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Non-contact physiological monitoring of post-operative
patients in the intensive care unit
João Jorge 1,2,6✉, Mauricio Villarroel1,2,6, Hamish Tomlinson1, Oliver Gibson3, Julie L. Darbyshire 4, Jody Ede2,4, Mirae Harford 2,4,
John Duncan Young 4, Lionel Tarassenko 1,2 and Peter Watkinson2,4,5

Prolonged non-contact camera-based monitoring in critically ill patients presents unique challenges, but may facilitate safe
recovery. A study was designed to evaluate the feasibility of introducing a non-contact video camera monitoring system into an
acute clinical setting. We assessed the accuracy and robustness of the video camera-derived estimates of the vital signs against the
electronically-recorded reference values in both day and night environments. We demonstrated non-contact monitoring of heart
rate and respiratory rate for extended periods of time in 15 post-operative patients. Across day and night, heart rate was estimated
for up to 53.2% (103.0 h) of the total valid camera data with a mean absolute error (MAE) of 2.5 beats/min in comparison to two
reference sensors. We obtained respiratory rate estimates for 63.1% (119.8 h) of the total valid camera data with a MAE of
2.4 breaths/min against the reference value computed from the chest impedance pneumogram. Non-contact estimates detected
relevant changes in the vital-sign values between routine clinical observations. Pivotal respiratory events in a post-operative patient
could be identified from the analysis of video-derived respiratory information. Continuous vital-sign monitoring supported by
non-contact video camera estimates could be used to track early signs of physiological deterioration during post-operative care.
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INTRODUCTION
Clinical complications following surgery remain a major concern
worldwide1, therefore admission to the intensive care unit (ICU)
following major surgery is standard practice in many healthcare
systems. Patients discharged from an ICU to the ward following a
post-operative ICU admission are at high risk of adverse events2.
In-hospital adverse events may be prevented with earlier

detection of physiological deterioration followed by prompt
intervention3–5. Early detection of deterioration in post-ICU ward
patients has been shown to reduce the rate of ICU readmission6,
which is associated with worse outcomes7. The incidence of
adverse events, such as cardiac arrest or unexpected admission to
the ICU, could also be reduced3,8, which in turn is associated with
improved outcomes9,10.
Patient care within hospital settings relies on a system of

escalation based on a weighted assessment of patients’ vital signs.
The monitoring of vital signs, including heart rate (HR), respiratory
rate (RR), peripheral blood oxygen saturation (SpO2), blood
pressure and core temperature provides valuable insights into
the overall condition of the patient11,12. Patterns of critical illness
are often preceded by periods of physiological abnormality13,14,
detected in the recorded vital signs well before patients show
physical signs of distress15,16. Effective patient monitoring
strategies, therefore, aim to detect abnormal patterns in the vital
signs as often and as soon as they occur so that acute care for
deteriorating patients can be escalated2,17.
Clinical staff evaluates vital signs with a measurement

frequency ranging from hourly to 12 h, depending on the acuity
level of the ward, and individual patient condition18,19. High-acuity
patients such as those in the ICU are monitored continuously
using automated bedside monitors so that acute changes can be
detected and acted upon in a prompt manner. Heart rate and

cardiac function are monitored through electrocardiography
(ECG). A pulse oximeter attached to a well-perfused part of the
body, such as a finger or an earlobe, is often used to provide non-
invasive estimates of SpO2 via two-wavelength photoplethysmo-
graphy (PPG). Respiratory rate is measured using Impedance
Pneumography (IP). IP is a convenient method if patients are
already monitored by ECG as it relies on the existing set of
electrodes. High-acuity patients may also require invasive
monitoring, including arterial cannulation to continuously monitor
the blood pressure.
Post-operative ward patients are typically less acute. This is

reflected in the level of monitoring they receive, with most
patients’ vital signs measured manually every 1–4 h for the
immediate post-operative period. Ward level measurements of
vital signs are usually performed using a portable monitor, such
as DINAMAP®, which incorporates a pulse oximeter and a blood
pressure cuff20. Respiratory rate is counted manually. The
frequency of manual observations can be increased to multiple
measurements per hour for post-operative patients who require
intensive monitoring. Continuous monitoring equipment may
also be used. Conventional contact monitors are, however,
poorly tolerated by patients21. They limit patient mobility,
rehabilitation and are uncomfortable to wear over prolonged
periods of time22. One previous study that aimed to monitor
patients in acute medical and surgical wards for 72 h found that
a significant proportion of patients declined to be monitored for
the entirety of this period21. Numerous monitoring wires are
cumbersome and make patient transfers more difficult23. Nursing
staff have reported many staff-hours spent troubleshooting
current monitoring systems, with common causes of monitoring
failures including sensor disconnection, poor vital-sign readings,
and equipment malfunctio24. Poor probe contact has been
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identified as the leading cause of false respiratory alarms in
patients monitors25.
For continuous vital-sign monitoring to be feasible in hospita-

lised patients it must maintain measurement accuracy while being
widely acceptable to patients and staff. A way of achieving this is
by using less intrusive monitors instead of the conventional
contact-based sensors26. There is growing support that video
camera-based vital-sign monitoring may fulfil this role27–30, a view
reinforced by recent findings that such monitoring is feasible in
several hospital environments31–35.
Photoplethysmographic imaging (PPGi) is based on the

principle that a cardiorespiratory waveform may be extracted
from the ambient light reflected from an area of exposed skin
using conventional camera devices36,37. Numerous studies in
controlled laboratory environments have demonstrated that heart
rate and respiratory rate can be derived from the PPGi waveform
with a high degree of accuracy38,39. Work published in recent
years has shown that changes in SpO2 may also be derived40–42.
Methods continue to be developed which improve the quality of
the PPGi waveform extracted from video feeds43,44. Recent efforts
to improve the robustness of non-contact monitoring to motion
artefacts have also been reported45–47.
While there are clear advantages to conducting experiments in

controlled environments, this practice cannot emulate the
challenging conditions of an ICU. There are substantial chal-
lenges that PPGi must overcome in this setting, including
unforeseeable signal artefacts due to patient movement, clinical
interventions or changes in the illumination from ambient light
sources31. PPGi-based monitoring of heart rate and respiratory
rate has so far been demonstrated in non-critical in-hospital
areas such as the outpatient clinic31,32, the neonatal high
dependency unit33, and the intra-operative environment34,35.
While one pilot study collected early data in a post-operative ICU
following elective cardiac surgery for 28.6 ± 2.8 min (per
patient)48, the feasibility of non-contact monitoring for extended
periods of time remains untested.
We designed a clinical study to assess the feasibility of using a

video camera-based system to estimate heart rate and respira-
tory rate over clinically relevant time periods from post-surgical
patients with a planned post-operative admission to the ICU in
the Churchill Hospital in Oxford, UK. We aimed to establish the
proportion of time that camera signals of sufficient quality for
reliable vital-sign estimation could be obtained in this patient
group, as well as the accuracy of the vital-sign estimates
obtained from the video camera system in comparison to wired
monitoring collected concurrently as per usual patient clinical
care in the ICU.

RESULTS
Prior to their operation, 25 patients agreed to take part over the
course of one year. Recording data was available for a cohort of 15
patients as 10 patients were not admitted to the ICU for one of the
following reasons: patient admitted to an alternative Recovery
Unit (4 patients), surgery cancelled or rescheduled (3 patients), or
unavailable research staff or equipment (3 patients).
A summary of demographic data for the study cohort is

included in Table 1. The average age of monitored patients was
62.2 years. Nine patients were male (60%) and six patients were
female (40%). Ten patients were admitted to the ICU following
maxillofacial surgery (60%), four (26.6%) following gastrointestinal
(GI) tract surgery and one patient was admitted following gynae-
oncological surgery. The average APACHE II score was 15.7 ± 4.5 at
the time of admission to the ICU. The majority (n= 9) commenced
study recording with a Richmond Agitation-Sedation Scale
RASS < 0. All but one patient became alert (RASS= 0) within the
recording period. Eight study patients were receiving airway
pressure support from a bilevel ventilation device at the start of

data recording. The patients were predominantly of white skin
colour, with 93.3% of patients classified as having either skin type
I or II on the Fitzpatrick scale49. Only one patient was classified as
skin type III.
Patients were recorded for a total of 233.5 h, with the average

session lasting approximately 15.6 h. Recording time was defined
as periods of concurrent recording of video and monitor data
(including both heart rate and respiratory rate values). Most post-
operative patients were admitted to the ICU in the evening. Each
patient was monitored for an average of 6.8 day-time hours and
8.8 night-time hours, although these figures varied considerably
between patients. None of the patients withdrew from the study.

Statistical analysis
Figure 1 shows the agreement between the reference heart rate
values (computed from the ECG and PPG) and the video camera
estimates for the valid video camera data from the 15 patients.
The Bland-Altman plot, shown in Fig. 1b, presents minimal sensor
bias (−2.0 beats/min) with small differences (95% limits of
agreement at −6.4 beats/min and 2.5 beats/min) normally dis-
tributed (Fig. 1a). The distribution of the mean values in Fig. 1d,
shows that heart rate values were distributed over the expected
range for adults. Figure 1c shows the regression line between the
two methods. The values estimated by the two devices have a
Pearson correlation r coefficient of 0.98. (Fig. 1d).
Figure 2 shows the agreement between the reference

respiratory rate values from the chest impedance pneumogram
and the video camera estimates from the valid video camera data
of the 15 patients. The Bland-Altman plot, shown in Fig. 2b,

Table 1. Summary of the study population.

Total number of patients 15

Total recording time (h)a 233.5

Genderb

Male 9 (60.0%)

Female 6 (40.0%)

Age (years)c 62.2 (12.4)

Clinical specialtyb

Maxillofacial 10 (60.7%)

Lower GI 2 (13.3%)

Upper GI 2 (13.3%)

Gynaecological/Oncology 1 (6.7%)

APACHE II scorec 15.7 (4.5)

RASS score < 0b 9 (60.0%)

Ventilation statusb,d

Bilevel 7 (47.7%)

None 8 (53.3%)

Propofol infusionb,d 6 (40.0%)

Fitzpatrick skin typeb

I 2 (13.3%)

II 12 (80.0%)

III 1 (6.7%)

Recording time per patient (h)a,c 15.6 (8.7)

Day 6.8 (4.5)

Night 8.8 (5.5)

a Day (08:00 to 19:59), night (20:00 to 07:59)
b N (percentage from total number of patients)
c mean (std)
d At the start of data recording
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presents negligible sensor bias (−1.4 breaths/min) with narrow
differences across the measured range (95% limits of agreement
at −6.6 breaths/min and 3.9 breaths/min), which indicate a good
agreement between the two methods (Fig. 2a). The mean values
of respiratory rate shown in Fig. 2d are distributed over the normal
physiological range. A peak in the distribution in Fig. 2d at
approximately 14 breaths/min was recorded due to the inclusion
of a patient undergoing mechanical ventilation at this rate. Further
details on this monitoring case are provided in our discussion of
Fig. 4. Figure 2c shows the regression line between the two
measurements. The values estimated by the two devices have a
positive correlation coefficient r of 0.82.

Cohort analysis
Table 2 presents the results of video camera-based estimation of
both vital signs for each of the recorded sessions.
Periods when an opaque privacy blind was used to obscure

the view of the patient during dignity-compromising situations
(e.g. routine hygiene) are reported in Table 2 under private time.
The percentage of private time per participant ranged from 1.4%
(0.2 h) to 41.8% (2.7 h) of the total session duration.
Artefacts are a common cause of false alarms, signal loss, and

inaccurate measurements in physiological monitors50. To establish
gold-standard references against which the performance of
camera-derived vital-sign estimates could be assessed, we
assessed data from standard patient monitoring equipment. We
used automated methods to identify and discard those monitor
values found to be of poor quality according to accepted clinical
standards51 (see Supplemental material 1). Common causes for

poor-quality monitor readings included the occurrence of clinical
interventions, family visits or instances when the patient was
awake and active, causing motion artefacts to corrupt the contact-
sensor readings. The remaining time, reported as valid time in
Table 2, and comprising a total length of 193.7 h of heart rate
monitoring (82.9%) and 189.7 h (81.3%) of respiratory monitoring,
was considered for performance analysis.
Estimated time refers to periods of good-quality video data (as

assessed using independent signal analysis). It corresponds to
effective cardiorespiratory monitoring time, and is reported both
in absolute time, in hours, and as proportion of the valid time.
Including both day and night, heart rate estimates could be
obtained for 53.2% (103.0 h) of the total valid time (193.7 h) with a
mean absolute error (MAE) of 2.5 beats/min. Respiratory rate was
estimated with a MAE of 2.4 breaths/min for up to 63.1% (119.8 h)
of the total valid time (189.7 h).
Environments with variable illumination (such as the ICU) are

susceptible to low levels of ambient light, shadows and exposure
to unknown light sources. These environments pose an intrinsic
challenge to PPGi technology, potentially limiting the practical
implementation of video camera-based monitors. Of particular
concern in the ICU environment are the periods of time during the
evening and night, when fluorescent lights are often dimmed.
Table 3 summarises the performance of video camera-based
estimation of vital signs for two periods: day-time (08:00 to 19:59)
and night-time (20:00 to 07:59).
Heart rate estimates could be obtained for 41.8% (42.6 h) of

the valid day-time period (78.5 h) with a MAE of 2.7 beats/min
versus 2.5 beats/min obtained for 45.9% (60.4 h) of the valid
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Fig. 1 Agreement between the reference heart rate values (computed from the ECG and PPG) and the camera estimates for the valid
video camera data, comprising a total estimated time of approximately 103.0 h. a The differences between the camera and reference
monitors are normally distributed. b The Bland-Altman plot presents a minimal sensor bias. c The scatter plot shows high correlation between
the two devices, with a Pearson correlation coefficient of 0.98. d The distribution of the mean values shows that most of the heart rate
estimates are within the expected physiological range for adults.
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night-time period (115.2 h). Respiratory rate estimates could be
obtained for 44.2% (45.1 h) of the valid day-time period (77.0 h)
with a MAE of 2.6 breaths/min while a MAE of 2.3 breaths/min
was obtained for 56.8% (74.7 h) of the valid night-time period
(112.8 h). No meaningful difference was reported in the duration
of private time between the two periods (16.2 versus 15.0 h).
Bland–Altman plots for the two time periods are provided in the
supplemental material.

Noteworthy monitoring scenarios
This section presents three monitoring cases identified from the
retrospective analysis of video data.
Figure 3 shows the camera-derived estimates compared against

their corresponding gold-standard values for two 30-min sample
periods. Heart rate values are shown in Fig. 3a, c. The respiratory
rates measured in the same periods are shown in Fig. 3b, d. The
manual measurements of the vital signs provided during routine
clinical observation are also shown. For both segments, a good
agreement is found between the reference signals and the video
camera-derived estimates.
Episodes of short-term fluctuations in the vital signs, such as

those observed in Fig. 3a from t= 21 min to t= 25 min, are
known to be associated with bouts of patient activity. The
transient changes in heart rate during this period were tracked
by the video camera-derived estimates. Figure 3d presents a
sample 30-min window during which no reference respiratory
rate measurements were available. A manual measurement
was taken at t= 8 min. The camera system produced frequent
observations of both vital signs during the ensuing episode
of acute deterioration (t= 20 min), including plausible

estimates of respiratory rate. We observed that in such periods
where wire-based respiratory monitoring was absent, the
proposed algorithms produced estimates consistent with
physiological status.
Respiratory support plays an important role in care of patients

with respiratory failure in the ICU. In Fig. 4, we show results for a
patient undergoing respiratory support. The camera-derived
estimates obtained from the regions of interest over the chest
could provide a good approximation of the respiratory rate values
of this patient under invasive respiratory support (14 breaths per
minute). Following extubation, the spontaneous fluctuation of the
respiratory rhythm in the ensuing period was accurately captured
by the non-contact estimates produced from the analysis of video
data, as shown in the same figure.
In Fig. 5 we show camera-derived results for a patient admitted

to the ICU in whom a ruptured diaphragm and pneumothorax
(confirmed by chest computer tomography) was diagnosed after
the recording period. As a result of the ruptured diaphragm, the
patient’s liver herniated into the chest. The diaphragm ruptured
during the final 24 h of recording time, although it is not known
exactly when this occurred. The non-stationary nature of the
respiratory rhythm of this patient, marked by a sustained increase
in the basal rate from t= 18 min to t= 27 min, was successfully
tracked by the camera system throughout this period. A camera-
derived map of local respiratory chest movements33 is also
shown. As expected, this map shows areas of elevated respiratory
amplitude over the patient’s lower chest, particularly along the
line of the lower ribs. A lateralisation of the respiratory effort
towards the left thorax was also observed in the later stage of
this period.
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Fig. 2 Agreement between the reference respiratory rate values (computed from the chest impedance pneumogram) and the camera
estimates for the valid video camera data, comprising a total estimated time of approximately 119.8 h. a The differences between the two
estimates. b The Bland-Altman plot presents negligible sensor bias. c The plot shows a positive correlation between the two devices, with a
Pearson correlation coefficient of 0.82. d The distribution of the mean values shows that most of the respiratory rate estimates are within the
expected physiological range for adults. brpm= breaths/min.
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DISCUSSION
We evaluated the feasibility of a non-contact monitoring system
over clinically relevant time periods for critical care patients
during post-operative care. We developed a novel system which
successfully recorded video data from patients in the ICU. The
design was acceptable to nursing staff24, complied with hospital
safety criteria and provided reliable estimates of cardiorespira-
tory vital signs.
Previous work in non-contact vital-sign monitoring using video

cameras has been conducted primarily under controlled condi-
tions and with compliant healthy adults. One previous study of
post-operative patients recorded short videos of patients
following cardiac surgery for a mean duration of 28.6 ± 2.8 min
per patient48. To our knowledge, ours is the first study of video-
based non-contact monitoring study in an acute adult care
setting for extended periods of time (over 12 h). The extended
study period allowed us to assess the impact of routine clinical
activities on the operation of the non-contact monitoring system,

unlike shorter studies where clinical staff may tolerate short-term
accommodations for the sake of good quality of the recorded
data. While only three patients received over 24 h of monitoring,
this was mostly due to unforeseen events, such as early
discharge. Data were obtained both in the day-time and
overnight, allowing algorithms to be tested under different light
conditions and care protocols. Thus, our findings provide a good
approximation of the performance of non-contact vital-sign
monitoring systems in an acute clinical setting. Vital signs were
estimated for the valid camera time, comprising a total of 119.8 h
of respiratory rate monitoring (approximately 63.1% of the total
number of hours of valid time) and a total of 103.0 h of heart rate
monitoring (approximately 53.2% of the total number of hours of
valid time). These figures reflect a difference in the number of
time windows for which camera-derived cardiac and respiratory
signals reached the quality threshold for rate estimation, and may
be explained by the lower amplitude of the cardiac modulation
of the camera signal.

Table 2. Summary of vital-sign estimation results for all recording sessions.

Patient Total recording
time (h)

Private
time (h)

Heart rate Respiratory rate

Valid time Estimated time MAEa Valid time Estimated time MAEa

(hours, %)b (hours, %)c (beats/min) (hours, %)b (hours, %)c (breaths/min)

1 15.2 h 2.2 h 12.4 h, 81.9% 9.0 h, 58.9% 2.1 9.2 h, 60.5% 5.5 h, 36.0% 2.1

2 27.1 h 4.9 h 20.0 h, 73.7% 9.9 h, 36.4% 2.5 21.1 h, 77.7% 11.2 h, 41.3% 1.9

3 5.8 h 2.1 h 3.8 h, 64.7% 2.5 h, 42.3% 5.2 1.7 h, 29.8% 1.3 h, 21.9% 3.1

4 18.1 h 3.4 h 14.7 h, 81.1% 6.4 h, 35.5% 2.6 16.4 h, 90.8% 12.8 h, 70.5% 2.3

5 1.3 h 0.2 h 0.9 h, 65.7% 0.6 h, 41.9% 3.0 1.1 h, 85.8% 0.8 h, 58.5% 1.5

6 15.9 h 0.6 h 15.3 h, 96.1% 3.9 h, 24.6% 2.9 11.3 h, 71.4% 9.1 h, 57.2% 2.6

7 5.5 h 0.0 h 4.3 h, 77.8% 3.5 h, 63.9% 2.5 5.6 h, 102.7% 4.8 h, 86.7% 2.7

8 16.0 h 2.6 h 13.3 h, 83.5% 9.0 h, 56.2% 2.7 13.5 h, 84.3% 11.3 h, 70.4% 1.2

9 21.1 h 0.7 h 20.3 h, 96.4% 8.7 h, 41.4% 2.0 15.4 h, 73.2% 8.8 h, 41.8% 2.7

10 26.8 h 4.4 h 22.4 h, 83.5% 14.5 h, 54.1% 2.5 21.3 h, 79.5% 13.3 h, 49.7% 2.6

11 30.4 h 4.5 h 25.9 h, 85.2% 15.8 h, 52.0% 2.5 23.6 h, 77.7% 13.0 h, 42.8% 2.7

12 19.3 h 2.9 h 13.3 h, 68.8% 8.4 h, 43.2% 2.5 17.2 h, 89.1% 9.7 h, 50.1% 2.4

13 10.1 h 2.0 h 8.1 h, 80.5% 2.4 h, 24.3% 2.5 7.4 h, 73.8% 4.9 h, 48.5% 3.0

14 14.8 h 0.3 h 14.4 h, 97.7% 4.8 h, 32.8% 2.6 13.9 h, 93.9% 6.8 h, 46.0% 3.6

15 6.2 h 0.4 h 4.7 h, 75.5% 3.6 h, 58.8% 2.7 6.9 h, 112.0% 4.9 h, 79.7% 2.5

Overall 233.5 h 31.2 h 193.7 h, 82.9% 103.0 h, 53.2% 2.5 189.7 h, 81.3% 119.8 h, 63.1% 2.4

a Mean absolute error
b Percentage with respect to total recording time
c Percentage with respect to valid time

Table 3. Summary of vital-sign estimation results for the day-time and night-time periods.

Period Total recording
time (h)

Private
time (h)

Heart rate Respiratory rate

Valid time Estimated time MAEa rb Valid time Estimated time MAEa rb

(hours, %)c (hours, %)d (bpm) (hours, %)c (hours, %)d (brpme)

Day-time 102.0 h 16.2 h 78.5 h, 77.0% 42.6 h, 41.8% 2.7 0.96 77.0 h, 75.5% 45.1 h, 44.2% 2.6 0.81

Night-time 131.5 h 15.0 h 115.2 h, 87.6% 60.4 h, 45.9% 2.5 0.98 112.8 h, 85.8% 74.7 h, 56.8% 2.3 0.82

Overall 233.5 h 31.2 h 193.7 h, 82.9% 103.0 h, 53.2% 2.5 0.98 189.7 h, 81.3% 119.8 h, 63.1% 2.4 0.82

a Mean absolute error
b Pearson r
c Measurements were classed into day-time (7:00 am to 6:59 pm) and night-time (7:00 pm to 6:59 am). Percentage with respect to total recording time
d Percentage with respect to valid camera time
e breaths per minute
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As reported in Table 2, the vital-sign estimates derived from the
video camera signals had high accuracy, with estimates within
2.5 beats/min and 2.4 breaths/min of the gold-standard reference
values recorded by the standard patient monitoring equipment.
Our error measures for heart rate monitoring are in line with those
obtained using a camera monitoring system to record facial videos
of patients during immediate recovery after cardiac surgery, which
measured pulse rates with a bias of −3.7 ± 16.1 beats/min with
respect to the ECG reference48. Hochhausen et al.52 used a long-
wave infrared camera to record 28 post-operative patients (24
female, IQR 51–77 years) for short periods upon admission to a
post-anaesthesia care unit and upon discharge from this unit.
Estimates of the respiratory rate were obtained with a bias of 1.75
breaths/min and limits of agreement ranging from −2.74 to 1.75
breaths/min. In comparing these figures with those reported by us,

it should be noted that Hochhausen et al. manually excluded the
periods for which the ROI on the patient’s nose was not visible, or
when patient movement was observed. Using a similar imple-
mentation of the algorithms described here, Villarroel et al.
monitored patients undergoing haemodialysis treatment under
the consistent ambient light of the kidney unit. They obtained an
MAE of 2.8 beats/min for heart rate estimates for over 65% of the
time the patient was stable. An MAE of 2.1 breaths/min was
obtained for respiratory rate estimates over 69% of the time for
which the reference signals were valid32. The gap in coverage
time between the two scenarios may reflect differences between
the two studies regarding the recording environment and the
experimental protocol.
Two features in the distribution of respiratory rate values in Fig. 2

are worth noting. Most prior art in non-contact monitoring

Fig. 4 Respiratory monitoring of a patient over a 14-h period. The video camera-derived estimates (in red) are compared against the
reference values provided by the bedside monitoring equipment (in black). Periods during which the privacy blind was drawn, and thus video
monitoring was interrupted due an obstructed camera view of the patient, are shown in the bottom panel. Sample frames from the video
camera recording during invasive respiratory support and after extubation are shown as inserts at t = 22:15 and t = 09:15.

Fig. 3 Reference and video camera-derived traces for two 30-min sample periods. Heart rate and respiratory rate values for the first period
are shown in panels (a) and (b), respectively. Heart rate and respiratory rate values for the second period are shown in panels (c) and (d),
respectively. Reference values were provided by the patient monitoring equipment (black), and manual nursing estimates (green).
Fluctuations in heart rate associated with patient movement can be observed in (a) from t= 21min to t= 25min. The second 30-min sample
(c, d) documents a period of deterioration from t= 20min. The camera system produced frequent observations of both vital signs in during
the episode of clinical deterioration. Only one manual respiratory rate was recorded during this period, as the impedance system was
disconnected.
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technology has relied on respiratory data available from healthy
volunteers during metronome breathing. As a result, the distribution
of measured rates available from volunteer studies is limited when
compared to the one observed in this dataset. The large proportion
of low rates in the [20, 30] breaths/min range is particularly relevant
given that tachypnoea (RR > 20 breaths/min) is an established
criterion for sepsis-evoked Systemic Inflammatory Response Syn-
drome (SIRS) in hospitalised patients53.
The non-contact camera system produced valid vital-sign

estimates between routine manual observations in a busy ICU
environment (see e.g. Fig. 3b). Once patients are discharged to a
lower-acuity ward, where nurse observations are separated by
several minutes or hours, the ability to track vital-sign changes
between consecutive manual observations would be important in
the context of early warning scores (EWSs). Considering that an
elevated EWS score is an institutionally-defined criterion for
escalating care, it is important that all times of increased EWS are
noted54. The ability to provide continuous heart rate and
respiratory rate estimates in addition to manual observations of
the other vital signs may, therefore, be a useful addition to routine
monitoring in the ward.
Although vital signs can be indicative of impending clinical

deterioration, routine night-time monitoring adds to the already
fragmented sleep of inpatients. Sleep disruption is prevalent
among ICU patients55 and is associated with several negative
outcomes, including elevated blood pressure and deliriu56–58.
Therefore, it is important to consider strategies to reduce the
burden of overnight monitoring. To our knowledge, ours is the
first study to evaluate a non-contact video camera system in the
night-time ICU environment. Primary outcomes were evaluated
for the day-time period (102.0 h) and the night-time (131.5 h)
period. Using an identical protocol for the recording and analysis
of day-time and night-time data, comparable performance among
the two periods has been demonstrated (Table 3). Lower error
rates and higher correlation coefficient were observed for
estimates of both vital signs during the night-time period. While
further investigation is warranted to determine whether this is

attributable to environmental factors, it is clear that the low-light
setting did not prevent night-time video monitoring.
Video camera systems may provide diagnostic information in

addition to vital-sign estimates. We revisited the case study of a
patient who suffered a pneumothorax and ruptured diaphragm
(Fig. 5), where we observed that alterations in the respiratory rhythm
could be detected in the camera signal prior to diagnosis.
Additionally, the processing of the video camera data revealed
asymmetries between regional breathing movements over the chest
and thorax. These findings highlight the potential role of video
camera monitors not only as a viable method of monitoring the
respiratory rate but also of providing a functional assessment
through a contextual understanding of morphology. This is made
possible through the access to visual cues not available to
conventional monitors, or even wearable wireless monitoring
systems. Further research will aim to show that the features in the
video signal can similarly capture key haemodynamic events in this
patient group, such as the onset of clinically significant hypovolae-
mia or the occurrence of mottled skin (see ISRCTN study reference59).
Some study limitations need to be addressed. Data were

collected at a single ICU in a teaching hospital located in Oxford,
UK. Thus, our results may neither be generalisable to other ICUs in
the UK, nor to other healthcare systems, where clinical protocols
for ICU admission, surveillance, and discharge of surgical patients
may differ. A demonstration of feasibility on ICU does not
necessarily translate to lower-acuity units, where patients are
usually not tethered to a patient monitor. A wide-angle lens
system is needed for day-time monitoring as patients can
ambulate freely, as has been achieved in mental health settings
by a system developed in parallel with the ICU system60. The
mean age of the patient cohort was 62.2 years (Table 1), which
may limit our findings to older populations. Similarly, the study
sample did not include participants with skin type ⩾ IV on the
Fitzpatrick scale. The performance of heart rate estimation
algorithms is known to be negatively affected by darker skin
tones and thus further validation is required on a more diverse
cohort. The study was not adequately powered to assess the
impact of patient position on the accuracy and coverage of video

Fig. 5 Visualisation of the local respiratory effort of a patient later diagnosed as having a ruptured diaphragm, as confirmed by chest CT,
and a right-sided pneumothorax. (a) Respiratory rate estimated from the camera. Heat maps show the magnitude of the respiratory effort
from regions on the chest during time stages (b) S1, (c) S2 and (d) S3. Each super-pixel in the heat maps was coloured according to the
amplitude of the respiratory signal (in pixel units) computed from the 30 × 30 ROI centred on the super-pixel. The non-stationary respiratory
rate was measured with a sustained increase in respiratory rate from t= 18min to t= 27min. A progression towards subdiaphragmatic left-
lateral respiratory movements is observed as increased signal intensity over the lower left-side in the respiratory map for stage S3.
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camera-based monitoring. Finally, the use of the privacy blind to
obscure the view of the patient from the camera did overlap with
some noteworthy events. Several periods of tachycardia were
associated with moments where the privacy blind was drawn,
precluding non-contact monitoring throughout the associated
interventions. The accuracy of camera algorithms over a range of
heart rate values wider than that observed in the study cohort has
been shown in previous studies in the adult33 and the neonatal32

population. All data analysis was carried out offline and did not
affect care in real-time.
These limitations notwithstanding, our results demonstrate the

potential of non-contact continuous vital-sign monitoring over
clinically relevant time periods to allow real-time detection of
physiological deterioration.

METHODS
This was an observational study designed to evaluate the feasibility of
introducing a non-contact monitoring system into the adult ICU of the
Churchill Hospital, in Oxford, United Kingdom. The study was part of a
research initiative of the Oxford University Hospitals National Health
Service (NHS) Foundation Trust and the Oxford Biomedical Research
Centre. The research was compliant with the relevant government
regulations. Ethical approval was granted by the Wales Research Ethics
Committee 5 (Bangor) under reference number 16/WA/0024. The study
was registered in the NIHR Clinical Research Network (CRN) Portfolio under
CPMS ID 30402 (IRAS ID 182738).

Study design and protocol
Elective post-surgical patients with a planned post-operative admission to
the Oxford Churchill Hospital ICU were considered for inclusion. We aimed
to recruit 25 patients. Eligible patients were recruited from the pre-
operative assessment clinics servicing the following specialities: max-
illofacial surgery, gastrointestinal surgery, hepatobiliary surgery, renal
transplant, pancreatic transplant, urology, and gynaecology. Candidate
patients were screened by members of the clinical team against inclusion/
exclusion criteria, and eligible patients were approached for informed
consent. The exclusion criteria in Table 4 were considered.
Recording was initiated as soon as practically possible after admission

to the ICU following surgery. Each patient was monitored continuously
for up to 48 h, or until discharge from the ICU. For the duration of the
study, concurrent video and physiological data collected by the patient
monitor system used as part of routine care were recorded. Equipment
was chosen such that it would not affect the experience of the patient or
clinical staff. Vital sign estimates from the non-contact monitoring
software were computed retrospectively and were not available to
clinical staff during the study.
A privacy blind (an opaque sheet of plastic attached to a hinged fitting

of the video camera) was included. This blind could be used to obscure the
view of the patient from the video camera and thus prevent the recording
during dignity-compromising situations (such as routine hygiene). Patients
could ask for the blind to be drawn at any time. Patients, their visitors, or
staff members could also ask for the equipment to be turned off for any
reason throughout the study.
Select clinical information was documented by clinical research staff on

paper-based case report forms: patient demographics, admission
category, recording start and end times, APACHE II score61, Richmond
Agitation-Sedation Scale (RASS), Fitzpatrick score, and free-text clinical

notes. The Fitzpatrick Scale is a numerical skin classification system, from
Type I (pale white, always burns, never tans) to Type VI (darkest brown,
never burns, never tans)49.

Instrumentation. The monitoring equipment is shown in Fig. 6a. As per the
standard of care, vital-sign monitoring was provided using a IntelliVue®

MP70 patient monitor (Philips, Eindhoven, Netherlands). Using proprietary
software, reference values of HR and RR were derived at 1-s increments. HR
was derived from the single-lead ECG (sampled at 250 Hz), while RR was
derived from the bipolar IP signal collected (at 62.5 Hz) using the same set of
electrodes. Pulse rate was obtained from the photoplethysmogram (PPG)
signal acquired by a pulse oximetry Philips ® M1941A finger probe (Philips,
Eindhoven, Netherlands) and sampled at 125 Hz.
Patients were monitored using a 3.2 megapixel Point Grey Research

Grasshopper3® GS3-U3-32S4M-C monochrome camera (FLIR Instruments,
Oregon, USA). A non-polarised lens with a 12.5mm fixed focal length
and an aperture range of f/1.4-16 was attached (Goyo Optical®

GMHR412514MCN, Saitama, Japan), as well as an infrared-pass filter
(Schneider Kreuznach® 098, Germany). The imaging device was set to acquire
raw uncompressed 8-bit image data at a resolution of 1024 × 768 pixels and a
nominal sampling rate of 100 Hz. Illumination was provided using a
Metaphase® FL201-IRN-24 850 nm infrared illuminator (Metaphase, Bristol,
Pennsilvania, USA). Since 850 nm is outside the visible range, the illuminator
did not emit any noticeable glow light. The infrared illuminator powered by a
Metaphase® ULC-2 LED controller (Metaphase, Bristol, Pennsylvania, USA)
connected to a Gardasoft® CC320 sequence controller (Gardasoft, Cambridge,
UK) was strobed at 50 Hz to illuminate alternate video frames.
The equipment was designed to be non-disruptive to standard care. A

medical-grade hospital trolley was used as the basis of the non-contact
monitoring system. Patients in the ICU are accommodated on any
available bed, and so equipment needed to be mobile rather than
installed at one particular bed space. The video camera devices and the
infrared illuminator were mounted on a hospital trolley positioned at the
end of the patient’s bed, as shown in Fig. 6a. The trolley was easily
movable so it would not impede access to the patient. As is usual
practice, patients had access to a chair beside the bed, on which they
would occasionally sit. Data were captured for both locations.
All recorded video and physiological data were relayed to an 8 TB

Hewlett-Packard (HP) workstation. The workstation was replaced every
12 h with an identical one, due to the large storage requirements
(approximately 6.7 GB per minute for the digital video data). All video
data were encrypted using industry standard methods.

Data analysis
The video data were reviewed by research nurses and any privacy-
compromising sections of data were deleted. Furthermore, video data

Table 4. Participant exclusion criteria.

Exclusion criteria

Patients under the age of 18

Patients whose anatomy precludes the use of the required monitoring

Patients who were judged to lack capacity at the time of interest, e.g.
due to an illness, severe learning disability,

intoxication caused by a drug, or otherwise

Patients unable to understand written English and for whom no
translator could be found

Fig. 6 Monitoring apparatus in the Churchill Hospital ICU in
Oxford, United Kingdom. a Patient monitor at the bedside and the
non-contact vital-sign monitoring equipment at the end a patient’s
bed. b Set-up of the trolley containing the non-contact vital-sign
monitoring equipment. The components are shown in their
respective positions—(A) optical camera; (B) infrared LED source;
(C) thermal camera; (D) interface equipment; (E) workstation (in
cabinet); (F) privacy blind (folded up).
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containing individuals who had not been consented (e.g. family members,
nurses, etc.) were also removed by research nurses using a bounding box
around the patient. In instances where the patient and the non-consenting
individual could not be separated in the video frame (e.g. because they
obscured part of the view of the patient), the entire frame was deleted.
Prior to vital-sign estimation, the collected video data were analysed so

that time periods for which the privacy blind was drawn, or nurse-reviewed
frames were deleted, were discarded from the valid time available for vital-
sign estimation. The methods used to obtain non-contact estimates of vital
signs during valid time were subsequently applied.
Cardiac-synchronous and respiratory waveforms were extracted from

the video using image processing algorithms that analyse several regions
of interest across the available frame areas, such as the patient’s face or
chest. Our pipeline for video processing has been reviewed in previous
studies31–33 and so it is described here in brief.
To assess the feasibility of non-contact monitoring, the video camera-

derived estimates of both vital signals were assessed against the gold-
standard values provided by a clinical-grade patient monitor from analysis of
the physiological signals acquired at the bedside. We assessed performance
in terms of error measures, Pearson correlation, and estimated time,
expressed as a percentage of total and valid recording times.

Reference physiological values
The measurement of the physiological signals of hospital patients with
contact devices is subject to periods of artefactual noise due to factors
such as patient movement, or poor probe placement. For this reason, some
processing of the heart rate and respiratory rate values obtained from the
patient monitor is needed prior to their use as references. A gold-standard
reference of heart rate was derived based on the redundancy of vital-sign
measurements provided by the multiple sources available at the bedside.
The results of this procedure are provided as a supplemental material to
this submission.
The performance of the proposed vital-sign estimation system was

assessed over those periods for which this gold-standard was available,
referred to as valid time.

Heart rate estimation
A signal processing pipeline for the estimation of heart rate validated in
clinical studies31–33 was adopted. A PPGi signal was extracted from a grid of
ROIs defined over the available frame area. We then used tested algorithms
to assess the quality of the cardiac pulses found in each PPGi signal. For each
time window, a candidate HR value was estimated from the PPGi signal
extracted from each sub-region using both time-domain and frequency-
domain algorithms. A definitive heart rate estimate for that time window was
computed by combining the individual estimates from each of the previous
methods using a data fusion technique. Finally, the time window was shifted
by a number of PPGi samples corresponding to a time shift of 1 s, and these
steps were repeated for the new window. Therefore, heart rate estimates
were reported every second. A window length of 15 s was used.

Extraction of PPGi signal. A region of interest ROIS over the available
frame area was obtained for every image frame. A total of N= 81 sub-
regions of ROIS organised in a 9 × 9 grid over this ROI were defined. In the
few instances where the bounding box selected by the research nurses
was limited to small pixel area, a 3 × 3 grid was used instead. The average
pixel intensity over each sub-region was subsequently computed for every
image frame. Several step changes can occur during video recording. A
Bayesian change point detection algorithm was applied to 30-s running
windows with a 5-s overlap62. The resulting time series {ROIS,1, . . . , ROIS,N} is
known to contain signal components correlated with the cardiac
frequency as well as artefactual components due to noise sources, such
as motion and changes in ambient illumination. To attenuate spectral
components outside the range of physiological heart values, from 36 to
210 beats/min63, the PPGi signals were linearly detrended and a 50th order
finite-impulse response (FIR) band-pass filter with cut-off frequencies of
0.6 Hz and 3.5 Hz was applied.
The filtered fROIS;igi¼1;:::;N waveforms were then subdivided into 15-s

running windows with a time shift between consecutive windows of 1 s.
For a given time window, a set N filtered waveforms, i.e. one per each of
the N sub-regions, were available.

Estimation of heart rate from PPGi. The PPGi signals extracted for each
window were used as inputs to a heart rate estimation process reported in

earlier studies32,33. In summary, a peak and onset detection algorithm
based on Zong et al.64 and extended by Villarroel et al.32 was applied to
identify salient points in the PPGi signal. Accurate peak and onset
detection allowed beat-by-beat assessment of the pulsatile signal quality
using a signal quality index (SQI) by comparing each beat with a running
template using several metrics that measure: amplitude differences, the
occurrence of step changes, beat pulses outside the expected physiolo-
gical range and a similarity metric based on a multi-scale Dynamic Time
Warping (DTW) algorithm65.
Heart rate was computed using an autoregressive spectral analysis31.

Once candidate heart rate estimates had been computed for every 15-s
window (one from each sub-region), the heart rate estimate for a given
window was computed as the median of all the heart rate estimates from
each colour channel from the ROIS that had an associated SQI greater than
0.8. As in Villarroel et al., a Kalman filter was applied to fuse these estimates
over time based on their signal quality65, thus reducing the effects of
transient changes in pixel intensity. Fused heart rate estimates were
reported every second.

Respiratory rate estimation
During normal respiration, the contraction and relaxation of the
abdominal and intercostal muscles causes the volume of the chest
cavity to increase or decrease. The volumetric changes with airflow cause
movement of the body, principally from regions around the thorax and
diaphragm, which can be recorded by a video camera from areas of
exposed skin but also from those covered by tight-fitting or highly
patterned clothing.
This phenomenon has previously been exploited for the non-contact

continuous monitoring of respiration. Several methods have been proposed
to extract respiratory signal from the breathing-related movements of the
thorax66–68, thoracoabdominal area66,69,70, or face area71. Previous studies
have shown that respiratory signals can be detected as modulations to the
PPGi signal extracted from the subject’s skin areas32,39,72.
In this work, respiratory signals were acquired by measuring the

respiratory-induced intensity changes in multiple ROIs across the available
frame area. Respiratory rate was then computed by using data fusion
algorithms from the analysis of the signals extracted from the ROIs. This
methodology is described below. The pipeline adopted for both the
extraction of the respiratory signal and the estimation of respiratory rate
have been validated in previous clinical trials32,33.

Extraction of respiratory signal. A second region of interest (ROIT) over the
available frame area was obtained for every image frame. A total of M= 9
sub-regions organised in a 9 × 9 grid over ROIT were defined.
For every frame, {ROIT,1, . . . , ROIT,M} signals were extracted by averaging

the pixel intensity signal over each sub-region. The M signals extracted are
analogous to the {ROIS,1, . . . , ROIS,N} time series extracted in the previous
sections for heart rate estimation. The extracted signals contain both
cardiac and respiratory information. It has been shown that the relative
weight of the respiratory-to-cardiac related pulsatile components in the
extracted signal depends to a great extent on the size of the region of
interest31. In addition, the signals extracted are often contaminated by
baseline drifts and high-frequency noise70. To remove these artefacts, each
M signal was detrended and filtered using a cascade of a 8th order high-
pass IIR filter with a cut-off frequency at 0.1 Hz and an 2nd order low-pass
IIR filter with a cut-off frequency at 0.8 Hz. These filters encompass
respiratory rates values in the range of 6–48 breaths/min. Once the
{ROIT,1, . . . , ROIT,M} were processed, the resulting waveform was subdivided
into 30-s running windows with a step of 5 s between consecutive
windows. Similar to the methodology adopted for the extraction of PPGi
signals, the {Respii} respiratory waveforms obtained were used as inputs to
a respiration rate estimation block.

Estimation of respiratory rate. Our general approach to deriving
respiratory rate for each time window is as follows. The peaks and onsets
were detected using an adaptive algorithm previously described33.
For every window, a candidate respiratory rate value was computed for
each of the Respi using the autorregressive methods described for heart
rate estimation.
Respiration has been shown to be more prominent in quiet research

participants with minimal body motion. Thus, for each time window and
for each of the respiratory signal extracted, signal quality indices were
computed as detailed in the previous work33. Once both the candidate
respiratory rate and signal quality index had been estimated for all
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respiratory signals, a data fusion technique based on multiple Kalman
filters (as for heart rate estimation) was applied to combine the multiple
respiratory estimates from the same time window and produce a final
respiratory rate for each time window. Fused respiratory rate estimates
were reported every 5 s.

Localised respiration mapping
Spatial maps of respiratory signal amplitude were reported for a patient
with abnormal respiratory physiology using methods developed in33. Each
super-pixel in the maps was coloured according to the amplitude of the
respiratory signal computed from the 30 × 30 ROI centred on the super-
pixel. The resulting respiratory maps were smoothed using a 2D Gaussian
filter with a filter size of 3 × 3 (super-pixels) and a kernel width of 0.5 such
that the filter only operated on neighbouring super-pixels.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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