles are described in the IMGT/HLA database (2).

Even though the high-resolution determination of HLA
alleles for transplantation purposes is becoming more cost-
effective and fast, in particular, due to NGS sequencing
techniques, there is still a need for alternative, fast and low-
cost screening of HLA alleles from large genome-wide as-
sociation study cohorts. Computational methods have been
created for predicting HLA alleles from single-nucleotide
polymorphism (SNP) markers (3–5). By combining these
resources with adequate computational power, a reliable
screening of HLA alleles from large study cohorts is now
feasible (6).

HLA imputation benefits from high linkage disequilib-
rium (LD) in the MHC region; therefore, despite immense
variation, a relatively small number of SNPs provide a fairly
good basis for allele prediction. Even so, imputation accu-
racy is highly dependent on the algorithm, reference pop-
ulation and coverage of the MHC region (7–11). Careful
planning of an imputation pipeline and a reference panel
are essential for high-accuracy HLA imputation. An accu-
rate HLA imputation tool enables systematic studies of the
landscape of MHC–disease associations and the discovery
of novel associations in large population cohorts of hun-
dreds of thousands of participants (12,13).

The Finnish population is a compilation of a few
small founder populations with subsequent bottlenecks and
scarce gene flow from Western and Eastern European pop-
ulations shaping it as a genetic outlier in Europe (14–17).
Over the course of history, the population was further di-
vided into subisolates creating a genetic patchwork in Fin-
land (18). These events may explain the specific HLA land-
scape with a reduced allele pool (19,20) and enrichment
of particular HLA alleles and haplotypes in the current
Finnish population (21,22). More than 30 HLA haplotypes
that have been found to be common in Finland but rare
or missing in other populations have been identified and
named as Finnish enriched rare (FER) haplotypes (22).
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In the present study, we describe the construction and
validation of a high-accuracy HLA imputation panel for
the Finnish population. We (i) collected a Finnish reference
dataset and trained the HIBAG imputation program on it;
(ii) compared the impact of different imputation algorithms
and reference panels on imputation accuracy; and (iii) vali-
dated the Finnish reference panel by comparing the results
with HLA allele frequencies in clinical-grade datasets and
HLA–disease associations in over 100 000 genotypes of the
FinnGen study cohort.

MATERIALS AND METHODS

Ethical permits

This study was carried out in accordance with the
recommendations of the Ethical Review Board of the
Hospital District of Helsinki and Uusimaa (decisions
HUS/382/13/03/01/2014 and HUS/990/2017). A written
informed or a broad biobank research consent was obtained
for all living study participants. The National Supervisory
Authority for Welfare and Health, Valvira, approved the
study for deceased subjects (Dnro V/74832/2017).

SAMPLE COLLECTION AND GENOTYPING

Study cohorts

Reference dataset. The clinical HLA typing of the refer-
ence dataset of 1150 independent Finnish samples was per-
formed by the HLA Laboratory of the Finnish Red Cross
Blood Service using procedures accredited by the European
Federation for Immunogenetics. Allele assignment of the
seven classical HLA genes at two-field resolution level (i.e.
unique protein sequence level) was performed by any of
the three polymerase chain reaction (PCR) -based meth-
ods: sequence specific oligonucleotide probes (SSOP), se-
quence specific primers (SSP) or sequence based typing
(SBT), as described in our previous study (23). SNP data
of the reference dataset of 1150 Finnish individuals with
pre-existing clinical HLA assignment were produced with
Illumina Global Screening Array 24 v2 with Multi-disease
drop-in (GSA, Illumina, Inc.) by the Institute for Molecu-
lar Medicine Finland, University of Helsinki. The numbers
of different alleles of the HLA-A HLA-B, HLA-C, HLA-
DRB1, HLA-DQA1, HLA-DQB1 and HLA-DPB1 genes
in the reference dataset were 27, 40, 23, 33, 15, 16 and 24,
respectively (Supplementary Table S1).

Test dataset. The SNP data of 426 study subjects in the
test set were acquired by short-read sequencing of full
MHC region acquired as described in (24), and are essen-
tially identical to dataset described in (23). As the subjects
were HLA-matched sibling pairs, they effectively consti-
tuted 213 independent samples. HLA typing at two-field
resolution level for the seven classical HLA genes HLA-A,
HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1
and HLA-DPB1 (2982 HLA allele assignments) was per-
formed by using Omixon Explore software v1.2.0 with
IMGT 3.25.0 3 HLA database and by manual inspection
of read alignments when necessary (23).

Validation dataset. An independent dataset of Finnish
subjects with pre-existing HLA allele assignment was col-
lected for validation of the imputation panel (i.e. the refer-
ence dataset). Factual allele frequencies of the seven classi-
cal HLA genes were acquired either from the Finnish Stem
Cell Registry member database or from the Blood Service
clinical laboratory database (Finnish subjects n = 21 068–
26 329). HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-
DPB1 allele assignments were produced by Histogenetics
Inc., USA. Due to technical challenges in short-read align-
ment with some alleles in HLA-DQA1 and HLA-DQB1
genes, only historical allele assignments produced by refer-
ence methods by the Finnish Tissue typing laboratory were
qualified (n = 810 and 884, respectively). Imputed HLA al-
lele frequencies of the target dataset were compared to the
validation dataset allele frequencies.

Target dataset. The FinnGen research project aims
to recruit biobank consents and DNA samples from
500 000 Finns through Finnish biobanks for systemic
genotype–phenotype analyses (https://www.finngen.fi/en/
Forresearchers). The members of the FinnGen consortium
are listed in the Supplementary Data. FinnGen data freeze
R2 consists of the genotype and phenotype data from 102
739 Finnish individuals (25). The genotyping procedure is
described in (26).

Imputation of HLA frequencies

The outline of the analysis pipeline is presented in Figure 1.
To harmonize the sets of MHC region SNPs between

the Genome Reference Consortium Human Build 37
(GRCh37) and GRCh38, and the array platforms used in
genotyping the reference data and FinnGen biobank data,
the SNP lists from the different platforms were first in-
tersected and thereafter queried against the ENSEMBL
databases by their rs-IDs using R v3.5 and the library
biomaRt v2.38.0 (27,28). SNPs that preserved their alleles
in both genome builds were accepted for downstream anal-
yses.

Two commonly used SNP-based stand-alone HLA im-
putation methods with pre-built European reference panel,
SNP2HLA v1.0.3 (29) and HIBAG v1.14.0 (30), were ap-
plied to the test data. The imputation results were compared
with the sequence-based and manually examined HLA typ-
ing results to calculate error rates for the seven HLA genes.

HIBAG models with 100 classifiers for each of the seven
HLA genes were fitted using the training data of 1150
individuals to construct an imputation reference for the
Finnish population. The reference was then applied to the
test set to calculate imputation error rates and to com-
pare with the results obtained using the European reference
set. The HIBAG European ancestry reference set has been
built on the 1958 British birth cohort, Wellcome Trust Case
Control Consortium (http://www.biostat.washington.edu/
~bsweir/HIBAG/). In all imputations with HIBAG, variant
positions in a corresponding genome build were used to se-
lect the SNPs from the target data.

The FinnGen R2 cohort subjects were HLA imputed us-
ing HIBAG with the Finnish HLA reference for HLA-A,
HLA-B, HLA-C, HLA-DRB1 and HLA-DPB1, and the
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Figure 1. Schematic diagram of the analysis steps. (1) MHC SNPs were selected for consistency between array platforms and genome builds. The SNP
genotype data with clinical-grade HLA types were divided into training and test sets. (2) HIBAG and SNP2HLA programs with their default references
were applied to the test set to compare their accuracies. (3) HIBAG models were built on the training set and applied to the test set to analyze the impact of
population-specific reference data on imputation accuracy. (4) HIBAG models trained on the Finnish reference data were applied to FinnGen R2 cohort.
(5) The imputed HLA were tested for possible associations with six common autoimmune disorders to replicate known risk alleles. (6) Frequencies of the
imputed HLAs were compared with frequencies from an independent clinical-grade HLA dataset.

European reference for HLA-DQA1 and HLA-DQB1. The
cohort was split into 10 subsets of equal size (10 200 each)
and each subset was imputed separately. The imputed allele
frequencies in each batch were compared with clinical-grade
HLA typing reference frequencies. To analyze the effect of
the HIBAG posterior probability on the frequency of im-
puted versus reference allele, we performed the frequency
comparison at varying posterior probability cutoffs.

The imputed HLA types in FinnGen R2 were used to
carry out association analyses against six common autoim-
mune disorders with established HLA risk alleles: type 1 di-
abetes (T1D; 61 225 controls and 348 cases), celiac disease
(69 073 controls and 535 cases), psoriatic arthritis (50 119
controls and 344 cases), psoriasis (69 309 controls and 1115
cases), rheumatoid arthritis (58 385 controls and 1189 cases)
and multiple sclerosis (31 971 controls and 230 cases). The
analysis was performed using logistic regression of HLA al-
lele dosage against case–control status, and using the 10 first
genetic principal components, age, sex and BMI as covari-
ates. After adjusting for the number of tested alleles and
diseases, a P-value of 5e−5 was considered significant. To
analyze the effect of the HIBAG posterior probability on
the effect size of the main risk HLA allele, we performed
the association testing at varying posterior probability cut-
off values.

RESULTS

Overall imputation accuracy

First, we compared the SNP2HLA and HIBAG programs
using their pre-built European reference datasets. HIBAG
performed better than SNP2HLA for the HLA-A, HLA-B,
HLA-C, HLA-DQA1 and HLA-DRB1 genes as measured
by overall accuracy (95–98% and 82–98%, respectively),
whereas SNP2HLA was better for the HLA-DQB1 gene
(data not shown). Further imputations were performed by
using HIBAG due to its better performance compared to
the other algorithms also in previous studies (7,11,31). The
outline of the imputation is shown in Figure 1.

The set of MHC region SNPs that were available on the
array platforms and that were consistent between genome
builds comprised altogether 5365 SNPs. The number of
SNPs used by the fitted models was 4866.

Imputation accuracy in terms of the frequency of erro-
neously imputed alleles in each HLA gene was evaluated by
applying the trained HIBAG models on an independent test
dataset of 213 individuals for whom HLA genotypes were
done by short-read paired-end sequencing. The number of
errors varied modestly between loci and remained within
a median range of 0.2–3.9% (Figure 2). The Finnish refer-
ence (Fin37) data yielded lower error rates than the default
European reference (Eur37) for HLA-A, HLA-B, HLA-
C, HLA-DRB1 and HLA-DPB1 genes, while the Eur37
yielded a lower error rate for HLA-DQA1 and HLA-DQB1
genes (Figure 2, Supplementary Table S2). The differences
were largest for HLA-DRB1 (median [interquartile range,
IQR] (%), 2.1 [0.6] for Fin37 versus 3.9 [0.2] for Eur37) and
HLA-DPB1 (1.7 [0.6] for Fin37 versus 3.5 [1.3] for Eur37).
Allele-specific errors between the three genome builds are
shown in Supplementary File 2. Expectedly, the differences
in error rate between the Finnish reference in GRCh37 and
GRCh38 coordinates were small as these were based on
the same SNPs. To evaluate whether the error rate was af-
fected by selecting the best reference according to the im-
putation posterior probability, 10-fold cross-validation was
used to select the reference with the highest probability in
nine data subsets and calculate its error in the remaining
subset systematically through all 10 subsets. The error rate
of the probability-based selection was not superior relative
to the Finnish reference, even though it yielded the best es-
timate for HLA-B, HLA-C and HLA-DQA1 genes (Figure
2).

The median level (IQR) of posterior probability render-
ing zero erroneously imputed alleles was 0.93 (0.15) for the
Fin37 reference and 0.95 (0.12) for the Eur37 reference (Fig-
ure 3A). The total number of errors per locus statistically
significantly differed between Fin37 and Eur37 (108 versus
148, respectively; P = 0.015) (Figure 3A and B). The di-
agnostic accuracy measured by the receiver operating char-
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acteristic (ROC) area under the curve (AUC) was 0.93 for
Fin37 and 0.89 for Eur37 (Figure 3C). The references ex-
hibited no difference in the proportion of discarded samples
over the range of probability cutoff values (Figure 3D). Ad-
ditionally, the differences between error proportions at var-
ied probability cutoffs significantly differed between Fin37
and Eur37 (P = 1 × 10−4) (Figure 3E and F). The posterior
probabilities of imputed HLA alleles are listed in Supple-
mentary Table S3.

Sample-specific errors

The number and distribution of imputation errors per sam-
ple with the two reference panels of different sizes and eth-
nic origins were investigated. More samples with imputa-
tion error were observed with the pre-built European than
with the Finnish panel, 117 (28%) and 76 (18%), respectively
(Supplementary Table S4). The number of errors per sample
was, however, higher with the Finnish reference panel; indi-
vidual samples could carry up to four errors with the Euro-
pean reference but up to six errors with the Finnish refer-
ence. Based on the known HLA haplotype frequencies, the
errors seemed to originate from single and specific haplo-
types, an observation noticeable especially with the Finnish
reference panel; there were at most three errors per putative
HLA haplotype with the European reference but as many
as six errors with the Finnish one. We also evaluated the
proportion of imputation errors that originated from the
FER HLA haplotypes (22). Altogether 32% of the errors
were found in samples with FER haplotypes with the Eu-
ropean reference panel, while the proportion was 11% with
the Finnish reference.

Frequencies of imputed HLA alleles in FinnGen R2 cohort

HLA imputation was performed separately for the
FinnGen R2 genotype batches (n = 32). Figure 4 presents
the frequencies of imputed HLA alleles and the cor-
responding levels in an independent cohort of HLA
frequencies, obtained by clinical-grade HLA typing. The
mean value with standard deviation for each allele is listed
in Supplementary Table S5. The mean differences between
imputed allele frequencies and the independent dataset
with clinical HLA type varied from −1.3% to +3.0%. The
largest variation was observed among DQA1*03:01 (3.0 ±
2.6%), DQA1*01:01 (2.3 ± 1.3%), A*02:01 (1.9 ± 0.9%)
and DRB1*04:01 (1.8 ± 2.2%). For all other alleles, the
modulus of mean difference was ≤1.5%. The observed
variation was related to the size of the subcohort and
thereby to the number of imputed alleles. There was a
negative correlation between the mean frequency deviation
and the number of imputed alleles (Supplementary Figure
S1). The imputed versus reference allele frequencies at
varying posterior probability cutoffs are presented in
Supplementary Figure S2.

Association of imputed HLA alleles with six common autoim-
mune diseases

HLA alleles are known to be strong risk factors for many
immunological diseases, such as celiac disease, T1D, pso-

riasis, psoriatic arthritis, rheumatoid arthritis and multi-
ple sclerosis. To further validate the imputation accuracy
and usefulness in large biobank-scale cohorts, these pre-
viously published HLA associations were evaluated using
the imputed HLA alleles and clinical data of the FinnGen
R2 cohort. As demonstrated in Figure 5, all established
top associations could be confirmed. The effect sizes are
listed in Supplementary Table S6. The observed effect di-
rections correlated with previously published results de-
rived from Global Biobank Engine (https://biobankengine.
stanford.edu/hla-assoc). The autoimmune disorder associ-
ations at varying HIBAG posterior probability cutoffs for
the main risk HLA allele are presented in Supplementary
Figure S3.

DISCUSSION

In the present study, we have evaluated the impact of a
population-specific HLA reference panel on the imputation
accuracy of seven classical HLA genes at two-field resolu-
tion level (i.e. unique protein sequence) in the Finns. We fo-
cused on HLA imputation from SNP markers with the pur-
pose of application to large biobank collections containing
SNP-based genotype data.

The results obtained from the comparison of Finnish
and European reference panels underline the importance of
matching the reference population with the target popula-
tion, suggesting that the LD structure and allele frequencies
differing even between genetically relatively close popula-
tions, such as the Central Europeans and the Finns, are sig-
nificant for imputation performance. While previous stud-
ies have shown the importance of building specific reference
panels for non-European populations (8), our results show
that this principle applies also within the Europe. In addi-
tion to the Finnish population, also other genetically iso-
lated European populations, such as Sardinians or Basques,
might benefit from population-specific imputation panels.

Although some of the imputation errors are explained
simply by uncertainty arising from low allele frequencies,
errors made by the European reference were concentrated
particularly on haplotypes enriched in the Finnish popu-
lation (FER) (22). More than 30% of the imputation errors
with the European reference panel occurred in samples with
at least one FER, suggesting that the European panel was
not able to fully capture the target population LD struc-
ture despite containing informative SNP markers. This kind
of landscape of HLA haplotypes is in line with other ge-
netic studies on Finnish genetic structure (15,16,18). The
particular genetic structure has proved to be useful for map-
ping single-gene defects and could be exploited in study-
ing HLA genetics of complex diseases as well. The high
LD in HLA haplotypes has been a hurdle for fine-mapping
HLA-linked risk variants, but may be overcome by cross-
population comparisons of the same trait to single out the
shared associated variant, emphasizing the need for accu-
rate HLA imputation of not only FERs but haplotypes spe-
cific to other populations as well.

The rates of false allele imputation of HLA-A, HLA-
B, HLA-C, HLA-DQA1 and HLA-DQB1 genes were rel-
atively low––at the level of 1–2%––regardless of the ref-
erence population used. As array genotyping is inexpen-

https://biobankengine.stanford.edu/hla-assoc


6 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

Figure 4. Congruency of the imputed HLA allele frequencies and the clinical-grade HLA frequencies. Imputed HLA allele frequencies from the FinnGen
R2 genotyping batches (total subjects n ∼ 102 000) in comparison with frequencies from an independent, clinical-grade HLA-typed Finnish dataset (n
∼ 25 000). The horizontal black bars indicate the population frequencies from the independent dataset. Each colored data point represents FinnGen R2
genotyping batch (the total number of genotyping batches is 32).
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Figure 5. Imputed HLA alleles and their associations with autoimmune disorders in the FinnGen R2 cohort. Previously established risk alleles for six
autoimmune disorders emerged in the association analyses. The test statistic is log odds ratio from logistic regression analysis using age, sex, BMI and 10
genetic principal components as covariates. The horizontal bars in the left-hand side panels indicate 95% confidence intervals for the test statistic. T1D =
type 1 diabetes; MS = multiple sclerosis.

sive as compared to clinical HLA typing, imputation based
on SNP data provides an excellent tool for HLA as-
sociation screening. However, using the European refer-
ence panel produced incorrectly imputed HLA-DRB1 and
HLA-DPB1 alleles at the rate of ∼4%, which was twice the
rate of the Finnish panel. Such error rates may be accept-
able for a general first-step association but may lead to in-
accurate results in fine mappings or small strictly defined
subpopulations. For example, accurate imputation of the
DRB1*04 group is needed in diabetes studies as the alle-
les of the DRB1*04 group differ in their risk effect (32). As
associations with the HLA-DPB1 gene have not been stud-
ied as intensively as other HLA genes, accurate imputation
of HLA-DPB1 alleles with a population-specific reference
panel may turn to be valuable. Certainly, imputation could
be a fast way to increase the number of HLA-typed blood
donors whose platelet units can be used for leukemia pa-
tients in need of HLA-typed platelets.

We applied the HLA imputation panel to a large biobank
genotype data collection. The FinnGen data freeze R2 in-
cluded over 100 000 genotypes from Finnish individuals
for whom we had no prior HLA data. First, we could
demonstrate that the frequencies of imputed HLA alle-
les in the FinnGen material were concordant with the fre-
quencies of an independent dataset of ∼25 000 potential
stem cell donors with clinical HLA type. The majority of
the FinnGen material originates from the Finnish hospital
biobanks and disease-specific study cohorts. Importantly,
the overall HLA allele frequencies were in line with those as-
sumed, but there were certain batches with biased frequen-
cies suggesting that those may include high numbers of a
specific patient group; the increased frequencies of HLA-
DRB1*04:01, HLA-DQA1*03:01 and HLA-DQB1*03:02
alleles in a few batches are most likely due to a high number
of T1D patients in these batches. Second, we could validate
the HLA imputation procedure by testing whether we can

find the well-established HLA autoimmune disease associ-
ations in the FinnGen phenotype groups. Clearly, the top
associations in the FinnGen material were those assumed
based on earlier reports. Also, the effect sizes of the asso-
ciations were consistent with those reported, testifying for
the accuracy and practical utility of the imputation panel.
Nevertheless, as the FinnGen material consists of samples
from hospital biobank participants, there might have been
some bias due to, for example, control frequencies.

An obvious limitation of the present study is that the
method is able to impute only HLA types present in the
reference dataset. Additionally, the posterior probability of
imputation could be influenced by allele frequency as rare
alleles are imputed with lower certainty. According to our
results, removal of alleles with probability <0.5 does not
affect frequency or association estimates markedly, but it
should be emphasized that for rare alleles this threshold
may be too stringent. Ideally, the reference data should be
comprehensive in terms of allele representation to ensure
high-accuracy HLA imputation. For example, in this study,
reinforcing the reference dataset with a larger Finnish co-
hort together with samples from the neighbouring popula-
tions could improve the imputation accuracy as the Finnish
genome is an admixture of these (17,33–35). The number
and coverage of HLA panels is expected to increase as
multi-ethnic datasets are already being collected by global
collaboration (36) and workshops (the SNP-HLA Refer-
ence Consortium, https://www.ihiw18.org/component-bio-
informatics/snp-hla-reference/).

In summary, by forming a population-specific refer-
ence panel and its application to the FinnGen biobank
cohort, we were able to impute HLA types for ∼2%
of the Finnish population and demonstrate the value of
population-matched reference for HLA analysis of large
genome data cohorts. While our approach was limited by
the relatively small number of individuals included in the

https://www.ihiw18.org/component-bio-informatics/snp-hla-reference/
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panel, the panel was able to capture the LD structure of the
target population, helping to improve the imputation accu-
racy of haplotypes where more general reference panels are
prone to make errors. Thus, scrutinizing the associations of
HLA variation with various phenotypes in rapidly grow-
ing biobank genome data collections from different popula-
tions is expected to benefit from specified reference panels.

DATA AVAILABILITY

Imputation models, summary statistic data and R code
are available at GitHub (https://github.com/FRCBS/HLA-
imputation). The data do not contain any individual iden-
tifying information.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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