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abstract

Precisionmedicine is the future of health care: please watch the animation at https://vimeo.com/241154708. As
a technology-intensive and -dependent medical discipline, oncology will be at the vanguard of this impending
change. However, to bring about precision medicine, a fundamental conundrum must be solved: Human
cognitive capacity, typically constrained to five variables for decision making in the context of the increasing
number of available biomarkers and therapeutic options, is a limiting factor to the realization of precision
medicine. Given this level of complexity and the restriction of human decision making, current methods are
untenable. A solution to this challenge is multifactorial decision support systems (DSSs), continuously learning
artificial intelligence platforms that integrate all available data—clinical, imaging, biologic, genetic, cost—to
produce validated predictive models. DSSs compare the personalized probable outcomes—toxicity, tumor
control, quality of life, cost effectiveness—of various care pathway decisions to ensure optimal efficacy and
economy. DSSs can be integrated into the workflows both strategically (at the multidisciplinary tumor board level
to support treatment choice, eg, surgery or radiotherapy) and tactically (at the specialist level to support
treatment technique, eg, prostate spacer or not). In some countries, the reimbursement of certain treatments,
such as proton therapy, is already conditional on the basis that a DSS is used. DSSs have many stake-
holders—clinicians, medical directors, medical insurers, patient advocacy groups—and are a natural con-
sequence of big data in health care. Here, we provide an overview of DSSs, their challenges, opportunities, and
capacity to improve clinical decision making, with an emphasis on the utility in oncology.
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INTRODUCTION

Decision support systems (DSSs; assistive technology
for clinicians, who have limited time and are facing
ever-increasing complexity) are hailed as a possible
solution to the onerous cognitive burden currently
placed on clinicians. However, the potential of DSSs
is constrained by rapid-learning health care (RLHC;
technology for researchers to collect data across
health care networks to facilitate learning and generate
knowledge) and artificial intelligence (AI; a computa-
tional process to distil actionable insight from data).
In simple terms, RLHC can be considered a data
mine—an infrastructure from which raw material is
obtained for use. AI can be considered a data mill—an
apparatus in which raw material is refined for pur-
pose. DSSs are one of the greatest potential benefits
of a digital health care ecosystem. Nevertheless,
clinically relevant DSSs have been limited in utility
and implementation.1 This article describes the
challenge, the opportunity, and the capacity of DSSs
to advance clinical decision making, with a focus on
oncology.

THE CHALLENGE

Human Cognitive Capacity and

Increasing Complexity

The primary challenge, as a consequence of the re-
cent data deluge, is the threat of cognitive overload1; A
glut of raw data, rather than refined information,
confounds the distillation of knowledge and obfus-
cates decision making (Fig 1).2 A study to investi-
gate the limits of human cognitive capacity probed
the conceptual complexity of decision making by
requesting participants to interpret graphically dis-
played statistical interactions. In such decisions, all
independent variables had be considered together
so that decomposition into smaller subtasks was
constrained; thus, the order of the interaction directly
determined conceptual complexity. As the order of the
interaction increased, the number of variables in-
creased. Results showed a large decline in accuracy
and speed of solution from three-way to four-way in-
teractions. Furthermore, performance on a five-way
interaction was at the chance level.3 These findings
suggest that a decision based on five variables is the
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limit of human cognitive capacity. However, the human
ability to synthesize information by memory recall/experi-
ence to inform intuition is nontrivial for machines to rep-
licate/learn through data capture and should not be
overlooked. Nevertheless, this limit must be regarded in the
context of precision medicine4 (the right treatment, for the
right patient, at the right time), a bold new research effort to
revolutionize how we improve health and treat disease.5

Precision medicine relies on validated biomarkers6 (a
characteristic that is measured as an indicator of normal
biologic processes, pathogenic processes, or responses to
an exposure or intervention, including therapeutic in-
terventions7) that are integral to the routine management of
disease in patients and are used extensively in cancer
research and drug development.8 Anticancer agents are
increasingly being combined with a biomarker to determine
which patients are the most likely to benefit from the
therapy.9 This increase in complexity, coupled with the
limits of human cognitive capacity, poses a major challenge
for the oncology community.

THE OPPORTUNITY

Rapid-Learning Health Care

The threat from data deluge is simultaneously a huge
opportunity, because a data-driven RLHC ecosystem will
progressively distill and deliver appropriate knowledge to
appropriate users within the workflow process, which
provides a validated DSS. RLHC is the (re)use of health care
data from routine clinical practice and/or clinical trials to

support decision making with respect to health care de-
livery and research.10 Issues in RLHC include data rep-
resentation, standardized nomenclature, data formats and
standards, federated data access, data mining and evi-
dence synthesis approaches, evidence retrieval, reporting,
and feedback on use of evidence.11 Solutions to all of these
issues exist and have been implemented inmany industries
(eg, aviation, automotive, financial) to create global net-
works and introduce the concept of the Internet of things.12

The key to transformation of health care is strategic co-
ordination and facilitation of interoperable approaches to
fully realize the innate potential of RLHC.13 We must em-
brace this vision or risk collectively drowning in fragmented
data lakes.

The Cycle

RLHC constitutes four consecutive, infinitely repeated
steps11 that continuously develop and validate models for
DSSs in health care.14 The first step is data, which tackles
the mining of data (ie, the extraction, transformation, and
loading of data, eg, clinical, imaging, biologic, genetic,
costs). Procuring data of adequate quality is the greatest
opportunity in RLHC. The health care ecosystem must
establish a patient-centric, data-driven, knowledge-sharing
philosophy across institutional and national borders to
benefit from this opportunity. The next step is knowledge,
which uses artificial intelligence to distil knowledge from the
data (ie, extraction of actionable insight). With AI, machine-
learning algorithms analyze data and yield knowledge that
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FIG 1. Capacity versus complexity. The upsurge in data available for medical decision making threatens to overwhelm human cognitive capacity
(maximum five variables per decision).
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can support decisions about new unseen data. Algorithms
trained, tuned, and tested on retrospective/prospective
data can be used to predict the outcomes (eg, survival,
quality of life, toxicity) of various treatments on the basis
of data from a new unseen patient. The next step is ap-
plication, which leverages this knowledge to enhance
decision making. The data collected are distilled into
knowledge and applied in holistic multifactorial DSSs,
intended to support clinicians and patients as they decide
the most appropriate course of action (DSSs are neither
intended nor suited as a replacement to clinicians in the
wider health care context). DSSs must be seamlessly
integrated into the clinical workflow to improve efficiency,
diminish mistakes, and deliver objectives. The last step of
the cycle is evaluation, which measures DSS perfor-
mance (ie, the sensitivity and specificity of prediction for
toxicity, tumor control, quality of life, cost effectiveness).
The cycle is repeated perpetually. The essence of the
RLHC cycle is that the application of knowledge distilled
from data provides deep insight and therefore certainty
of decision consequences, which suggests that out-
comes can be improved both in terms of effectiveness

(realization of the desired result) and efficiency (the re-
sources required to realize the result). Continuous eval-
uation of RLHC is vital, and the importance of this cannot
be overstated. Evaluation should focus on metrics for the
questions, “Is the outcome of the treatment as predicted,
and, if so, how does this compare with consensus evidence-
based guideline knowledge?” Evaluation should be con-
ducted with (a meta-analysis of) robust high-quality data
and should be independently interpreted by relevant
stakeholders.

The Five Vs of Big Data

From a scientific perspective, the four Vs (veracity, velocity,
variety, and volume)15 of big data must to be optimized to
fully realize RLHC. The veracity of data is essential to the
level of certainty that can be attributed to the knowledge
distilled, whereas the velocity of data determines how
rapidly and continuously knowledge distillation occurs.
Variety of data (in terms of information, not format eg,
computed tomography/positron emission tomography/
magnetic resonance DICOM imaging [Digital Imaging and
Communications in Medicine; the international standard
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FIG 2. Schematic diagrams of centralized and distributed approaches. In a centralized data and learning approach, multiple centers pool their data
to enable learning, whereas, in a distributed data and learning approach, multiple centers link their systems to enable learning. A key aspect of
a distributed approach is that it is privacy-by-design construction (ie, data remains at the source), whereas a key aspect of the centralized approach
is that data can be directly accessed and scrutinized. These are the two competing tradeoffs between the approaches. DSS, decision support
system; EMR, electronic medical record; PACS, picture archiving and communication system.
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to transmit, store, retrieve, print, process, and display
medical imaging information]) enables support of decision
making (eg, if all patients are treated radically, you cannot
know which patients are overtreated). The volume of data is
influential in terms of power (ie, the quality of knowledge
distilled from investigations is correlated with the number of
patients from whom data were obtained), comprehen-
siveness (ie, a larger data volume permits the use of more
variables in the knowledge step), and exhaustiveness (ie,
knowledge related to patients with rare diseases intrinsically
requires voluminous data).

From an economic perspective, the fifth V (value) of big
data must also be considered. That is, if you are going to
invest in the infrastructure required to collect and interpret

on a system-wide scale, it is important to ensure that the
generated insights are based on accurate data and lead to
measurable improvements.

The Data Disconnect

For RLHC to succeed, data of suitable quality with respect
to the five Vs must be procured. Therefore, a motivation
exists toward embrace of a data-connected future.16,17

However, in the clinical domain, there are several estab-
lished impediments: inadequate human resources or
time, cultural and linguistic difficulties, dissimilarities in
data-recording/management methods, the academic/political
worth of data, hazards to reputation, legal/privacy de-
liberations, and more. These impediments, although difficult

DSS
Toxicity

Tumor control

Quality of life

Cost effectiveness

FIG 3. Data-to-decision. Data sources in oncology (clinical, imaging, biologic, genetic, and costs) can be used via artificial intelligence (AI) methods
in decision support systems (DSSs) to augment decision making in oncology (toxicity, tumor control, quality of life, cost effectiveness). This volume
and complexity of data overload human cognitive capacity but can be mined and distilled by AI in rapid-learning health care frameworks.

Multidisciplinary Board Specialists

FIG 4. Decision support systems integrated into the workflow. This can be accomplished both strategically (at the multidisciplinary tumor board
level to support treatment choice, eg, surgery or radiotherapy) and tactically (at the specialist level to support treatment technique, eg, prostate
spacer or not).

Walsh et al

4 © 2019 by American Society of Clinical Oncology



to overcome, are demonstrably solvable. Two outstanding
initiatives to realize the goal of RLHC are CancerLinQ (a
centralized data approach18) and worldCAT (a distributed
data approach19; Fig 2). Common efficient solutions via
innovative information communication technologies, such
as the creation of semantically interoperable data,20 which
harmonizes local terms to concepts of well-defined ontol-
ogies,21 are fundamental to the sustained realization of
RLHC. Ontology terms act as a collective reference for all
data sources, allow a unified process for knowledge distil-
lation from semantically interoperable data, and encourage
standardized data management (eg, disease-specific um-
brella protocols).22

AI

AI—the mimicking of human cognition by computers—is
a reality in medicine.23 AI is an amalgamation of mathe-
matics, computer science, and engineering that imple-
ments novel concepts to resolve complex challenges.
Machine learning is a subset of AI and has found numerous
applications in health care because of the ever-increasing
rise in health care complexity.24 Recently, deep learning25

(in turn a subset of machine learning) has substantially
enhanced state-of-the-art speech recognition, language
translation, visual object detection, and many other do-
mains, including genomics and drug discovery.26 Deep
learning discovers complex relationships in data sets
through the back-propagation algorithm to guide how
a deep neural network (a machine learning model) ought to
update its internal parameters that are activated to compute
the representation in each layer from the representation in
the previous layer. There is a growing consensus that AI
(machine learning and deep learning) will be involved more
and more in clinical decision making. Therefore, broad
implementation of AI algorithms in health care could lead to
clinically actionable insight and revolutionize how patients
are classified, treatments are developed, diseases are
studied, and decisions are made. In oncology, five data
sources and four outcomes are typically of interest (Fig 3).
To hasten the maturity of AI, clinical and research

communities must cultivate an interdisciplinary shared
vision of precision medicine. Data must be acquired,
curated, standardized, linked, and stored in interoperable
and interrogatable databases to realize the extraordinary
potential for RLHC that routine standard-of-care data
represent.

THE CAPACITY

Strategic and Tactical Implementation

DSSs can be built into the workflow strategically (multi-
disciplinary tumor board level to support treatment choice,
eg, surgery or radiotherapy) and tactically (specialist level to
support treatment technique, eg, prostate spacer or not;
Fig 4). Some nations already condition reimbursement (eg,
proton therapy in the Netherlands) on the use of DSSs.

Stakeholders

The integration of RLHC DSSs into the workflow must be
continuously (re-)evaluated by all stakeholders (Fig 5). This
evaluation should be performed with (a meta-analysis of)
robust data that are independently interpreted by each of
the stakeholders and combined into a consensus state-
ment. The guiding light for the stakeholders should be the
question, “Is the outcome of treatment as expected, and, if
so, how does this relate to consensus and/or evidence-
based guideline knowledge?”

Acceptance and Agency

For DSSs to be widely accepted, frameworks must be
created that garner trust from stakeholders.27 An important
factor for adoption of technologies is ensuring that stake-
holders are empowered (ie, the agency to inform, adjust, or
reject the DSS) and that their concerns are addressed (eg,
for clinicians and patient advocacy groups, increased
quality of care and decreased medical errors; for medical
directors and insurers, reduced costs and facilitated
reimbursement).

Perception and Provenance

The perception (understanding and inclination) of DSSs
by stakeholders is important. Stakeholders should easily

Quality of care

Facilitate reimbursement

Save costs

Decrease risk and medical error

Stakeholders

FIG 5. Decision support system (DSS) stakeholders. Clinicians, medical directors, medical insurers, and patient advocacy groups all share
common interest in the adoption, use, evaluation, and improvement of DSSs in health care.
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TABLE 1. DSSs Published

Support Cancer
No. of
Patients Result Conclusion First Author

Decoding tumor phenotype
with radiomics

Lung/
head and
neck

1,019 A large number of radiomic features have
prognostic power in independent data
sets. Radiogenomics analysis reveals
that a prognostic radiomic signature,
which captures intratumor
heterogeneity, is associated with
underlying gene-expression patterns.

These data suggest that radiomics
identifies a general prognostic
phenotype that exists in both lung
and head and neck cancer. This may
have a clinical effect, because
imaging is routinely used in clinical
practice and provides an
unprecedented opportunity to
improve decision support in cancer
treatment at low cost.

Aerts28

Patient-specific surveillance
decision making

Prostate 223 ROC curves and DCA showed that
models, including PIRADS score,
resulted in greater net benefit for almost
all of the outcomes of interest, with the
only exception of seminal vesicle
invasion.

mpMRI and PIRADS scoring are
feasible tools in clinical setting and
could be used as decision-support
systems for a more accurate
selection of patients eligible for
active surveillance.

de Cobelli29

Time-dependent estimates of
recurrence and survival for
adjuvant therapy and
oncologic outcome
assessment

Colon 5,301 The resulting classification model showed
high performance in a survival cohort.
Robust individual estimates of
recurrence and mortality were shown in
cross validation using Bayesian belief
networks.

Tumor registry data and machine-
learning produce robust classifiers.
The model can readily predict which
high-risk patients benefit from
adjuvant therapy. The model yields
individualized, clinically relevant
estimates of outcomes to assist
clinicians in treatment planning.

Steele30

Evolutionary strategy to
develop learning-based
decision systems

Breast/
liver

2,458 An appropriate hierarchy of the
component algorithms was established
on the basis of a statistically built fitness
measure. A synergetic decision-making
process, on the basis of a weighted
voting system, involved the
collaboration between the selected
algorithms to make the final decision.

The proposed method has been tested
on five medical data sets with state-
of-the-art techniques, and testing
showed its efficiency to support the
medical decision-making process.

Gorunescu 31

Patient-specific early death
and long-term survival
prediction after SRS

Brain 495 The resulting classification model predicts
early death in patients with brain
metastases with higher discriminative
performance than the existing models.

The nomograms predicted early death
and long-term survival more
accurately than commonly used
prognostic scores after SRS for
a limited number of brainmetastases
of NSCLC. Moreover, these
nomograms enable individualized
probability assessment and are easy
into use in routine clinical practice.

Zindler32

Automated classification of
lesions using deep neural
networks

Skin 129,450 The CNN achieved performance on par
with all tested experts, demonstrating
an artificial intelligence capable of
classifying skin cancer with a level of
competence comparable to
dermatologists.

Outfitted with deep neural networks,
mobile devices can potentially
extend the reach of dermatologists
outside of the clinic to potentially
provide low-cost universal access to
vital diagnostic care.

Esteva33

Patient-specific management
of disease in women with
cervical abnormalities

Cervical 2,267 The artificial neural network predicted
with higher accuracy the chances of
high-/low-grade and normal histology
than cytology with or without HPV test.

The clinical decision support systems
based on an artificial neural network
can predict with the highest
accuracy the histologic diagnosis in
women with abnormalities at
cytology compared with the use of
tests alone.

Kyrgiou34

(Continued on following page)
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comprehend the DSS and desire to use it. Typical heuristics
collected from previous implementations of AI into work-
flows from other industries can be used to develop a nu-
anced understanding of how stakeholders interact with
DSSs to refine interaction patterns and data visualization
techniques that work with stakeholders rather than replacing
or obstructing them.27 In addition, the origin of information
immensely influences perception. Stakeholders must have
sufficient transparency.

Shared Decision Making

Health care is shifting toward a more participative, patient-
centered approach—an interactive process in which
stakeholders collaborate in the selection of health care
according to the best available evidence.10 DSSs can help
patients and clinicians communicate more effectively by
providing information and a platform to encourage sub-
stantial interaction. DSSs can help patients recognize and
clarify their personal values without promotion of one
choice over another. This will genuinely deliver personal-
ized and participative therapy that supports both clinicians
and patients.

Translational Potential of DSSs

In the past 5 years (as a result of advances in hardware and
software), DSS research has advanced dramatically, which
has revealed the potential of this approach to substantially
improve clinical care. The information presented in Table 1
provides a nonexhaustive overview of the literature.

DISCUSSION

Human intelligence is vastly superior to AI in general terms
(contextualization, association, and reasoning). AI has yet
to mature, so DSSs foreseeably will be appropriate for
specific tasks only. The role of clinicians will adapt (similar
to pilots) as they ally with DSSs, provide expert knowledge,
annotate data, and manage performance/efficacy. The
users of DSSs must comprehend the benefits and risks.
AI can be powerful (ie, automatic detection, localization,
classification, interpretation, recommendation, reporting)

but also fallible (ie, support of improper decisions caused
by presentation of data beyond the training/tuning/test-
ing). Consider the following example: A DSS performs
flawlessly after deployment. The department later up-
grades hardware and software; what safeguards exist to
ensure that the AI does not subsequently produce erro-
neous assistance, and who is responsible for this?36

Another issue is the absence of human intuition about
how specific decisions are determined by AI, which leads
to unease among many with some declarations that AI is
a black box. (However, tools like TensorBoard for Ten-
sorFlow37 exist to provide transparency.) This deficiency
of comprehension hinders adoption by various stake-
holders concerned with the ethical/responsible clinical
utility of DSSs. To mitigate this, clinicians must actively
engage with researchers (academic and industrial) to
ensure that the solutions developed yield maximum
clinical benefit. Residency programs must adopt AI into
curriculums. Clinicians and researchers must work with
policymakers on the complexities of DSSs and the con-
sequences of errors (clinical and legal). From a regulatory
perspective, despite the perplexity, approval of DSSs by
the US Food and Drug Administration and notified bodies
within the European Union is happening, notwithstanding
the ambiguous working mechanisms. Precedent and
parallels to this approach are found in pharmacology:
many safe and effective approved drugs have unknown
mechanisms of action.38

The limit of human cognitive capacity constrains the re-
alization of precision medicine. However, the combination
of RLHC and AI to produce DSSs represents a profound
opportunity to make precision medicine a reality. DSSs will
form part of the future infrastructure and workflow of on-
cology and will compare the personalized probable
outcomes—toxicity, tumor control, quality of life, cost
effectiveness—of various care pathway decisions to ensure
optimal efficacy and economy. DSSs will strategically and
tactically aid all stakeholders.

TABLE 1. DSSs Published (Continued)

Support Cancer
No. of
Patients Result Conclusion First Author

Pathologic upstaging and
oncologic outcomes

Bladder 1,964 The cross-validated decision tree resulted
in three risk groups with greatly varied
probabilities of recurrence-free and
overall survivals, which enabled
identification of appropriate candidates
for neoadjuvant chemotherapy.

Hydronephrosis, tumor growth pattern,
deep muscle involvement, and age
can collectively identify patients with
bladder cancer who have varying
risks of pathologic upstaging. Such
categorization using a visually
intuitive model can facilitate clinical
decision making with respect to
neoadjuvant therapy in these
patients.

Mitra35

Abbreviations: CNN, convolutional neural network; DCA, decision curve analysis; DSS, decision support system; HPV, human papillomavirus; mpMRI,
multiparametric magnetic resonance imaging; NSCLC, non–small-cell lung cancer; PIRADS, Prostate Imaging Reporting and Data System; ROC, receiver
operating characteristic: SRS, stereotactic radiosurgery.
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9. Vivot A, Boutron I, Béraud-Chaulet G, et al: Evidence for treatment-by-biomarker interaction for FDA-approved oncology drugs with required pharmacogenomic
biomarker testing. Sci Rep 7:6882, 2017

10. Lambin P, Zindler J, Vanneste BGL, et al: Decision support systems for personalized and participative radiation oncology. Adv Drug Deliv Rev 109:131-153,
2017

11. Abernethy AP, Etheredge LM, Ganz PA, et al: Rapid-learning system for cancer care. J Clin Oncol 28:4268-4274, 2010

12. Bandyopadhyay D, Sen J: Internet of things: Applications and challenges in technology and standardization. Wirel Pers Commun 58:49-69, 2011

13. Lambin P, Zindler J, Vanneste B, et al: Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement
traditional evidence-based medicine. Acta Oncol 54:1289-1300, 2015

14. Lambin P, van Stiphout RGPM, Starmans MHW, et al: Predicting outcomes in radiation oncology: Multifactorial decision support systems. Nat Rev Clin Oncol
10:27-40, 2013

15. Lustberg T, van Soest J, Jochems A, et al: Big data in radiation therapy: Challenges and opportunities. Br J Radiol 90:20160689, 2017

16. Deasy JO, Bentzen SM, Jackson A, et al: Improving normal tissue complication probability models: The need to adopt a “data-pooling” culture. Int J Radiat
Oncol Biol Phys 76:S151-S154, 2010

17. Skripcak T, Belka C, Bosch W, et al: Creating a data exchange strategy for radiotherapy research: Towards federated databases and anonymised public
datasets. Radiother Oncol 113:303-309, 2014

18. Schilsky RL, Michels DL, Kearbey AH, et al: Building a rapid learning health care system for oncology: The regulatory framework of CancerLinQ. J Clin Oncol
32:2373-2379, 2014

19. Deist TM, Jochems A, van Soest J, et al: Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care:
euroCAT. Clin Transl Radiat Oncol 4:24-31, 2017

20. Benedict SH, Hoffman K, Martel MK, et al: Overview of the American Society for Radiation Oncology—National Institutes of Health—American Association of
Physicists in Medicine Workshop 2015: Exploring opportunities for radiation oncology in the era of big data. Int J Radiat Oncol Biol Phys 95:873-879, 2016

Walsh et al

8 © 2019 by American Society of Clinical Oncology

http://www.asco.org/rwc
http://www.ascopubs.org/jco/site/ifc


21. Bibault J-E, Giraud P, Burgun A: Big Data and machine learning in radiation oncology: State of the art and future prospects. Cancer Lett 382:110-117, 2016

22. Meldolesi E, van Soest J, Dinapoli N, et al: An umbrella protocol for standardized data collection (SDC) in rectal cancer: a prospective uniform naming and
procedure convention to support personalized medicine. Radiother Oncol 112:59-62, 2014

23. Beam AL, Kohane IS: Translating artificial intelligence into clinical care. JAMA 316:2368-2369, 2016

24. Deo RC: Machine learning in medicine. Circulation 132:1920-1930, 2015

25. Hinton GE, Osindero S, Teh Y-W: A fast learning algorithm for deep belief nets. Neural Comput 18:1527-1554, 2006

26. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 521:436-444, 2015

27. Shaikh FA, Kolowitz BJ, Awan O, et al: Technical challenges in the clinical application of radiomics. JCO Clin Cancer Inform doi:10.1200/CCI.17.00004

28. Aerts HJWL, Velazquez ER, Leijenaar RTH, et al: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun
5:4006, 2014

29. de Cobelli O, Terracciano D, Tagliabue E, et al: Predicting pathological features at radical prostatectomy in patients with prostate cancer eligible for active
surveillance by multiparametric magnetic resonance imaging. PLoS One 10:e0139696, 2015

30. Steele SR, Bilchik A, Johnson EK, et al: Time-dependent estimates of recurrence and survival in colon cancer: Clinical decision support system tool de-
velopment for adjuvant therapy and oncological outcome assessment. Am Surg 80:441-453, 2014

31. Gorunescu F, Belciug S: Evolutionary strategy to develop learning-based decision systems: Application to breast cancer and liver fibrosis stadialization.
J Biomed Inform 49:112-118, 2014

32. Zindler JD, Jochems A, Lagerwaard FJ, et al: Individualized early death and long-term survival prediction after stereotactic radiosurgery for brain metastases of
non–small-cell lung cancer: Two externally validated nomograms. Radiother Oncol 123:189-194, 2017

33. Esteva A, Kuprel B, Novoa R, et al: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115-118, 2017 10.1038/
nature21056

34. Kyrgiou M, Pouliakis A, Panayiotides JG, et al: Personalised management of women with cervical abnormalities using a clinical decision support scoring system.
Gynecol Oncol 141:29-35, 2016

35. Mitra AP, Skinner EC, Miranda G, et al: A precystectomy decision model to predict pathological upstaging and oncological outcomes in clinical stage T2 bladder
cancer. BJU Int 111:240-248, 2013
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