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A crucial component of regulating organismal homeostasis is maintaining proper cell 
number and eliminating damaged or potentially malignant cells. Apoptosis, or programed 
cell death, is the mechanism responsible for this equilibrium. The intrinsic apoptotic 
pathway is also especially important in the development and maintenance of the immune 
system. Apoptosis is essential for proper positive and negative selection during B- and 
T-cell development and for efficient contraction of expanded lymphocytes following an 
immune response. Tight regulation of the apoptotic pathway is critical, as excessive cell 
death can lead to immunodeficiency while apoptotic resistance can lead to aberrant 
lymphoproliferation and autoimmune disease. Dysregulation of cell death is implicated in 
a wide range of hematological malignancies, and targeting various components of the 
apoptotic machinery in these cases is an attractive chemotherapeutic strategy. A wide 
array of compounds has been developed with the purpose of reactivating the intrinsic 
apoptotic pathway. These compounds, termed BH3 mimetics are garnering considerable 
attention as they gain greater clinical oncologic significance. As their use expands, it will 
be imperative to understand the effects these compounds have on immune homeosta-
sis. Uncovering their potential immunomodulatory activity may allow for administration 
of BH3 mimetics for direct tumor cell killing as well as novel therapies for a wide range 
of immune-based directives. This review will summarize the major proteins involved in 
the intrinsic apoptotic pathway and define their roles in normal immune development 
and disease. Clinical and preclinical BH3 mimetics are described within the context of 
what is currently known about their ability to affect immune function. Prospects for future 
antitumor immune amplification and immune modulation are then proposed.

Keywords: BCL-2, lymphocytes, BH3 mimetic, apoptosis, cell death, immune system, small molecules, 
immunotherapy

THe APOPTOTiC PATHwAY AND BCL-2 FAMiLY PROTeiNS

The apoptotic cascade can be divided into two main pathways, both of which culminate in the 
activation of effector caspases that cleave essential substrates and in turn mediate the ultimate 
destruction of the cell (1, 2). The extrinsic pathway is initiated through external signals propa-
gated via death receptors on the cell surface such as FAS (CD95) or other members of the tumor 
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FiguRe 1 | Overview of the BCL-2 family and BH3 mimetics in clinical 
trials. The BCL-2 family is divided into three subgroups: the multidomain 
antiapoptotics (blue), the multidomain proapoptotics (red), and the BH3-only 
proteins (purple). The antiapoptotic proteins sequester the proapoptotic 
proteins BAX and BAK. In times of cellular stress, BH3-only proteins can 
either bind to the antiapoptotic proteins and release the proapoptotics from 
their sequestration or directly bind and activate BAX and BAK. Once 
activated, BAX and BAK oligomerize and induce mitochondrial outer 
membrane permeabilization, leading to the release of other proapoptotic 
factors and eventual cellular destruction. The actions of the BH3-only 
proteins can be imitated by BH3 mimetics, some of which have reached 
clinical trials (green). Like the BH3-only proteins, these compounds have 
varying specificities for the antiapoptotic proteins.
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necrosis factor receptor (TNFR) family. Ligand-induced recep-
tor trimerization initiates cellular demise through adaptor 
protein association and initiator caspase-8 activation (3, 4). 
In contrast, the intrinsic pathway is activated in response to a 
variety of internal cellular stresses and is mediated primarily by 
the BCL-2 family of proteins. BCL-2 was first discovered as a 
part of a chromosomal translocation in B-cell lymphoma and 
was the first known oncogene to inhibit cell death as opposed 
to actively promoting proliferation (5–7). The BCL-2 proteins 
share one to four highly conserved regions in both sequence 
and structure, termed BCL-2 homology (BH) domains. Based 
on these domains, and in conjunction with their activity profile, 
the BCL-2 family is divided into three functional subgroups: the 
multidomain antiapoptotics (BCL-2, BCL-XL, BCL-W, MCL-1, 
BFL-1), the multidomain proapoptotics (BAK, BAX, BOK), 
and the BH3-only proteins (BIM, BID, BAD, NOXA, PUMA, 
BMF, BIK, HRK) (Figure  1). The BH3-only proteins, named 
so because they share only the third BH domain with the other 
BCL-2 family proteins, act as cellular sentinels that in times of 
stress bind discrete multidomain BCL-2 proteins and initiate 
the apoptotic cascade (8). This process can occur through two 
known mechanisms. BH3-only proteins can bind antiapoptotic 
BCL-2 members causing release of sequestered BAX and BAK 
(9). These are indirectly activating BH3-only proteins (e.g., BAD 

and NOXA). In addition, other BH3-only proteins, such as BIM, 
BID, and PUMA, can not only bind antiapoptotics but are also 
able to directly bind and activate BAK and BAX oligomerization 
(10). Once oligomerized, BAK and BAX form pores in the outer 
mitochondrial membrane causing mitochondrial outer mem-
brane permeabilization (MOMP), which leads to the release of 
cytochrome c and other proapoptotic factors such as SMAC/
DIABLO from the inner mitochondrial membrane space (11, 
12). Cytochrome c associates with APAF and caspase-9 to form 
the apoptosome, which initiates the cleavage of effector caspases 
3 and 7 leading to eventual cellular destruction (13). The contact 
interfaces between antiapoptotic and BH3-only proteins have 
been elucidated through crystal structure analyses. This has led 
to increasing interest and ability to design drugs that recapitulate 
these interactions in an effort to overcome apoptotic resistance. 
While these efforts have mainly focused on inducing cell death 
in the context of cancer therapy, there is potential to use these 
compounds as immunomodulators based upon the differential 
BCL-2 family member dependencies of immune cells (14).

THe ROLe AND POTeNTiAL TARgeTiNg 
OF BCL-2 PROTeiNS iN THe iMMuNe 
SYSTeM

Multidomain Proapoptotics (BAX, BAK)
The proapoptotic effector proteins BAK and BAX are considered 
to play redundant functional roles in the initiation of MOMP, as 
the deletion of either Bak or Bax alone leads to a minimal level 
of apoptotic defects (15). However, deletion of both proteins 
leads to a high incidence of embryonic lethality with surviving 
mice having a host of developmental and neuronal defects. 
Not surprisingly, BAX/BAK-deficient mice have a significant 
increase in both myeloid and lymphoid cells, leading to enlarged 
primary lymphoid organs and lymphocyte infiltration into 
peripheral organs (15). Lymphocytes from these animals are 
resistant to known activators of the intrinsic apoptotic pathway, 
including cytokine deprivation, etoposide, and irradiation (15). 
Mice with conditional T cell-specific Bax/Bak knockout have 
abnormal thymocyte development and increased accumulation 
of double-negative cells in the thymus (16). Thymocytes are 
resistant to apoptosis following treatment with γ-irradiation and 
animals develop T cell lymphoma with a median survival of only 
10 months (16).

Because BAX and BAK activation is typically considered “the 
point of no return” in apoptosis induction, therapeutics that can 
directly activate their oligomerization would be potent initiators 
of apoptosis. However, there would be a lack of specificity in 
targeting these proteins directly and off-target effects may limit 
their clinical use. Direct BAX/BAK activators may find greater 
efficacy in combination with other, more specific BCL-2 family 
targeting agents. BH3 mimetics specific for discrete antiapoptotic 
proteins could potentially lower the apoptotic threshold in a 
targeted subset of lymphocytes, allowing for lower doses of BAX/
BAK activators to exclusively induce apoptosis in these cells. The 
greatest limitation to this, however, is the inability at the present 
time to target BH3 mimetics to specific cell populations.
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FiguRe 2 | Distinct dependencies of antiapoptotic BCL-2 proteins 
exist in specific immune cell subsets. Animal models with global or 
conditional deletion of single antiapoptotic proteins have demonstrated that 
these proteins are essential for unique subsets of immune cells. Most studies 
have focused on the importance of the BCL-2 family in the lymphoid lineage 
in both developing and mature B and T cells. The differential dependencies of 
immune cells on unique antiapoptotic proteins may allow for the targeted 
drugging of specific immune cell subsets.
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Multidomain Antiapoptotics  
(BCL-2, BCL-XL, BCL-w, MCL-1, BFL-1)
BCL-2 was the first member of the antiapoptotic subgroup 
to be extensively characterized. Overexpression of BCL-2 in 
Eμ-myc transgenic mice found that BCL-2 in conjunction with 
dysregulated c-myc promoted immature B cell proliferation and 
tumorigenesis. However, expression of BCL-2 alone allows for 
cell survival without any change in proliferation (7). Constitutive 
BCL-2 expression ultimately leads to increased numbers of 
pre-B  cells, plasma cells, and T cells, all of which demonstrate 
increased longevity in culture (17, 18). BCL-2 overexpression in 
these animals leads to autoimmunity similar to that measured 
in patients with systemic lupus erythematosus (SLE) (17). In 
contrast, global deletion of Bcl-2 leads to a significant decrease in 
the number of double-positive (DP) thymocytes and peripheral 
(splenic) B and T cells. TUNEL staining of the spleens and thymi 
of aged Bcl-2 knockout mice reveals a significant increase in 
apoptotic cells. Thymocytes lacking BCL-2 are also more suscep-
tible to a wide range of apoptotic stimuli (19).

MCL-1 plays a significant role in immune ontogeny and 
maintenance. Global deletion of Mcl-1 is embryonic lethal; 
therefore, conditional knockout models have been utilized to 
determine the role of MCL-1 in various immune cell subsets 
(20). Globally, MCL-1, and not BCL-2, expression is critical for 
maintaining hematopoietic stem cell survival. Inducible deletion 
of Mcl-1 causes rapid bone marrow depletion and mice become 
moribund within several weeks. These animals rapidly develop 
severely reduced numbers of hematopoietic stem cells and other 
bone marrow progenitor populations (21). T cell-specific Mcl-1 
deletion leads to a significant reduction in T lymphocytes, as well 
as an apparent blockade at the DN2/3 stage of thymocyte devel-
opment (22). Unlike BCL-2, MCL-1 expression remains constant 
or is slightly upregulated upon T cell receptor (TCR) stimulation 
(23, 24). Another distinctive feature of MCL-1 is that it plays a key 
role in the maintenance of immunosuppressive regulatory T cells 
(Tregs). Mice with Treg-specific MCL-1 deletion experience 
weight loss, inflammation, and death due to global autoimmun-
ity within 4–8  weeks (25). Additionally, B cell-specific MCL-1 
deletion leads to impaired B cell development beginning at the 
pro-B cell stage (22). MCL-1 is also essential for the formation of 
germinal centers and the survival of plasma cells (26, 27).

The remaining antiapoptotic proteins have not been as well 
characterized in immune system homeostasis. Loss of BCL-XL 
has a minimal effect on overall T cell survival. While mice lack-
ing BCL-XL have reduced numbers of DP thymocytes, they have 
normal peripheral lymphocyte numbers indicating that BCL-XL 
alone is not critical for lymphocyte homeostasis (28). Deletion 
of Bfl-1 causes a decrease in DP thymocytes and an increase in 
double-negative (DN) and CD8+ single-positive thymocytes. 
However, BFL-1-deficient lymphocytes have no significant 
increase in resistance to apoptotic stimuli (29). Deletion of  
Bfl-1 in the myeloid lineage causes a decrease in the granulocyte 
population and causes increased levels of spontaneous apoptosis 
in both granulocytes and neutrophils in culture (29, 30). BFL-1 
has also been shown to be elevated in several human malignan-
cies, including B cell chronic lymphocytic leukemia (CLL) and 
familial SLE (31, 32).

Based on the differential reliance on specific antiapoptotic 
BCL-2 proteins in immune control, it may be feasible to target 
exclusive subsets of lymphocytes with agents having specificity to 
the BH3-binding domains of these proteins (Figure 2). Careful 
consideration will be needed in balancing BH3 mimetic dos-
ing if given together with other chemotherapeutic agents that 
may lower the therapeutic threshold of immune cells or even 
alter their antiapoptotic dependency during treatment. The 
long- and short-term effects of antiapoptotic protein targeting 
of the immune system is unknown and how other proteins in 
this subclass may compensate is unclear. Rapid upregulation of 
non-targeted antiapoptotic proteins has been found to occur in 
lymphocytes when treated with BH3 mimetics (33). How this will 
impact immune effects clinically has yet to be determined.

BH3-Only Proteins  
(BiM, BiD, PuMA, BAD, NOXA, BMF)
Most data regarding the role of BH3-only proteins has involved 
studying the direct activator proteins BIM, BID, and PUMA 
though genetic deletion in murine models. BIM is considered 
the master regulator of immune cell homeostasis. Bim deletion 
causes increased numbers of lymphoid and myeloid cells, defects 
in thymocyte development, and global lymphocyte resistance to 
multiple apoptotic stimuli (34, 35). BIM is essential for negative 
selection of immature T cells in the thymus, and mice lacking 
BIM have shorter lifespans due to the development of fatal auto-
immunity (34, 36). BIM also plays an important role in regulating 
the survival of CD4+ T cells in the periphery. Decreased BIM 
expression with age leads to longer-lived CD4+ T cells that are 
prone to functional defects and become increasingly unable 
to properly respond to pathogens (37). Deletion of additional 
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BH3-only proteins exacerbates the immune dysfunction seen 
in Bim knockout animals. Combined deletion of Bim and Puma 
causes increased resistance to a wide range of apoptotic stimuli, 
and a subset of these mice develop spontaneous follicular B cell 
lymphoma (38). Triple knockout of Bim, Puma, and Bid leads 
to increased lymphocytosis and profound, yet not complete, 
apoptotic resistance (39). The prevalence of hematological malig-
nancies has not yet been characterized in these triple knockout 
mice (39).

BID is a unique BH3-only protein because its structure is 
more similar to the multidomain antiapoptotics and it provides 
functional cross talk between the intrinsic and extrinsic apoptotic 
pathways. BID is cleaved to its functional form, tBID, by activated 
caspase-8, downstream of plasma membrane death receptor 
activation (40). Young mice deficient in BID have no major 
hematological defects, whereas aged mice develop neutrophilia 
and many succumb to a hematopoietic malignancy resembling 
human chronic myelomonocytic leukemia (CMML) (41). BID 
may also play a key role in survival of Langerhans cells, a unique 
subset of dendritic cells, as BID-deficient Langerhans cells are 
more resistant to CD4+ T cell-mediated apoptosis (42).

PUMA is regulated by the tumor suppressor p53 and has 
been implicated as a mediator of apoptosis in several subsets of 
immune cells (43, 44). PUMA cooperates with BIM to regulate 
activated T cell contraction following an immune response. Mice 
lacking PUMA accumulate activated CD8+ T cells in their spleen 
following herpes simplex virus (HSV-1) infection, and these cells 
are more resistant to cytokine deprivation in culture (45). PUMA 
is also upregulated in activated B cells and Puma deletion leads 
to apoptotic resistance and B cell accumulation in addition to 
increased levels of memory B cells following antigen stimula-
tion (46). In the myeloid compartment, PUMA deficiency has 
been shown to impair the regulation of neutrophil contraction 
following an immune response, thus compromising the ability to 
properly respond to bacterial infections, which can lead to lethal 
sepsis (47).

Similar to PUMA, the indirect activator NOXA is regulated 
by p53 (48). Noxa knockout mice have no aberrations in thy-
mocyte development; however, NOXA may play a minor role in 
regulating the formation and maintenance of effector memory 
T cells during and following an immune response (49, 50). 
NOXA has also been shown to play a key role in B cell activation 
and efficient generation of high-affinity antibody clones. Loss 
of Noxa leads to an accumulation of low affinity B cells due to 
dysregulated apoptosis of these cells during immune response 
initiation (51).

Normal B and T cell development is maintained in cells lacking 
BAD and lymphocytes from BAD-deficient animals retain nor-
mal sensitivity to apoptotic stimuli (52). Currently, BAD appears 
most important in B cell ontogeny and maturation. Although 
incompletely understood, Bad knockout mice have reduced IgG 
production after lipopolysaccharide (LPS) stimulation and aged 
mice develop diffuse large B cell lymphoma (DLBCL) that is 
increasingly penetrant following ionizing radiation (52).

Although not as extensively studied as other BH3-only pro-
teins, Bmf knockout mice maintain normal overall T cell counts 
and have no known abnormalities in thymocyte development 

but do experience B cell hyperplasia. BMF-deficient T- and pre-B 
cells are resistant to apoptosis in response to glucocorticoids or 
HDAC inhibition (53). Mice lacking BMF also develop thymic 
lymphomas following exposure to γ-irradiation (53).

Extensive characterization of the BH3-only proteins in 
the immune system has revealed both overlapping and non- 
redundant roles for many of these proteins in specific immune cell 
subsets. Major focus has been placed on designing therapeutics 
that mimic the binding of these proteins to multidomain apop-
totic effectors. As development of these compounds increases 
for use as single agent or combination anti-cancer therapeutics, 
it will be essential to continue defining the exact roles of the 
BH3-only proteins in the ontogeny and maintenance of clini-
cally relevant anti-viral, anti-bacterial, and antitumor immune 
responses. How these proteins are displaced following treatment 
and sequestered by expressed antiapoptotics in immune cell 
subtypes is of parti cular interest. Harnessing their immune-
based “off-target” effects could allow for powerful modulation 
of the immune system alone or in concert with other emerging 
immune-based therapies.

BH3 MiMeTiCS AS ANTiCANCeR 
THeRAPeuTiCS

The BCL-2 family of proteins are heavily implicated in tumori-
genesis and targeting their interactions shows great promise in 
overcoming apoptotic resistance in a vast array of malignancies 
(54, 55). Given the importance of BH3-only proteins in regulating 
the cross talk between the anti- and proapoptotic multidomain 
BCL-2 proteins, most drug development has centered on reca-
pitulating their mechanism(s) of action in cells. These so called 
“BH3 mimetics” encompass an array of natural products, small 
molecules, and peptide therapeutics that mimic the BH3-domain-
directed binding of BCL-2 proteins to either lower the apoptotic 
threshold or directly initiate the intrinsic apoptotic cascade. Most 
work has focused on the role of these compounds as anticancer 
therapeutics as described below. Less well understood is how these 
compounds can be used to modulate normal immune responses. 
It is important to consider that cancer cells are “primed to die” 
due to their extreme dependence on thwarting apoptosis given 
their genetic and metabolic abnormalities. In contrast, although 
susceptible to these compounds, normal lymphocytes may have 
different sensitivities to these drugs as compared to malignant 
cells. It is critical that these potential differences are further 
elucidated in order to generate the most effective strategies for 
immune modulation.

Compounds in Clinical Trials
Antisense Oligonucleotides
Oblimersen Sodium (Genasense)
Over 25  years ago, it was demonstrated that an antisense 
oligonucleotide targeting BCL-2 could abrogate in  vivo tumor 
growth (56). These studies led to the development of the opti-
mized antisense oligonucleotide oblimersen sodium (G3139; 
genasense; augmerosen), which demonstrated in vitro and in vivo 
efficacy against multiple hematological malignancies, including 
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non-Hodgkin’s lymphoma (NHL), EBV-associated lymphopro-
liferative disorders, and Philadelphia chromosome-positive 
leukemia (57–59). After showing promise in multiple preclinical 
models, oblimersen was tested in clinical trials for both hemato-
logical malignancies and solid tumors. Phase I and II clinical trials 
were encouraging against a wide range of cancer types, including 
hormone-refractory prostate cancer, CLL, and NHL (60–62). 
Unfortunately, despite initial promise, several phase III studies 
have found that oblimersen does not improve the response rate 
seen with the current standards of care (63, 64). Oblimersen has 
not been FDA approved and subsequent attention has turned to 
the development of small molecules and peptide therapeutics 
that directly disrupt intracellular BCL-2 family protein:protein 
interactions.

Small Molecules
ABT-737 and ABT-263 (Navitoclax)
The first small molecule to effectively mimic the interaction 
between antiapoptotics and BH3-only proteins was the BAD-
derived BH3-only mimetic ABT-737 (65). Discovered using a 
nuclear magnetic resonance (NMR)-based screening method, 
this small molecule has high affinity for the BH3-binding pocket 
of BCL-2, BCL-XL, and BCL-W (65). ABT-737 has been shown 
to disrupt BAX/BCL-2 complexes, leading to the release of 
cytochrome c and the initiation of the caspase cascade (66, 67). 
BAX/BAK double knockout cells administered ABT-737 experi-
ence no significant decrease in viability, indicating that ABT-737 
functions through on-target binding to antiapoptotic proteins to 
induce the intrinsic mitochondrial apoptotic pathway (67). ABT-
737 has potent in vitro activity against a wide range of hemato-
logical malignancies, including acute myeloid leukemia (AML), 
multiple myeloma (MM), and acute lymphoblastic leukemia 
(ALL) (67–69). Subsequent studies in xenograft models of adult 
and pediatric hematological diseases have confirmed the on-
target potency of ABT-737 against malignant cells (70–72). The 
oral analog of ABT-737, ABT-263 (navitoclax), has been tested 
in clinical trials for both hematological and solid tumors (73). 
However, patients experienced dose-limiting thrombocytopenia 
due to the dependency of platelets on BCL-XL and BAK (74, 75). 
Another important caveat is that many cancers are refractory or 
become resistant to ABT-737 or ABT-263 due to upregulation of 
antiapoptotic proteins (e.g., MCL-1, BFL-1) that lack specificity 
to either compound (67, 76, 77). It will therefore be imperative 
to consider which antiapoptotic proteins target cells express and 
understand their real-time compensatory capacity for apoptotic 
resistance before treatment with BH3 mimetics having limited 
antiapoptotic protein specificity.

ABT-199 (Venetoclax)
To overcome the thrombocytopenia caused by ABT-263, a new 
BCL-2-specific BH3 mimetic was derived based on the X-ray 
crystal structure of BCL-2 and ABT-263 (78). ABT-199 binds 
BCL-2 with subnanomolar affinity (78). ABT-199 has dem-
onstrated effective in vitro and in vivo cell killing in a range of 
cancers, including chronic myelogenous leukemia (CML), AML, 
and T-cell ALL (79–81). Based on its efficacy in clinical studies, 
ABT-199 has recently gained FDA approval for the treatment 

of refractory 17-p-deleted CLL, making it the first clinically 
approved small molecule targeting intracellular protein:protein 
interactions (82). Interestingly, there are reports describing 
ABT-199 inducing cell death in normal immune cell subsets in 
addition to its desired anticancer activity as was found in the case 
of normal mature B cells isolated from patients with CLL (83).

GX15-070 (Obatoclax)
The first pan inhibitor of the antiapoptotic BCL-2 proteins 
was GX15-070 (84). GX15-070 binds all antiapoptotics with 
nanomolar to low micromolar affinity and, importantly, is able 
to overcome ABT-737 apoptotic resistance in cells with high 
MCL-1 expression (85, 86). GX15-070 has efficacy against a 
range of solid tumors and hematological malignancies (86–88). 
GX15-070 was well tolerated in phase I clinical trials for patients 
with CLL, refractory leukemia, and myelodysplasia (89, 90). 
Unfortunately, in phase II and phase I/II clinical trials, GX15-
070 did not improve outcomes in patients with myelofibrosis, 
mantle cell lymphoma, or AML (91–93). On target specificity has 
been questioned regarding the mechanism of action of GX15-
070, as BAX/BAK double knockout cells die when treated with 
this compound (87). In fact, multiple modes of cell death have 
been measured in response to GX15-070 treatment. Canonical 
features of apoptosis, necrosis, and autophagy are seen in infant 
ALL (MLL-rearranged ALL) patient samples following treatment, 
indicating activation of related but not overlapping cell death 
mechanisms (94).

Natural Products
Gossypol Family
Gossypol is a natural phenolic pigment isolated from cottonseed. 
Its negative enantiomer R-(−)-gossypol, or AT-101, binds BCL-2, 
BCL-XL, BCL-W, and MCL-1 and may have efficacy as an antican-
cer therapeutic (95, 96). Like GX15-070, gossypol may not induce 
cell death exclusively via the intrinsic apoptotic pathway because 
BAX/BAK double knockout cells die following treatment (97). 
Despite potential off-target effects, gossypol has shown efficacy 
against several hematological malignancies, including DLBCL, 
MM, and CLL (98–100). Gossypol has entered several clinical tri-
als, including a phase II trial for small cell lung cancer; however, 
the results have not been promising (101). Subsequent studies 
have focused on the development of small molecules derived 
from gossypol in order to improve its potency and potential clini-
cal efficacy (102, 103). Interestingly, it has been demonstrated that 
gossypol induces apoptosis in polymorphonuclear leukocytes 
and monocytes isolated from healthy donors, suggesting a future 
potential as an immune modulator (104).

Preclinical Compounds
The promising clinical results of the aforementioned BCL-2 
modulators have driven the discovery of a diverse range of 
small molecules and peptide therapeutics currently in clinical 
and preclinical development (Table  1). New small molecules 
have been designed as specific inhibitors of single or multiple 
antiapoptotic proteins. Single protein inhibitors will be useful 
for targeting malignant cells that are highly dependent on one 
antiapoptotic protein with theoretically minimal off-target 
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TABLe 1 | Clinical and preclinical BH3 mimetics.

Class Compound name Known target(s) Reference

Clinical

Antisense oligodeoxynucleotide Oblimersen sodium BCL-2 (57–59)

Small molecule ABT-737/263 BCL-2, BCL-XL, BCL-W (65, 67, 73)
ABT-199 BCL-2 (78, 82)
Obatoclax/GX15-070 BCL-2, BCL-XL, BCL-W, MCL-1, BFL-1 (84, 86)

Natural product Gossypol BCL-2, BCL-XL, BCL-W, MCL-1, BFL-1 (95, 96)

Preclinical
Small molecule WEHI-539 BCL-XL (105)

BXI-61/72 BCL-XL (106)
A-1155463 BCL-XL (107)
TW-37 MCL-1 (108)
MIM-1 MCL-1 (109)
A-1210477 MCL-1 (110)
Maritoclax MCL-1 (111)
Compound 21 MCL-1 (112)
2-Indole-acylsulfonamides MCL-1 (113)
Agossypol BCL-2, BCL-XL, BCL-W, MCL-1 (102)
Apogossypolone (ApoG2) BCL-2, BCL-XL, MCL-1 (114)
BI97D6 BCL-2, BCL-XL, MCL-1, BFL-1 (115)
Sabutoclax/BI-97C1 BCL-2, BCL-XL, MCL-1, BFL-1 (116)
BM-1197 BCL-2, BCL-XL (117)
S1 BCL-2, MCL-1 (118)
BH3-M6 BCL-2, BCL-XL, MCL-1 (119)
JY-1-106 BCL-XL, MCL-1 (120)
BAM-7 BAX (121)

Peptide therapeutic 072RB BCL-XL (122)
XXA1 BCL-XL (123)
Biphenyl-cross-linked NOXA peptide MCL-1 (124)
MCL-1 SAHBD MCL-1 (125)
BIM SAHBA-3 BFL-1 (126)
BIM SAHBA(146–166) BCL-2, BCL-XL, BCL-W, MCL-1, BFL-1, BAX (127)
PUMA SAHBA1 BCL-2, MCL-1, BAX (128)
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effects. However, malignant cells not initially killed have been 
shown to rapidly upregulate antiapoptotic proteins lying out-
side of the primary compound’s binding profile. Pan apoptotic 
inhibitors may have increased potency but run the risk of 
greater off-target cell killing. In the context of immune modula-
tion, targeting single antiapoptotics may be more desirable in 
manipulating the immune response over time and may allow 
for greater therapeutic dissection of specific myeloid, T, and B 
cell subpopulations.

In addition to small molecules, there is increasing interest 
in the use of peptide-based BCL-2 therapeutics that mimic the 
binding interface of specific BH3-only:antiapoptotic complexes. 
Isolated native BH3 helices are not attractive pharmaceutical 
compounds as they do not typically maintain their helical struc-
ture, are quickly degraded, and lack cellular penetrability (129). 
Therefore, it is necessary to chemically modify these peptides in 
order to maintain their secondary structure, binding affinity, and 
protease resistance as has been done through chemical hydro-
carbon stapling, chemical cross-linking, or peptide amphiphile/
micelle incorporation (124, 129). While BCL-2 peptides have yet 
to reach clinical testing, the ability to target larger surface areas 
of protein:protein interactions is a promising and highly specific 
targeting strategy.

BH3 MiMeTiCS AS iMMuNe 
MODuLATORS

Most studies to date measuring the immune effects from BCL-2 
modulation have tested ABT-737 in the context of autoimmunity 
or transplant tolerance and emphasize the compound’s effects 
on lymphocytes (T and B cells). One of the first studies to 
examine the potential for BH3 mimetics to target the immune 
system found that treatment with ABT-737 induces apoptosis 
in lymphocytes and reduces the severity of disease in several 
murine models of autoimmunity (130). Specifically, treatment 
with ABT-737 significantly reduces paw swelling in mice with 
collagen-induced arthritis and improves overall survival and 
renal function in mice with a SLE-like syndrome (130, 131). 
ABT-737 also suppresses immune responses to immunization 
against keyhole limpet hemocyanin (KLH), as T cells isolated 
and restimulated from ABT-737-treated mice have a significant 
reduction in proliferation upon re-exposure to KLH (130). 
Subsequent studies on the effects of ABT-737 on normal 
hematopoietic compartments have shown that treatment causes 
a significant reduction in CD4+ and CD8+ T cells, B cells, and 
some subsets of dendritic cells, thus perhaps diminishing proper 
antigen presentation and T and B cell expansion (132). In fact, 
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treatment with ABT-737 leads to prolonged pancreatic islet allo-
graft survival in a murine model of spontaneous diabetes, and 
animals are able to maintain normal long-term control of blood 
glucose levels compared to vehicle-treated controls (132). 
While ABT-737 treatment alone is able to suppress allogeneic 
T cell responses in vitro, treatment with ABT-737 in vivo acts 
synergistically with cyclosporine A to reduce skin graft rejection 
in a MHC mismatched transplant model (133). Interestingly, 
ABT-737 has also been shown to preferentially induce apoptosis 
in conventional T cells (Tcons) leading to a relative enrichment 
of immunosuppressive Tregs. This enrichment was found to 
slow progression in a murine model of graft-versus-host disease 
(GVHD) and improve overall survival following hematopoietic 
stem cell transplantation (134). In addition to potential benefits 
in transplantation and autoimmunity, ABT-737 may be useful 
in the mediation of inflammatory diseases. ABT-737 induces 
apoptosis in T lymphocytes and lamina propria mononuclear 
cells in a BIM-dependent manner, which is able to reduce levels 
of inflammation in spontaneous (IL-10−/−) and acute models of 
colitis (135).

In addition to lymphocytes, ABT-737 also has the potential 
to affect mature cells of other hematopoietic lineages. Mast cells 
are specialized myeloid cells that sense pathogens and initiate 
inflammatory responses. Their dysregulation can lead to aber-
rant inflammation and allergic reactions (136). Different mast 
cell populations are sensitive to ABT-737 at varying dosages 
(137). As expected, human and murine mast cell resistance 
to ABT-737 correlates with decreased BCL-2 and increased 
MCL-1 expression (137). Interestingly, in vivo analysis indicates 
that while mast cells were highly sensitive to ABT-737, T cells 
isolated from the peritoneum of treated mice are unaffected by 
ABT-737. Other studies have demonstrated a marked reduction 
in T cells isolated from lymphoid organs and peripheral blood 
following ABT-737 administration, indicating that immune 
cell localization and tissue environment may be a critical factor 
in determining sensitivity to BH3 mimetics (132, 133). These 
parameters should be carefully considered when testing the 
in vivo efficacy of these compounds prior to clinical translation 
for immune control.

Because of apparent Treg dependency on MCL-1, recent work 
has used GX15-070 to differentially target Tregs over Tcons. 
T cell sensitivity to GX15-070 appears to vary in vitro depending 
on a T  cell’s activation status. Mature human T cells that have 
undergone prolonged activation are more resistant to GX15-070 
compared to lymphocytes in the early stages of activation (138). 
This sensitivity profile extends to peripheral blood mononuclear 
cells (PBMCs) isolated from patients with ovarian cancer. In 
vitro treatment leads to significantly increased CD8+:Treg and 
CD4+:Treg ratios, indicating that GX15-070 preferentially 
induces apoptosis in the Treg subpopulation (138). Depletion of 
Tregs while preserving Tcons is a promising therapeutic strategy 
for amplifying the antitumor immune response. These results 
support the finding that in vivo treatment with GX15-070 follow-
ing vaccination leads to decreased lung metastases in a murine 
model of lung adenocarcinoma (139).

These studies emphasize the promising immunomodulatory 
potential of BH3 mimetics. More extensive testing using a wider 

range of small molecules and peptide therapeutics with varying 
antiapoptotic specificities will provide a fuller understanding 
of the mechanisms responsible for clinically effective immune 
control.

SuRMiSiNg iMMuNe eFFeCTS FROM 
CLiNiCAL TRiALS wiTH BH3 MiMeTiCS

Although most published clinical reports using BCL-2 therapeu-
tics have concentrated on their antitumor effects, BH3 mimetic-
induced manipulation of immune surveillance and activation 
could have profound ramifications for people suffering from a 
myriad of immunologically mediated conditions. Understanding 
the specific effects on leukocyte subsets of patients treated with 
these compounds will be paramount for their effective clinical 
translation. Beyond the results from testing these compounds 
in vitro and in preclinical animal models, most of what we cur-
rently know about the effects of these compounds on the human 
immune system must be extrapolated from oncology-based 
clinical trials.

Scrutinizing these studies indicate that targeted effects on the 
immune system include significant lymphopenias and neutrope-
nias. Lymphopenia is a desirable effect in many cases, especially 
when treating hematologic malignancies like CLL. Patients with 
relapsed or refractory CLL treated with ABT-199 all had a >50% 
reduction in their absolute lymphocyte counts (ALC) and the 
majority had a 100% reduction. Neutropenia (grades 3 or 4) was 
reported in 35% of the patients with 6% of the patients experi-
encing serious infections and 2.5% developing autoimmune 
neutropenia (140). While ABT-263 induces on-target thrombo-
cytopenia, it also elicits neutropenia 28% of the time with many 
patients developing subsequent infectious sequelae (141, 142). 
Similar findings have been observed in patients treated with 
other BH3 mimetics at antitumor dosing, including AT-101 and 
GX15-070 (89, 143).

Phase I clinical trials using the BCL-2 mRNA-targeting oligo-
nucleotide oblimersen found that treatment with this compound 
led to global myelosuppression including neutropenia and lym-
phopenia (144, 145). However, a caveat to these and other trials 
is that these studies included concurrent cytotoxic chemotherapy 
making it difficult to specifically analyze the effects of BCL-2 
targeting alone on the immune system. Of note, oblimersen has 
been tested in pediatric patients with neuroblastoma making it 
the first compound targeting BCL-2 in children (61, 144, 145). 
Dose escalation phase I studies evaluating the safety of the BCL-2 
deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients 
with advanced solid tumors found rapid (within hours) decrease 
in lymphocytes with most patients having a >50% reduction. This 
phenomenon was dose dependent and used as a surrogate for 
efficacy (146).

Outside of the oncologic arena, BCL-2 family modulation 
using ABT-199 has been tested in patients with SLE. Most data 
remains preliminary, such as those presented at a recent American 
College of Rheumatology Annual Meeting (2015) demonstrating 
a dose-dependent reduction in total lymphocytes and B cells in 
particular. Neutropenia also occurred but was less consistent and 
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correlated to different dosing thresholds (www.clinicaltrials.gov  
identifier NCT01686555) (147).

Clinical trials using direct BCL-2 modulation are on the 
rise. Searching www.clinicaltrials.gov as of August, 2016 
found a number of active trials testing ABT-199 (15 trials), 
ABT-263 (4 trials), and gossypol/AT-101 (3 trials). Searching 
“oblimersen”/“genasense” or “obatoclax”/“GX15-070” revealed 
no entries. However, all of these active trials are testing these 
drugs as anticancer agents and none are directly investigating 
their effects on immune function or autoimmune disease. As 
the number of clinically available BH3 mimetics continues to 
grow and we further expand our knowledge regarding how these 
compounds affect specific immune cell subsets, we can expect a 
robust increase in the clinical trials evaluating BH3 mimetics in 
the context of immune modulation.

FuTuRe PROSPeCTS

BH3 mimetics represent a unique arsenal of compounds with a 
wide range of potential therapeutic interventions beyond that of 
directly inducing malignant cell death. Determining the effects 

of long-term selective pressure on the immune system is gaining 
significance as patients are increasingly treated with this class 
of drugs. BH3 mimetics could potentially be used alone or in 
combination with classic immunotherapies such as stem cell 
transplantation and donor lymphocyte infusions, or with other 
more advanced therapies such as checkpoint inhibition, cancer 
vaccines, antibody-based therapies, chimeric antigen receptor 
(CAR) T-cells, and bispecific T cell engagers (BiTEs) antibodies 
(148) (Figure 3).

However, there are clinical considerations and unanswered 
mechanistic questions that should be addressed as BH3 mimetics 
become effective clinical immunomodulators. First, while several 
studies with ABT-737 and GX15-070 have been performed to 
determine how they affect immune responses, there is an ever-
expanding range of BH3 mimetics with diverse BCL-2 protein 
specificities. How these agents affect immune cell subsets as 
single agents or in combination is unclear. Second, resistance to 
a single BH3 mimetic is a reoccurring problem in cancer cells 
due to the ability of antiapoptotic proteins to rapidly compensate 
for functional loss of another (33). Determining if this occurs 
in non-malignant immune cells, the kinetics of change, and the 

FiguRe 3 | Clinical implementation of BH3 mimetics for immune modulation. In addition to their use as anticancer therapeutics, BH3 mimetics have promise 
for targeting specific immune cells subsets, which may provide therapeutic benefit in the context of antitumor immune responses, transplantation tolerance, and 
autoimmune diseases. Additionally, BH3 mimetics may be combined with both classical and cutting edge chemo- and immunotherapeutics to improve the 
standards of care in patients with a wide range of hematological malignancies.
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functional significance of BCL-2 repertoire shifts in immune cell 
subsets in response to BH3 mimetic treatments will be critical in 
order to determine if resistance to these therapies will develop 
over time. BH3 peptide profiling is a powerful method that allows 
for the determination of the antiapoptotic proteins upon which 
a cell is dependent (149, 150). However, whether performed on 
isolated mitochondria or semi-intact cells, this method alone 
does not conclusively determine BH3 dependency or sequestra-
tion in real time. Use of BH3 profiling in conjunction with other 
described methods such as qRT-PCR, quantitative fluorescence 
cytometry, and BIM:antiapoptotic dissociation analysis should 
allow for a more complete assessment of apoptotic dependency 
throughout treatment (151, 152).

Other treatment-related questions include timing, dosing 
schedule, and combination therapy. The ideal timing of BH3 
treatment in conjunction with other immunotherapies will need 
to be delineated. Single dosing versus metronomic dosing may 
have a major impact on the effectiveness of the treatment, severity 
of off-target effects, and emergence of resistance. Assessing initial 
dependency and following this long term under constant pressure 
from mimetic treatment may allow for increasingly thoughtful 
decisions regarding the best way to implement these compounds 
in the clinic. In fact, it may be possible to “prime” cells to die by 
treating with BH3 mimetics at lower doses, thus causing upregu-
lation of potential resistance factors (for example, treating with 
ABT-737 may cause MCL-1 or BFL-1 upregulation). Subsequent 
treatment with a complementary compound targeting these 
resistance factors (an MCL-1 or BFL-1-specific compound in this 

example) may lead to even more potent cell killing or sequential 
immune cell modulation. The potential efficacies of these strate-
gies remain largely unexplored.

Finally, combining BH3 mimetics with conventional chemo-
therapy, DNA/histone-modifying drugs (e.g., HDAC inhibitors, 
methyltransferase inhibitors), and/or small molecules (e.g., 
tyrosine kinase inhibitors) may offer even further differential 
immune effects when used at lower doses, thus decreasing overall 
therapeutic toxicities. Such combination therapy may also prevent 
evolution of BCL-2 resistance within the immune system as well 
as within the primary malignancy. Combining BH3 mimetics 
with other immune-directed therapies such as rituximab, check-
point inhibitors, ibrutinib, calcineurin, and mTOR inhibitors 
may allow for even greater immunological fine-tuning, as the 
apoptotic repertoires and BH3 mimetic sensitivities in specific 
immune subsets are likely to change in response to these drugs. 
Overall, as greater preclinical and clinical understanding of the 
effects of BH3 mimetics on the immune system expands, we can 
expect to usher in new and exciting immunomodulatory capaci-
ties of this drug class either when used alone or in conjunction 
with other treatments.
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