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Abstract

Background: Lung cancer is the number one cancer killer in the world with more
than 142,670 deaths estimated in the United States alone in the year 2019.
Consequently, there is an overreaching need to identify the key biomarkers for lung
cancer. The aim of this study is to computationally identify biomarker genes for lung
cancer that can aid in its diagnosis and treatment. The gene expression profiles of
two different types of studies, namely non-treatment and treatment, are considered
for discovering biomarker genes. In non-treatment studies healthy samples are
control and cancer samples are cases. Whereas, in treatment studies, controls are
cancer cell lines without treatment and cases are cancer cell lines with treatment.

Results: The Differentially Expressed Genes (DEGs) for lung cancer were isolated
from Gene Expression Omnibus (GEO) database using R software tool GEO2R. A total
of 407 DEGs (254 upregulated and 153 downregulated) from non-treatment studies
and 547 DEGs (133 upregulated and 414 downregulated) from treatment studies
were isolated. Two Cytoscape apps, namely, CytoHubba and MCODE, were used for
identifying biomarker genes from functional networks developed using DEG genes.
This study discovered two distinct sets of biomarker genes – one from non-
treatment studies and the other from treatment studies, each set containing 16
genes. Survival analysis results show that most non-treatment biomarker genes have
prognostic capability by indicating low-expression groups have higher chance of
survival compare to high-expression groups. Whereas, most treatment biomarkers
have prognostic capability by indicating high-expression groups have higher chance
of survival compare to low-expression groups.
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Conclusion: A computational framework is developed to identify biomarker genes
for lung cancer using gene expression profiles. Two different types of studies – non-
treatment and treatment – are considered for experiment. Most of the biomarker
genes from non-treatment studies are part of mitosis and play vital role in DNA repair
and cell-cycle regulation. Whereas, most of the biomarker genes from treatment
studies are associated to ubiquitination and cellular response to stress. This study
discovered a list of biomarkers, which would help experimental scientists to design a
lab experiment for further exploration of detail dynamics of lung cancer
development.

Keywords: Bioinformatics, Computational identification of biomarker, Lung cancer
biomarkers, Non-treatment studies, Treatment studies

Background
Lung cancer is the number one cancer killer in the world with more than 142,670

deaths estimated in the United States alone in the year 2019 [1]. Lung cancer is also

the second most common cancer in the world. It is broadly classified into two categor-

ies - Non-Small Cell Lung Carcinoma (NSCLC) consisting of 80% of all lung cancer

cases and Small Cell Lung Carcinoma (SCLC) recorded in 20% of all lung cancers [2].

The NSCLC is further divided into Adenocarcinoma (40%), Squamous Cell Carcinoma

(27%) and large cell carcinoma (8%) [3]. Lung cancer has a low 5-year survival rate of

18% [4]. The low survival rate of lung cancer is due to late diagnosis and relapse of lung

cancer after treatment [5]. The late diagnosis plays a significant role in the survival of

patients. So, new methods for screening and diagnosis of lung cancer patients which

would improve the prognosis need to be developed. The advancement in research and

technology has been slowly shifting the focus of lung cancer diagnosis, prognosis and

treatment towards understanding the underlying cause of disease progression using

protein-protein interaction (PPI) networks, gene co-expression networks and molecular

pathways. Though the PPI and co-expression networks are static in nature, these come

with rich information about the dynamic processes such as behavior of genetic net-

works in response to DNA damage [6], prediction of protein subcellular localization

[7–12], protein function [13], genetic interaction [14], process of aging [15], and pro-

tein network biomarkers [16–22]. The networks are of special interest because the

genes do not act alone. They act as a group to achieve a collective goal. In their recent

work, Mondal et al. [19] showed that proteins or genes achieved their collective goals

by forming clique-like and bipartite graphs, which could be the building blocks for dis-

ease initiation and progression. Using these building blocks, Tanvir et al. [20] discov-

ered network modules related to cancers from gene co-expression networks. These

literatures suggest that network modules do correlate to specific functions. These moti-

vates us to discover biomarker genes using network-based apps, Cytohubba [23] and

MCODE (Molecular Complex Detection) [24], which are two plugins of Cytoscape

[25]. This work is the extended version of our previous work [26], which used only

three of twelve algorithms available in Cytohubba to discover the biomarker genes. In

the present work, all of twelve algorithms in Cytohubba along with another Cytoscape

app, MCODE, are used to discover the biomarker genes.
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In this study, first, DEGs are identified from GEO database using GEO2R tools [27].

Second, a functional network is created with these DEG genes using Cytoscape plugin

ReactomeFI [28]. Third, hub genes are identified from this network using twelve differ-

ent graph-theoretic algorithms available in Cytohubba, which is another Cytoscape app.

Fourth, cluster of genes are isolated from the functional network using MCODE, which

is also a Cytoscape app. The common genes isolated using Cytohubba and MCODE are

considered as the probable biomarker genes for lung cancer.

Dataset preparation
Data collection and cleaning

The gene expression data for lung cancer was collected from GEO database [27]. It

provides genome-wide gene expression profiles including DEGs. Figure 1 shows the

cleaning and identification of top 250 DEGs that could be probable biomarkers.

Querying GEO database with phrase “lung cancer” retrieved 1,050,133 gene expres-

sion (GE) profiles. Using the GEO built-in filter “up/down genes”, the retrieved GE pro-

files are reduced to 16,876 genes, which are all the DEGs based on GEO filter. The

retrieved DEGs were downloaded as a text file, in which each GE profile consists of six

lines of record.

Fig. 1 Data cleaning and identification of top 250 DEGs
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A PERL script was used to obtain five important features for each DEG - Gene

Symbol, GDS number (study the gene belongs to), organism’s name, and the number of

samples used for the study. This intermediate data was stored in column format. From

this data, we discovered that the retrieved 16,876 DEGs belong to 27 unique studies.

The scope of the present work is to consider the studies with treatment and non-

treatment. Upon using manual filtering - reading the title and abstract of the main pub-

lications resulted from these 27 studies - we discovered that only 3 of these studies are

non-treatment (GDS1312, GDS4794 and GDS5201) and 2 are treatment (GDS1204 and

GDS2499).

In study GDS1204, the lung cancer cell line, A549, is treated with chemotherapeutic

drug motexafin gadolinium (MGd) [29]. Three samples are examined at 4, 12, and 24 h

following treatment, thus the study consists of 9 control and 9 case samples. In study

GDS2499 [30], A549 lung cancer cell lines are treated with two doses of anti-cancer

agent sapphyrin PCI-2050 and one dose of transcription inhibitor actinomycin D. The

controls are prepared by treating A549 cell lines with mannitol. In each experiment 3

samples are used. This study will provide two sets of DEGs – a) By comparing two

doses (applied to 3 samples for each dose, a total of 6 cases) of anti-cancer agent sap-

phyrin PCI-2050 with 3 control samples; b) By comparing 3 samples with one dose of

actinomycin D with 3 control samples.

Two of the non-treatment studies are based on human genome (GDS1312 and

GDS4794) and the other is based on mouse genome (GDS5201). In study GDS1312, ex-

pression profiling of squamous lung cancer biopsy specimens and paired normal speci-

mens from 5 patients are conducted [31]. The study GDS4794 provides expression

profiles of 23 clinical small cell lung cancer (SCLC) samples from patients under-

going pulmonary resection and 42 normal tissue samples from different organs in-

cluding the lung [32]. In study GDS5201, expression profiles of two mice samples

are generated at three genomic variations – normal lung, lung tumor with

KrasG12D single mutant, and lung tumor with LSL-KrasG12D double mutant [33].

This study provides one set of DEGs by comparing 4 lung tumor cases with 2 nor-

mal lung controls.

Table 1 shows the summary of these 5 datasets including number of case and

control. The non-treatment studies are those in which controls are normal samples

and cases are cancer patients. Whereas, in treatment studies, both control and case

samples are cancer cell lines; samples before treatment are controls and after treat-

ment are cases.

Table 1 Summary of expression profile studies for lung cancer. GDS1204 and GDS2499 are
treatment studies and the others are non-treatment studies

Study Data Type #Samples #Control #Case Cancer Type Treatment Reference

GDS1204 Microarray 18 9 9 A549 Cell Line Yes [29]

GDS1312 Microarray 10 5 5 Squamous Cell No [31]

GDS2499 Microarray 12 3 9 A549 Cell Line Yes [30]

GDS4794 Microarray 65 42 23 Small Cell No [32]

GDS5201 Microarray 6 2 4 Mouse Model No [33]
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Isolating top 250 differentially expressed genes

After identifying the non-treatment and treatment studies, GEO2R, a LIMMA R pack-

age in GEO database, was used to isolate top 250 DEGs from each study. The cutoff

criteria used were P-value < 0.05 and absolute log2 Fold Change (FC) > 1. Benjamini &

Hochberg (False Discovery Rate) method was used for adjusting P-values. The duplicate

DEGs and DEGs with missing symbols were removed from the top 250 DEGs. Finally,

a total of 407 DEGs (254 upregulated and 153 downregulated) were discovered from

non-treatment studies. Similarly, a total of 547 DEGs (133 upregulated and 414 down-

regulated) were discovered from treatment studies. There is no common DEGs be-

tween non-treatment and treatment studies.

Methodology
Figure 2 shows the overview of data analysis methodology including i) constructing

functional protein network, ii) discovering biomarker genes using Cytohubba and

MCODE, iii) functional and pathway analysis of biomarker genes, and iv) survival ana-

lysis using biomarker genes.

Constructing functional protein network

A Cytoscape app, ReactomeFI [28] was used to create two functional protein networks

– one consists of non-treatment DEGs and the other consists of treatment DEGs. The

resulting two networks have a smaller number of nodes than the original lists, 166 for

non-treatment and 260 for treatment, since all DEGs are not functionally related or

their functional relation has not yet been discovered. The functional relationship

Fig. 2 Overview of data analysis methodology
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between DEGs was based on Reactome database [34]. These networks were further an-

alyzed to discover probable gene biomarkers using two Cytoscape apps, CytoHubba

and MCODE.

Discovering biomarker genes

The Cytoscape app MCODE [24] was used to find clusters in Non-treatment and

Treatment networks constructed above. The default parameters in MCODE (Degree

cutoff = 2, Node score cutoff ≥0.2, K-core ≥2 and Max depth from seed = 100) were

used for finding the clusters. Another Cytoscape app, CytoHubba [23] was used to find

hub genes from the non-treatment and treatment networks. Hub genes are highly con-

nected nodes in the network. The gene network was analyzed using 12 scoring methods

available in Cytohubba - betweenness, bottleneck, closeness, clustering coefficient (CC),

degree, density of maximum neighborhood component (DMNC), eccentricity (EcC),

edge percolated component (EPC), maximal clique centrality (MCC), maximum neigh-

borhood component (MNC), radiality and stress. The top ten genes from each of these

methods were isolated. Any gene that is common in at least two scoring methods of

Cytohubba and is also present in any of MCODE clusters was considered as a bio-

marker gene.

Pathway and GO enrichment analysis

A software package, GSEApy (Gene Set Enrichment Analysis in Python) was used for

pathway and GO (Gene Ontology) terms enrichment analysis of biomarker genes. GSE-

Apy is a python wrapper for Enrichr [35] and GSEA (Gene Set Enrichment Analysis)

[36]. The analysis was implemented in python 3.7.3 using gseapy package 0.9.5. The ad-

justed p-value < 0.05 and Benjamini & Hochberg correction for multiple testing was

used as statistical measure. The pathway analysis was performed using Enrichr ‘KEGG_

2019_Human’ library. The enrichr libraries used for GO enrichment are – ‘GO_Bio-

logical_Process_2018’, ‘GO_Cellular_Component_2018’ and ‘GO_Molecular_Function_

2018’.

Survival analysis

The survival analysis was performed using online tool Kaplan Meier-Plotter [37]. There

are 14 datasets, 12 are collected from GEO database, and the rest two are collected

from Cancer Biomedical Informatics Grid (caBIG) and The Cancer Genome Atlas

(TCGA). There are a total of 1926 lung cancer samples if the default parameters are

chosen. The tool has an option to input either one or multiple genes of interest, then

select the factor to split the patients into two groups, such as median (set as default),

lower quartile, upper quartile and so on. For the present study, patients with expression

value for a gene above the median are included in high-expression group and below

the median are included in low-expression group. This system incorporates Kaplan

Meier, Logrank method and univariate and multivariate Cox Regression, which are one

of the common methods in survival analysis. There are options to restrict the survival

analysis based on certain criteria such as histology, stage, grade, gender, surgery suc-

cess, chemotherapy, radiotherapy.
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In the present study, all the samples available (1926) in KM-Plotter was used for sur-

vival analysis. However, the number of samples will vary for each gene as only the sam-

ples which are relevant to the gene being assessed is used for the analysis [37]. The

default parameters were used, meaning, the samples were not restricted based on treat-

ment types or subtypes of cancer. The survival analysis is used to check the prognostic

capability of each of the biomarker genes in differentiating between low and high ex-

pression groups. For certain genes, more than one probes are available. Without loss of

generality, first available probe was used for the present study. FLog.

Results
Functionally interacting protein networks

The functionally interacting protein network constructed using non-treatment DEGs

has 166 genes and 534 interactions as shown in Fig. 3. Two hundred forty-one out of

407 DEGs for non-treatment studies do not have any functional interaction based on

Reactome database. So, they are not included in the network. The reason might be that

those genes are not related to any pathways or they are yet to be determined whether

they belong to any pathway or not. Further study is required to position those genes on

appropriate pathways. Similarly, only 260 out of 547 DEGs are found in Reactome data-

base with 648 functional interaction for treatment studies.

Biomarker genes

Two Cytoscape apps, CytoHubba and MCODE are used to isolate the biomarker genes

from the functional networks. Figure 4 shows the top 10 hub genes highlighted in non-

treatment network based on the scoring method “Degree” in CytoHubba. The list of

Fig. 3 Functionally interacting protein network of non-treatment DEGs created using ReactomeFI
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hub genes discovered using 12 scoring methods in CytoHubba from non-treatment and

treatment studies are shown in Tables 1 and 2 of Additional File 1.

The app MCODE was used to extract the clusters of genes (probable biomarkers)

from the functional networks. A total of 8 and 10 clusters were extracted from non-

treatment and treatment networks respectively. The complete list of MCODE clusters

with their score, number of nodes and edges is available in Tables 1 and 2 of

Additional File 2.

Any gene common between at least two scoring methods and presents in at least one

of the MCODE clusters was considered to be a biomarker gene. A total of 32 bio-

marker genes - 16 from non-treatment studies and 16 from treatment studies - were

discovered in this study.

Tables 2 and 3 show biomarker genes along with their regulation and description in

non-treatment and treatment studies respectively. There are no biomarker gene in

common between non-treatment and treatment studies.

Enriched GO terms and pathways

The biomarker genes of non-treatment and treatment studies were analyzed for

enriched pathways and GO terms using GSEApy.

Non-Treatment Studies: The GO terms enriched with biomarker genes from non-

treatment studies are shown in Table 1 of Additional File 3. The significantly enriched

biological processes are- regulation of mitotic cell cycle phase transition, metaphase

plate congression, negative regulation of ubiquitin-protein ligase activity involved in mi-

totic cell cycle, regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle, positive regulation of ubiquitin-protein ligase activity involved in regulation in

Fig. 4 Top 10 hub genes highlighted in non-treatment network. These hub genes are identified using
scoring method “Degree” in Cytohubba. The node with dark red represents the highest rank while the
node with light yellow represents the lowest rank
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mitotic cell cycle, negative regulation of ubiquitin protein ligase activity, anaphase-

promoting complex-dependent catabolic process, positive regulation of ubiquitin pro-

tein ligase activity, mitotic sister chromatid segregation and positive regulation of pro-

tein ubiquitination involved in ubiquitin-dependent protein catabolic process. The

significantly enriched cellular components are- spindle, chromosome, centromeric re-

gion, chromosomal region, spindle microtubule, nuclear chromosome part, kinetochore

Table 2 The biomarker genes discovered from non-treatment studies along with their regulation
and description

Gene Regulation Description

BUB3 UP BUB3 mitotic checkpoint protein

CCNB1 UP Cyclin B1

CCNB2 DOWN Cyclin B2

CDC20 DOWN Cell division cycle 20

CDCA8 DOWN Cell division cycle associated 8

CDK1 DOWN Cyclin-dependent kinase 1

CENPF UP Centromere Protein F

CENPI UP Centromere Protein I

KIF18A UP Kinesin Family Member 18A

KNTC1 UP Kinetochore Associated 1

MAD2L1 UP MAD2 mitotic arrest deficient like 1

NDC80 UP NDC80 Kinetochore Complex Component

NUP37 DOWN Nucleoporing 37 kDa

PCNA UP Proliferating Cell Nuclear Antigen

RAD21 UP RAD21 homolog

ZWINT UP ZW10 Interacting Kinetochore Protein

Table 3 The biomarker genes discovered from treatment studies along with their regulation and
description

Gene Regulation Description

CEBPB DOWN CCAAT/enhancer binding protein beta

FBXL14 DOWN F-box and leucine rich repeat protein 14

FBXL3 DOWN F-box and leucine rich repeat protein 3

FBXO30 DOWN F-box protein 30

FBXO9 DOWN F-Box protein 9

FOXA1 DOWN Forkhead box A1

FOXA2 DOWN Forkhead box A2

JUN UP Jun proto-oncogene AP-1 transcription factor subunit

JUND DOWN JunD proto-oncogene, AP-1 transcription factor subunit

MAPK8 UP Mitogen activated protein kinase 8

MYC DOWN V-myc avian myelocytomatosis viral oncogene homolog

MYLIP DOWN Myosin regulatory light chain interacting protein

NFE2L2 DOWN Nuclear factor, erythroid 2 like 2

RNF19A DOWN Ring finger protein 19A, RBR E3 ubiquitin protein ligase

RNF217 DOWN Ring finger protein 217

UBC DOWN Ubiquitin C
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microtubule, centrosome, condensed nuclear chromosome kinetochore, microtubule

organizing center and mitotic spindle. The significantly enriched molecular functions

are- cyclin dependent protein serine/threonine kinase activity and cyclin dependent

protein kinase activity. The KEGG pathways enriched with biomarker genes from non-

treatment studies are shown in Table 1 of Additional File 4. The significantly enriched

KEGG pathways are- cell cycle, oocyte meiosis, progesterone-mediated oocyte matur-

ation, human T-cell leukemia virus infection, p53 signaling pathway, cellular senes-

cence, human immunodeficiency virus 1 infection, FoxO signaling pathway, viral

carcinogenesis and mismatch repair.

Treatment Studies: The GO terms enriched with biomarker genes from treatment

studies are shown in Table 2 of Additional File 3. The significantly enriched bio-

logical process are – protein polyubiquitination, protein ubiquitination, positive

regulation of transcription from RNA polymerase II promoter, ubiquitin-

dependent protein catabolic process, positive regulation of transcription DNA

templated, positive regulation of apoptotic process, response to cytokine, regula-

tion of transcription from RNA polymerase II promoter, protein modification by

small protein conjugation, and cellular response to reactive oxygen species. The

significantly enriched cellular components are RNA polymerase II transcription

factor complex, SCF ubiquitin ligase complex, nuclear chromatin, chromatin, nu-

clear chromosome part, cullin-RING ubiquitin ligase complex, nuclear euchroma-

tin, euchromatin, nuclear chromosome, and centrosome. The significantly

enriched molecular functions are –ubiquitin-protein transferase activity, tran-

scription regulatory region DNA binding, regulatory region binding, activating

transcription factor binding, RNA polymerase II regulatory region sequence-

specific DNA binding, DNA binding, RNA polymerase II core promoter proximal

region sequence-specific DNA binding, transcription factor activity, and ubiquitin

conjugating enzyme binding. The KEGG pathways enriched with biomarker genes

from treatment studies are shown in Table 2 of Additional File 4. The signifi-

cantly enriched KEGG pathways are IL-17 signaling pathway, ErbB signaling

pathway, colorectal cancer, MAPK signaling pathway, TNF signaling pathway,

osteoclast differentiation, fluid shear stress and atherosclerosis, WNT signaling

pathway, Hepatitis B and Kaposi sarcoma-associated herpesvirus infection. Figure 5

Fig. 5 Pathway enrichment analysis of non-treatment and treatment biomarker genes. The
significantly enriched KEGG pathways. Each point represents a pathway. Ratio of enrichment is the
number of observed genes in that pathway divided by the total number of expected genes from
each KEGG pathway
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shows the pathways enriched with biomarker genes from both non-treatment and

treatment studies respectively.

Survival analysis results

Figure 6 presents the survival analysis results of two non-treament biomarkers (CCNB2

and CDC20) and two treatment biomarkers (FBXL3 and FOXA2). It is clear from this

figure that the hazard ratio, HR > 1 for the two non-treament biomakers, which means

that low expression group has higher chance of survival compare to high expression

group. On the other hand, HR < 1 for two treatment biomarkers, which means that

high expression group has higher chance of survival compare to low expression group.

The results of complete survival analysis using each of 16 non-treatment biomarker

genes are shown in Fig. 1 of Additional File 5. Similarly, Fig. 2 of Additional File 5

shows the survival analysis using 16 treatment biomarker genes. In case of non-

treatment studies, 2 biomarkers (CDK1 and PCNA) out of 16, do not have prognostic

capability of differentiating between high-expression and low-expression groups of can-

cer patients, meaning hazard ratio is close to 1 (HR ≈1); 2 biomarkers (BUB3 and

RAD21) show that high-expression groups have higher chance of survival (HR <1); and

Fig. 6 Survival analysis of non-treatment and treatment biomarker genes. a) CCNB2 and b) CDC20 are
biomarker genes for non-treatment studies. Both genes have HR > 1, which indicates that low expression
group has higher chance of survival. c) FBXL3 and d) FOXA2 are biomarker genes for treatment studies.
Both genes have HR < 1, which indicates that high expression group has higher chance of survival

Page 11 of 19Maharjan et al. BMC Bioinformatics 2020, 21(Suppl 9): 218



the remaining 12 biomakers show that low-expression groups have higher chance of

survival (HR >1).

In case of treatment studies, 2 biomarkers (FOXA1 and JUND) out of 16, do not have

prognostic capability of differentiating between high-expression and low-expression

groups of cancer patients, meaning hazard ratio is close to 1 (HR ≈1); 3 biomarkers

(CEBPB, MYC and UBC) show that low-expression groups have higher chance of sur-

vival (HR >1); and the remaining 11 biomakers show that high-expression groups have

higher chance of survival (HR <1).

It can be conlcuded that most of the non-treatment biomarker genes (12 out of 16)

have prognostic capability by indicating that low-expression groups have higher chance

of survival compare to high-expression groups (HR >1). On the other hand, most of

the treament biomarker genes (11 out of 16) have prognostic capability by indicating

that high-expression groups have higher chance of survival compare to low-expression

groups (HR <1). The opposite prognostic characteristics of biomarker genes discovered

from non-treatment and treatment studies are expected since in non-treatment studies,

controls are healthy samples and cases are cancer patients; whereas, in treatment stud-

ies, controls are cancer cell lines without treament and cases are cancer cell lines with

treament.

Discovery of biomarker genes in a nutshell

Table 4 shows the granularity of discovered DEGs at different level of analysis. The

GEO built-in filter (up/down genes) retrieved a total of 16,876 DEGs for lung cancer

considering all the studies available in GEO database. Based on the five studies (3 non-

treatment and 2 treatment) considered in this work, GEO2R tools isolated 407 non-

treatment and 547 treatment DEGs. There were 166 non-treatment DEGs and 260

treatment DEGs connected in functional networks based on ReactomeFI database.

The 12 scoring methods (algorithms) in Cytohubba were used to find top 10 hub

genes from non-treatment and treatment networks. The combined lists of hub genes

for non-treatment and treatment studies are 38 and 51 respectively. Hub genes com-

mon in at least two scoring methods were selected as probable biomarkers. This

Table 4 Level of granularity of number of DEGs in different steps of analysis. Each row represents
a step of analysis. The second from the last row represents the number of biomarker genes
discovered from non-treatment and treatment studies. The last row shows the number of
biomarker genes that could be used to design a lab experiment for further exploration of
dynamics in lung cancer development

Tools/Analysis Number of DEGs

Non-Treatment Treatment

GEO Built-in Filter 16,876

GEO2R 407 547

ReactomeFI 166 260

Cytohubba 38 51

Hub genes (Common in two algorithms) 21 24

MCODE (Genes present in clusters) 63 55

Biomarkers (Common in Hub and MCODE) 16 16

Survival Analysis 14 14
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resulted in a total of 21 and 24 hub genes for non-treatment and treatment studies re-

spectively. The App, MCODE was used to find clusters in non-treatment and treatment

protein networks. There was a total of 8 clusters consisting of 63 genes from non-

treatment network and 10 clusters consisting of 55 genes from treatment network. The

genes in common between hub genes and MCODE clusters are considered as the bio-

marker genes. There were 16 biomarker genes from each of non-treatment and treat-

ment studies with no overlap between the two groups. Finally, based on survival

analysis, 14 biomarker genes from each of non-treatment and treatment studies have

prognostic capability of differentiating between low-expression and high-expression

groups of cancer patients. These final lists of biomarkers can be used to design a lab

experiment for further exploration of dynamics in lung cancer development.

Discussion
Of enormous scientific interest has been the discovery of somatic driver mutations in

this malignancy, with up to 10 and 4% of non-small cell lung cancers carrying epider-

mal growth factor receptor mutations and ALK translocations, respectively. The use of

tyrosine kinase inhibitors targeting these subpopulations have resulted in significant

gains in antitumor responses, progression free survival, overall survival and quality of

life shifting patterns of clinical practice [38–41]. More recently, another modality of

therapy, inhibition of immune checkpoints such as programmed cell death-1 (PD-1)

and programmed cell death ligand-1 (PD-L1) has been also shown to benefit patients

with lung cancer. Despite the significant survival benefit for some patients with ad-

vanced NSCLC, the objective response rates (ORRs) remain relatively low (20–30%)

with a large proportion of patients demonstrating primary resistance [42–44]. However,

the low survival rate of lung cancer patients indicates the need for better cancer diag-

nosis and treatment approaches. The reasons behind low survival of lung cancer pa-

tients is the late diagnosis and resistance to chemotherapeutic drugs. There is a need

for better therapeutic measures and diagnostic approaches for improving the quality of

life and survival of patients. The advancement in biotechnological tools and bioinfor-

matics has changed the course of lung cancer research towards identifying underlying

causes of cancer such as molecular pathways and biomarkers. This study used gene ex-

pression profiles from GEO datasets to identify DEGs based on two study groups -

Non-treatment (healthy samples as control and lung cancer patients as case) and Treat-

ment (lung cancer cell lines without treatment as control and lung cancer cell lines

treated with therapeutic drugs as case). Cytoscape apps, Cytohubba and MCODE were

used to identify probable biomarker genes from non-treatment and treatment studies

which could be diagnostic or therapeutic biomarkers for lung cancer. The following

subsections discuss the roles of discovered biomarkers in lung cancer.

Literatures supporting non-treatment biomarker genes

This section discusses the roles of 16 biomarker genes - BUB3, CCNB1, CCNB2,

CDC20, CDCA8, CDK1, CENPF, CENPI, KIF18A, KNTC1, MAD2L1, NDC80, NUP37,

PCNA, RAD21, and ZWINT - related to lung cancer discovered from non-treatment

studies.
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Most of the biomarkers identified in non-treatment studies are associated with bio-

logical process mitotic cell cycle (Table 1 in Additional File 3) and they are also

enriched in pathways such as cell cycle, oocyte meiosis, progesterone-mediated oocyte

maturation, and cellular senescence as shown in Table 1 in Additional File 4. There are

hundreds of mutations in our genes every day, some of which might cause deleterious

effects. However, most of us are healthy and enjoying our day to day life. This is pos-

sible due to delicate checks and balances maintained by the cell regulatory systems.

The cell cycle and DNA repair mechanisms are efficient systems which ensure that de-

fective cells are destroyed and only healthy cells remain in our body. The failure in

these mechanisms will result in mutations which may lead to genomic abnormalities

that lead to cancer. The genes involved in the cell cycle play a vital role in preventing

genomic abnormalities. The studies have shown that abnormalities in these genes pro-

mote tumorigenesis [45, 46]. An in vivo study in Drosophila with knocked down BUB3

showed that the absence of BUB3 induces tumorigenesis [47]. RAD21 is another im-

portant protein in a multi-protein complex that plays important role in mitosis [48]. A

study by Ni et al., also identified CCNB1, CCNB2, CDK1 and MAD2L1 as key genes

for SCLC due to their role during mitosis [49]. A study by Soria et al. showed the over-

expression of CCNB1 in both NSCLC and SCC [50]. CCNB1 is a known regulatory

protein in mitosis and is necessary for control of G2/M transition phase in cell cycle.

CDK1, a cyclin dependent kinase (CDKs), plays an important role in cell progression

[51].

CENPF, CENPI, KNTC1, NDC80, and ZWINT are components of kinetochore com-

plex [52]. A study showed the upregulation of CENPF was linked to cancer progression

and lymph node metastasis [53]. Another study showed similar link between overex-

pression of CENPI and colorectal cancer metastasis and progression [54]. The results

in this study also showed that the genes CENPF, CENPI, KNTC1, NDC80 and ZWINT

are upregulated in non-treatment studies, Table 2.

A study showed that overexpression of PCNA promotes cell proliferation and

tumorigenesis in lung cancer [55]. PCNA was found to be up regulated in this study,

Table 2.

Literatures supporting treatment biomarker genes

This section discusses the roles of 16 biomarker genes - CEBPB, FBXL14, FBXL3,

FBXO30, FBXO9, FOXA1, FOXA2, JUN, JUND, MAPK8, MYC, MYLIP, NFE2L2,

RNF19A, RNF217, and UBC - related to lung cancer discovered from treatment

studies.

Most of the biomarkers identified in treatment studies are associated with biological

process ubiquitination, Table 2 in Additional File 3. Ubiquitination is a post transla-

tional modification which is important for maintaining various physiological processes

and decides the fate of the protein by marking them for degradation, change in cellular

location, promote its activity or preventing protein interaction [56]. UBC (Ubiquitin C)

encodes polyubiquitin which plays important role in regulation of cell cycle, DNA re-

pair and kinase activation [57]. UBC is one of the biomarkers discovered from treat-

ment studies. It is down regulated in this study (Table 3) and was found in 10 out of 12

CytoHubba scoring matrices as a top gene (gene with the highest score), Table 2 in
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Additional File 1. MYLIP and RNF19A are both E3 ubiquitin ligase proteins, which are

also upregulated, Table 3. F-box protein motifs function as a site of protein-protein

interaction [58]. There are four F-box proteins - FBXL14, FBXL3, FBXO30, and FBXO9

- identified as biomarkers in this study, all of which are downregulated, Table 3. F-box

proteins are found in cancers as oncogenes or tumor suppressor genes depending upon

their expression in their substrate [58].

In lung cancer, FOXA1 and FOXA2 is involved in regulation of Epithelial to Mesen-

chymal genes relevant to cellular adhesion and cellular communication, and associated

with distant metastasis [59–61].

NRF2 (also known as NFE2L2) is a basic leucine zipper transcription factor that regu-

lates the expression of more than 200 genes that protects against stress [62]. In lung

cancer NRF2 acts as both oncogene and tumor suppressor gene depending upon the

stage of tumor progression [63]. As an oncogene it promotes resistance to chemother-

apy and prevents oncogenesis as a tumor suppressor [63]. CEBPB is also a basic leucine

zipper transcription factor and it regulates genes that are involved in immune and in-

flammatory processes [64].

JUN and JUND are signal transducing transcription factors of the AP-1 family and

proto oncogenes associated with apoptosis [65]. Levresse et al. [66] and other studies

have reported the protective response of c-Jun and JNK pathway in SCLC cells. MAPKs

(Mitogen-activated protein kinases) are protein Ser/Thr kinases that convert external

stimuli into a wide range of cellular responses [67]. MAPK8 is a protein kinase known

as Jun N-terminal kinase-1 (JNK-1) involved in cellular responses to stress [68].

A study by Rapp et.al, showed metastasis in NSCLC driven by MYC gene in a mouse

model [69]. Another study by Mollaglu et al. in mouse model showed similar metastasis

and tumorigenesis promoted by MYC gene in SCLC [70].

In summary, most of the biomarkers in non-treatment studies are associated with

cellular progression and cell cycles (Table 1 in Additional File 3) and are upregulated

(Table 2). On the other hand, most of the biomarkers in treatment studies are associ-

ated with ubiquitination (Table 2 in Additional File 3) and are downregulated (Table

3), which affects the activity and progression of proteins. Further study into the mo-

lecular mechanisms of these biomarker genes would help to understand the cause of

lung cancer as well as the cause of drug resistance in lung cancer. A study in transcrip-

tional landscape of human cancers which studied 33 TCGA cancer types identified that

cell cycle pathways and genes related to these pathways are usually upregulated in can-

cers than in normal tissue [71], which support the findings using non-treatment studies

in the present work. Another study by Danielsson et al., also reported up regulation of

cell-cycle genes in cancer cells and downregulation of functionally diverse genes in can-

cer [46], which also support the findings in the present work using both non-treatment

and treatment studies.

Conclusion
This study developed a computational framework to discover biomarker genes for lung

cancer using gene expression profiles from GEO database. Two different types of stud-

ies – non-treatment and treatment – are considered for experiment. A total of 32 bio-

marker genes - 16 from non-treatment studies and 16 from treatment studies - were

discovered in this study. The results show that most of the non-treatment biomarker
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genes (12 out of 16) have prognostic capability by indicating that low-expression groups

have higher chance of survival compare to high-expression groups. On the other hand,

most of the treament biomarker genes (11 out of 16) have prognostic capability by indi-

cating that high-expression groups have higher chance of survival compare to low-

expression groups. The opposite prognostic characteristics of biomarker genes discov-

ered from non-treatment and treatment studies are expected since in non-treatment

studies, controls are healthy samples and cases are cancer patients; whereas, in treat-

ment studies, controls are cancer cell lines without treament and cases are cancer cell

lines with treament. Most of the biomarkers in non-treatment studies (11 out of 16)

were upregulated while most of the biomarkers in treatment studies (14 out of 16) were

downregulated.

The biomarker genes identified from non-treatment studies play vital role in tumor

progression and metastasis. These biomarker genes are associated with cell cycle and

consistent with their role in preventing genomic instabilities. The deletion or mutation

of these genes induce tumorigenesis. The biomarker genes identified in treatment stud-

ies are associated with ubiquitination and response to stress. Ubiquitination is a multi-

step process for regulation of function and signaling of cellular pathways and cancer

cells exploit these pathways for their survival and metastasis [72]. A better understand-

ing of ubiquitination process and its underlying pathways may help to develop better

treatment strategies for lung cancer patients.

The scope of this study was limited to computational identification of biomarkers for

lung cancer. The existing literatures support that most of the discovered biomarkers

play role in tumorigenesis. A detailed study into the roles of these biomarkers and their

mechanism of action is required to understand their contribution to tumor progression

and survival of lung cancer patients. The biomarker genes discovered in this study

could be used for diagnosis and developing appropriate therapeutic approach for the

cure of lung cancer. Further biological experiments with the discovered biomarkers are

required to validate the findings in this study.
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