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As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image
representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into
consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision
map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information
map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy
and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains
the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse
representation basedmethod to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results
by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results
of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five
state-of-the-art methods.

1. Introduction

Medical imaging attracts more and more attention due to the
increasing requirements of clinic investigation and disease
diagnosis. Owing to different imaging mechanisms, medical
images of different modals provide a variety of complemen-
tary information about the human body in a limited domain.
For example, the computed tomography (CT) images provide
better information on dense tissue, the positron emission
tomography (PET) images supply better information on
blood flow and tumor activity with low space resolution, and
the magnetic resonance (MR) images show better informa-
tion on soft tissue. Moreover, the MR-T1 images give more
detailed information about anatomical structures, whereas
the MR-T2 images contain a greater contrast between the
normal and abnormal tissues [1–4]. However, single multiple
modality cannot satisfy the demand of images with high
resolution and visualization for disease diagnosis.

In this regard,medical image fusion is a useful and power-
ful technique for integrating complementary information
from multimodality images to improve the diagnostic accu-
racy. Besides, the fused images are more suitable for assist-
ing the doctors in diagnosis and treatment planning [5]:
fusing MR and CT images can generate the images which
can describe the soft tissue and bone in order to concur-
rently represent anatomical and physiological features of the
human body [6, 7]. MR-T1 and MR-T2 images are fused
to segment white matter lesions and guide neurosurgical
resection of epileptogenic lesions [7, 8]. In oncology, the
combined PET/CT imaging is helpful to view the anatom-
ical, physiological characteristics and the tumor activity [9,
10]. More than that, medical image fusion not only helps
in diagnosing diseases but also reduces the storage cost
[8].

As the most popular technique of the image fusion, the
multiscale decompositionmethods have developed quickly in
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recent years, such as discrete wavelet transform (DWT) [3, 7],
framelet transform [9], contourlet transform [10], and non-
subsampled contourlet transform (NSCT) [1, 4, 6]. Unfortu-
nately, transform-basedmethods produce poor fusion results
in the presence of noise and it is difficult to choose the
decomposition levels [11, 12].

Sparse representation (SR) has proven to be an exceed-
ingly powerful tool for analyzing the signals of high dimen-
sionality [13], so more and more researchers adapt SR to
the field of image fusion for the purpose of getting better
fused results [14–19]. However, the standard SR does not
take the intrinsic structure [14] and the time complexity
[17] into consideration. Therefore, adding them into the SR
model is a reasonable strategy to improve the performance
of SR [14], but it is complicated to find the relationship
between the intrinsic structure information and the sparse
coefficients. Reference [14] proposed a dictionary learning
method combining with the geometrical structure by group
sparse coding, but it did not talk about the time complexity
of the algorithms based on sparse representation. Image
fusion methods based on joint sparse representation (JSR)
[11, 12, 20] need much more iterations to realize image
vectors sparse representation for the trained dictionary with
bigger size. Some researchers proposed some novel methods
combining multiscale transform and SR [15, 18, 21], to put
the structure information of the source images into the fused
images, which makemethods muchmore complex and time-
consuming.

In that way, how to realize image fusion based on SR
with local structure information in shorter time became the
chief task. The decision map can help us achieve this goal
by extracting the local structure feature of the image blocks
[22–27]. Unfortunately, most of the methods combining with
decision map are only appropriate for multifocus image
fusion [22–25]. References [26, 27] apply the decision map
into infrared and visible image fusion, which demonstrate
that the decision map can be suitable for other type image
fusion. In fact, for the methods based on SR, almost all the
sparse coefficients fusion rules depend on different blocks
feature values, which means they all belong to the methods
based on decision map [28]. To realize the medical image
fusion based on SR with decision map, we add the local
structure and energy information of source images into the
decision map to improve the speed of the algorithm and the
quality of the fused results.

The main contribution of this paper is as follows:
(1) To add the local structure and energy information of

the source images into the SR algorithm for medical
image fusion, we design three decision maps to
extract the local energy and structure features of the
source images.

(2) It is good to use the decision to reduce the number of
image blocks to sparse representation, so that we can
get the results in much shorter time. Using the maps
to remain more structure and energy information
in fused images will also improve the quality of the
results.

2. The Framework of the Proposed Method

There is the framework of the proposed approach based on
SR and feature extraction as shown in Figure 1.

Firstly, we divide all source images𝐴 and𝐵with the size of
𝑚×𝑛 into patches 𝑦𝑖,𝑗1 and 𝑦𝑖,𝑗2 through a sliding window with
the size of ×𝑤(𝑖 ≤ 𝑚−𝑤, 𝑗 ≤ 𝑛−𝑤). All patches are arranged
into vectors 𝑉(𝑖−1)∗(𝑛−𝑤)+𝑗1 and 𝑉(𝑖−1)∗(𝑛−𝑤)+𝑗2 from left to right
and from top to bottom.

Secondly, we group these vectors into vector pairs accord-
ing to corresponding positions of original patches and design
the decision map according to their features separately.

Thirdly, we use the decision map to determine which one
vector of each group as the result when the map is marked as
1 or 2. It means that these groups are regarded as the input of
the sparse representation system when the map is marked 0.

Fourthly, we fuse the other vector pairs by the SRmethod.
Finally, the system can generate the fused results accord-

ing to the decision map. The overlaps of the patches are
averaged.

2.1. SR. In SR algorithms, a signal can be expressed as a sparse
combination of the fewest possible atoms of an overcomplete
dictionary [29]. Let 𝑉 ∈ 𝑅𝑚 denote a signal vector from
the source images and let 𝐷 ∈ 𝑅𝑚×𝑘 (𝑘 > 𝑚) denote an
overcomplete dictionary whose column vectors are its atoms.
The signal vector can be represented as𝑉 = 𝐷𝜃, where 𝜃 ∈ 𝑅𝑘
is a sparse coefficient vector. The sparse coefficient vector is
acquired by solving the following question:

𝜃 = argmin
𝜃

‖𝜃‖0
s.t. ‖𝑉 − 𝐷𝜃‖22 ≤ 𝜀,

(1)

where 𝜀 is error tolerance parameter. An image vector can
be represented as a superposition of the smallest possible
number of atoms in the dictionary. We can solve (1) by
OMP, BP, or other algorithms [12], because it is an NP-hard
problem. It is important to find an appropriate dictionary for
SR.There are twomain approaches to build a dictionary. One
is to use a fixed dictionary such as the Gabor dictionary [30],
the discrete cosine transform (DCT) dictionary [31], and the
Haar dictionary [32]. Another is to train a dictionary from
a large number of training image patches, like K-SVD [32],
which usually shows better performance in image processing
compared to the fixed dictionary methods [11].

2.2.The EnergyMap and the StructureMap. Let us regard 𝑦𝑖,𝑗1
and 𝑦𝑖,𝑗2 as mean values of 𝑦𝑖,𝑗1 and 𝑦𝑖,𝑗2 , respectively. We use
‖𝑦𝑖,𝑗1 ‖2 as the sign of energy and the mean square deviation
(1/64)‖𝑦𝑖,𝑗1 − 𝑦𝑖,𝑗1 ‖2 as the sign of energy distribution for 𝑦𝑖,𝑗1 ,
which are similar to 𝑦𝑖,𝑗2 . We design the first decision map
EM ∈ 𝑅𝑀×𝑁 (where 𝑀 = 𝑚 − 𝑤 and 𝑁 = 𝑛 − 𝑤) which
called the energy map by

𝑡1 = 1
64 (

𝑦𝑖,𝑗1 2 − 𝑦𝑖,𝑗2 2) ,
𝑡2 = 1

64 (
𝑦𝑖,𝑗1 − 𝑦𝑖,𝑗1 2 − 𝑦𝑖,𝑗2 − 𝑦𝑖,𝑗2 2) ,
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Figure 1: The framework of the image fusion method based on sparse representation and feature extraction.
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EM𝑖,𝑗 =
{{{{{{{

1, 𝑡1 > 0, 𝑡2 > 0,
2, 𝑡1 < 0, 𝑡2 < 0,
0, others.

(2)
In this way, ourmap contains the energy and energy distribu-
tion information of the vector pairs. However, this map does
not contain enough image structure information. So we use
the Laplacian of a Gaussian (LOG) to detect the structure
information of the source images [33]. For noise cleaning,
we smooth the image by convolving it with a digital mask
corresponding to Gaussian function. The Gaussian function
is expressed by (3)–(5) and we can get the local normalized
structure information by (6). One has

ℎ (𝑥, 𝑦) = ℎ (𝑟) = −𝑒−𝑟2/2𝜎2 , (3)

∇2 (𝑔 (𝑟) ∗ ℎ (𝑟)) = 𝑔 (𝑟) ∗ ∇2ℎ (𝑟) , (4)

𝑝 = 𝑔 (𝑟) ∗ ∇2ℎ (𝑟)
= −𝑔 (𝑟) [𝑟2 − 𝜎2𝜎4 ] 𝑒−𝑟2/2𝜎2 , (5)

𝑒 = 𝑝
max (𝑝) , (6)

where 𝑟2 = 𝑥2 +𝑦2 and 𝜎 is the mean square deviation. Given
an image matrix 𝑔(𝑥, 𝑦), the LOG of the image function is
the second-order partial derivatives along 𝑥 and 𝑦 directions.
There is an example of the LOG edge detection of CT andMR
images as shown in Figure 2.

𝑒𝑖,𝑗1 and 𝑒𝑖,𝑗2 represent the local normalized structure
information of 𝑦𝑖,𝑗1 and 𝑦𝑖,𝑗2 , respectively.Therefore, we design
the second map SM ∈ 𝑅𝑀×𝑁 named the structure map by

𝑠1 = 1
64 (

𝑒𝑖,𝑗1 2 − 𝑒𝑖,𝑗2 2) ,
𝑠2 = 1

64 (
𝑒𝑖,𝑗1 − 𝑒𝑖,𝑗1 2 − 𝑒𝑖,𝑗2 − 𝑒𝑖,𝑗2 2) ,

SM𝑖,𝑗 =
{{{{{{{{{

1, 𝑠1 > 0.05, 𝑠2 > 0,
2, 𝑠1 < −0.05, 𝑠2 < 0,
0, others.

(7)

2.3. The Structure and Energy Map. Combining the energy,
energy distribution, and structure information, we design the
third map SEM ∈ 𝑅𝑀×𝑁 which we name the structure and
energy map by

SEM𝑖,𝑗 =

{{{{{{{{{{{{{{{{{{{{{

0, EM𝑖,𝑗 = 0, SM𝑖,𝑗 = 0,
1, EM𝑖,𝑗 = 1,
1, EM𝑖,𝑗 = 0, SM𝑖,𝑗 = 1,
2, EM𝑖,𝑗 = 2,
2, EM𝑖,𝑗 = 0, SM𝑖,𝑗 = 2.

(8)

When 𝑉ℎ1 = 𝐷𝜃ℎ1 and 𝑉ℎ2 = 𝐷𝜃ℎ2 , we can get the fusion
vectors by (9) according to the decision map:

𝑔 (𝜃ℎ1 , 𝜃ℎ2) = {{{
𝜃ℎ1 , 𝜃ℎ1  > 𝜃ℎ2  ,
𝜃ℎ2 , 𝜃ℎ1  ≤ 𝜃ℎ2  ,

𝐹ℎ =
{{{{{{{{{

𝑉ℎ1 , 𝑀𝑖,𝑗 = 1,
𝑉ℎ2 , 𝑀𝑖,𝑗 = 2,
𝐷 × 𝑔 (𝜃ℎ1 , 𝜃ℎ2) , 𝑀𝑖,𝑗 = 0,

𝑖 = ⌊ ℎ
𝑛 − 𝑤⌋ , 𝑗 = ℎ − 𝑖 ∗ (𝑛 − 𝑤) ,

(9)

where 𝑀 ∈ 𝑅𝑀×𝑁 can be EM, SM, SEM, or other decision
maps.

In general, the proposed method at least has three merits
in contrast to the normal SR based method. Firstly, it can
make the fused results preserve the information of the source
images as much as possible and remit the effect of algorithm
noise. Secondly, it can get the results more rapidly because
we just sparse-represent a part of the vector pairs. Thirdly,
our algorithm combines energy, energy distribution, and
structure characteristics of the images to enhance contrast of
the results. In the abstract, the results fused by proposed have
the best contrast information, which is the most important
information to locate the position of the abnormal tissue.

3. Experiments

To evaluate the performance of the proposed method, three
experiments are implemented. All the images are the same
size of 256 × 256 pixels. In this paper, we train the dictionary
withK-SVDusing the pictures as shown in Figure 3.The error
tolerance 𝜀 is set to be 0.01. The maximum iterations of the
K-SVD are set to be 30. The initial dictionary is the DCT
dictionary with the size of 64 × 256. We use OMP to estimate
the sparse coefficients for simplicity. The moving step of the
sliding window is set to be one pixel. We use three kinds of
medical image pairs including CT/MR images, MR-T1/MR-
T2 images, and CT/PET images to test the performances of
those abovementioned methods. The DCT dictionary and
trained dictionary are shown in Figure 4. The window size
of LOG is set to be 5 × 5, and 𝜎 is set to be 2.

For comparison, five state-of-the-art methods are evalu-
ated in the experiments, including methods based on NSCT
[1, 6], method based on JSR [12], and methods based on
NSCT and SR [15, 18]. In this paper, five objective evalua-
tion measurements parameters are adopted to evaluate the
fusion performance. There are local quality index (𝑄0) [34],
weighted fusion quality index (𝑄𝑊) [34], edge-dependent
fusion quality index (𝑄𝐸) [34], 𝑄𝐴𝐵/𝐹 [35] which measures
the transmission of edge and visual information from source
images to fused images, and mutual information (MI) [36]
which computes the information transformed from the
source images to the fused images. For 𝑄0, 𝑄𝑊, 𝑄𝐸, and𝑄𝐴𝐵/𝐹, they all lie in the interval [0, 1]. For these parameters,
the greater value indicates the better fusion performance.The
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(a) (b) (c)

Figure 2: (a) The source images, (b) the structure information of LOG, and (c) the local structure information normalization.

Figure 3: The source images for fusion and training dictionary, including 12 pairs of CT/MR images, 12 pairs of MR-T1/MR-T2 images, and
12 pairs of CT/PET images.

Figure 4: The DCT dictionary and the trained dictionary.

experiments are carried out in the PC with the Intel i7-3770
CPU 3.40GHz and 4G RAM, operating under MATLAB
R2010a.

3.1.The CT Images andMR Images Fusion. In the first experi-
ment, the CT and MR images are fused with eight different
image fusion methods listed above. We used 12 groups CT
and MR images to test the performance of these methods

as shown in Figure 3. Two groups of results are shown in
Figure 5. It is obviously seen that the results of NSCT are
fuzzy in some parts, especially in Figures 5(m) and 5(n),
the results of SR + NSCT [15], SR + SM, and SR + SEM
can reserve better source image boundary information than
the results of the other methods. And these results have no
block effects, because all the methods use the sliding window
strategy, in which NSCT [1] and NSCT [6] use the window
with size of 3 × 3 and the others use the window with size of8 × 8. And results of NSCT [1], NSCT [6], JSR [12], and SR
+ NSCT [18] are brighter than all source images, which will
lead some dim information to be hidden by light information.
As shown in Figures 5(m), 5(n), 5(o), and 5(q), we cannot
tell the tissue information between the skull and brain. In a
certain extent, the proposed method can ease these problems
and meanwhile remain the merits of the SR based methods.
Comparatively, the results of SR + SEM can remain better
image boundary and energy information, where we can get
better anatomical information fromCT images and soft tissue
information fromMR images simultaneously.More than that,
the calcified meningioma in Figure 5(f) can be distinguished
from background easily in Figures 5(r), 5(s), and 5(t). As for
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(a) CT (b) MR (c) NSCT [1] (d) NSCT [6] (e) JSR [12]

(f) SR + NSCT [15] (g) SR + NSCT [18] (h) SR + SM (i) SR + EM (j) SR + SEM

(k) CT (l) MR (m) NSCT [1] (n) NSCT [6] (o) JSR [12]

(p) SR + NSCT [15] (q) SR + NSCT [18] (r) SR + SM (s) SR + EM (t) SR + SEM

Figure 5: The CT and MR image fused results of different fusion methods.

the fused results of CT and MR images, the average scores of
quantitative evaluation metrics are listed in Table 1 and the
“bold” values indicate the highest values. We can see that the
proposed method SR + SEM outperforms other methods in
all scores.The results fused by proposedmethods are all better
than normal methods.

3.2. The MR-T1 and MR-T2 Images Fusion. In the second
experiment, we used 12 groups MR-T1 and MR-T2 images to
test the performance of these methods as shown in Figure 3.
To illustrate the proposed fusion method, two sets of results
are presented in Figure 6. In general, the results of NSCT
[1], NSCT [6], and SR + NSCT [18] look gloomy and bright,
demonstrating the grey distortion happens. NSCT [1], NSCT
[6], JSR [12], and SR + NSCT [18] create many bad edges and

make the fused results too smoothness. Comparatively, the
results of SR +NSCT [15] and proposedmethods show better
boundary information and energy information with fewer
artifacts, so that we can get better information on adipose
tissue from MR-T1 images and information on vascular and
tumor fromMR-T2 images. Compared to the other methods,
the results of proposed methods contain more information
from the source images. The proposed methods preserve
both better local edge and texture information, which is
the vital information for diagnosis. The subacute premature
hematoma is seen clearly in Figure 6(l), and we can see the
location and contour of the intracranial hematoma in Figures
6(r), 6(s), and 6(t). For 12 MR-T1 and MR-T2 fused results,
the average scores of quantitative evaluationmetrics are listed
in Table 2 and the “bold” values indicate the highest values.
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(a) MR-T1 (b) MR-T2 (c) NSCT [1] (d) NSCT [6] (e) JSR [12]

(f) SR + NSCT [15] (g) SR + NSCT [18] (h) SR + SM (i) SR + EM (j) SR + SEM

(k) MR-T1 (l) MR-T2 (m) NSCT [1] (n) NSCT [6] (o) JSR [12]

(p) SR + NSCT [15] (q) SR + NSCT [18] (r) SR + SM (s) SR + EM (t) SR + SEM

Figure 6: The MR-T1 and MR-T2 image fused results of different fusion methods.

Table 1: The objective evaluation and running time for CT and MR image fused results of all methods.

𝑄0 𝑄𝑊 𝑄𝐸 𝑄𝐴𝐵/𝐹 MI
NSCT [1] 0.5960 0.7511 0.5707 0.5857 4.6665
NSCT [6] 0.5958 0.7554 0.5793 0.5892 4.6711
JSR [12] 0.6493 0.8148 0.6296 0.5838 3.6120
SR + NSCT [15] 0.6611 0.8477 0.6249 0.6447 4.0421
SR + NSCT [18] 0.6527 0.8161 0.5572 0.5866 3.6371
SR + SM 0.6566 0.8466 0.6992 0.6630 4.5467
SR + EM 0.6643 0.8355 0.6919 0.6477 4.2687
SR + SEM 0.6679 0.8477 0.7043 0.6677 4.6721
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Table 2: The objective evaluation and running time for MR T1 and MR T2 image fused results of all methods.

𝑄0 𝑄𝑊 𝑄𝐸 𝑄𝐴𝐵/𝐹 MI
NSCT [1] 0.6311 0.8178 0.6166 0.6374 5.4548
NSCT [6] 0.6316 0.8202 0.6192 0.6387 5.4252
JSR [12] 0.6732 0.8369 0.6367 0.5744 3.9141
SR + NSCT [15] 0.6896 0.8543 0.6313 0.6608 4.8713
SR + NSCT [18] 0.6741 0.8385 0.5563 0.5774 3.9210
SR + SM 0.6832 0.8520 0.7029 0.6676 5.3846
SR + EM 0.6911 0.8542 0.6989 0.6577 4.9104
SR + SEM 0.6991 0.8558 0.7063 0.6746 5.4563

Table 3: The objective evaluation and running time for CT and PET image fused results of all methods.

𝑄0 𝑄𝑊 𝑄𝐸 𝑄𝐴𝐵/𝐹 MI
NSCT [1] 0.5083 0.9442 0.7297 0.7783 4.8657
NSCT [6] 0.5132 0.9475 0.7414 0.7862 4.9470
JSR [12] 0.4988 0.9590 0.8095 0.7558 3.5924
SR + NSCT [15] 0.4983 0.9635 0.7628 0.7863 4.0568
SR + NSCT [18] 0.5046 0.9612 0.7564 0.7625 3.6635
SR + SM 0.4992 0.9652 0.8337 0.8030 4.7986
SR + EM 0.5234 0.9642 0.8311 0.7984 4.5778
SR + SEM 0.5100 0.9652 0.8369 0.8041 4.9720

We can see that SR + SEM outperforms other methods in all
scores. In general, the results fused by proposed methods are
better than the other methods.

3.3. The CT Images and PET Images Fusion. In the third
experiment, we used 12 CT and PET image pairs to test
the performance of these methods as shown in Figure 3.
Two sets of results are shown in Figure 7. Comparatively,
the results of NSCT [1] and NSCT [6] are best especially in
energy information, so that the fused images can capture both
more spatial information in the CT images and functional
information contents in PET images. However, in clinical
applications, doctors need to see the position of bone and
tumor to determine pathology and aid in diagnosis. The
results fused by SR + SEM containmore detailed information
and higher contrast but without information distortion so
that we can see the outline of the kidney clearly in Figures
7(r), 7(s), and 7(t). Nasopharyngeal carcinoma can be seen
in Figure 7(b), and we can use the result fused by proposed
method to locate it in Figure 7 SR + NSCT [15], SR + SM, and
SR + SEM easily, where are helpful to view the tumor activity,
allowing physicians to better understand the effect of cancer
treatment. For 12CT andPET fused results, the average scores
of quantitative evaluationmetrics are listed in Table 3 and the
“bold” values indicate the highest values. We can see that the
SR + SEM outperforms other methods in all scores. It shows
that this approach is flexible and stable.

3.4. The Time Complexity Analysis. To realize the fusion
and reconstruction of 3D medical images, a lot of CT/PET
and MR/PET image slices need to be fused firstly [37, 38].
Therefore, there is a need to find a faster and stronger image
fusion algorithm.As shown in Figure 8, we record the average

time consumption of different methods for 36 different
medical image pairs listed. It is evident that the multiscale
approaches including NSCT [1] and NSCT [6] are very fast
while the SR based approaches (JSR [12], SR +NSCT [15], and
SR +NSCT [18]) takemuchmore time. Comparably, the time
consuming of SR + SM is about 1/20, SR + EM is about 1/20,
and SR + SEM is about 1/50 of the SR based approach. From
the above analysis and discussion, we draw the conclusion
that SR + SEM outperforms all the others in the field of
medical image fusion. Because it contains more original
information from source images and better local structure
information, our methods are more appropriate for doctors
to localize the abnormal masses and tumors in patients.

4. Conclusion

In this paper, a new medical image fusion approach based on
SR and feature extraction is proposed.There are at least three
major improvements compared with the conventional SR
based fusion methods. Firstly, we put forward three decision
maps to improve quality of the SR based image fusion
methods in extracting the structure and energy features of
the source images. This strategy can help remain the original
information from the source images as much as possible.
Secondly, we add the decisionmap into the SR basedmethods
to improve the speed of the algorithm. It takes only 1/50 of
the time that the standard SR method needs to realize the
image fusion based on proposed approach. Thirdly, adding
the structure and energy information of source images into
the decision map improve the quality of the fused results a
lot.The experiments results indicate that the proposed fusion
approach can achieve better results than the conventional
fusion methods in both subjective and objective aspects.
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(a) CT (b) PET (c) NSCT [1] (d) NSCT [6] (e) JSR [12]

(f) SR + NSCT [15] (g) SR + NSCT [18] (h) SR + SM (i) SR + EM (j) SR + SEM

(k) CT (l) PET (m) NSCT [1] (n) NSCT [6] (o) JSR [12]

(p) SR + NSCT [15] (q) SR + NSCT [18] (r) SR + SM (s) SR + EM (t) SR + SEM

Figure 7: The CT and PET image fused results of different fusion methods.
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