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Parasitic infections induce host immune responses that eliminate the invading parasites.
However, parasites have evolved to develop many strategies to evade host immune
attacks and survive in a hostile environment. The complement system acts as the first
line of immune defense to eliminate the invading parasites by forming the membrane
attack complex (MAC) and promoting an inflammatory reaction on the surface of
invading parasites. To date, the complement activation pathway has been precisely
delineated; however, the manner in which parasites escape complement attack, as a
survival strategy in the host, is not well understood. Increasing evidence has shown
that parasites develop sophisticated strategies to escape complement-mediated killing,
including (i) recruitment of host complement regulatory proteins on the surface of the
parasites to inhibit complement activation; (ii) expression of orthologs of host RCA
to inhibit complement activation; and (iii) expression of parasite-encoded proteins,
specifically targeting different complement components, to inhibit complement function
and formation of the MAC. In this review, we compiled information regarding parasitic
abilities to escape host complement attack as a survival strategy in the hostile
environment of the host and the mechanisms underlying complement evasion. Effective
escape of host complement attack is a crucial step for the survival of parasites within the
host. Therefore, those proteins expressed by parasites and involved in the regulation of
the complement system have become important targets for the development of drugs
and vaccines against parasitic infections.

Keywords: complement system, immune evasion, parasites, complement activation pathways, complement
regulatory proteins

Abbreviations: APC, antigen presenting cells; C1-INH, C1 inhibitor; C4BP, C4b-binding protein; C8BP, C8-binding protein;
CPN1, carboxypeptidase N; CRIg, complement receptor of the immunoglobulin family; CRIT, complement receptor inhibitor
trispanning; CRP, complement regulatory protein; CRT, calreticulin; DAF, decay-accelerating factor; FB, factor B; FD, factor
D; FH, factor H; FI, factor I; FP, properdin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; InsP6, myo-inositol
hexakisphosphate; MAC, membrane attack complex; MASP, MBL-associated serine protease; MBL, mannose-binding lectin;
MCP, membrane-cofactor protein; MSP, major surface protease; MSP1, merozoite surface protein 1; PAMPs, pathogen-
associated molecular patterns; PfMSP3.1, Plasmodium falciparum merozoite surface protein 3 family; PfPIG-M, P. falciparum
mannosyltransferase; Pmy, paramyosin; PRM, pattern recognition molecule; RCA, regulators of complement activation;
SCIP-1, schistosome complement inhibitor-1; SMIPP-S, scabies mite proteolytically inactive serine protease paralog; SP40/40,
S-protein; TOR, trispanning orphan receptor.
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INTRODUCTION

Parasites are pathogens that live in or on hosts, from which they
obtain benefits for their growth, development, and propagation,
and thereby cause inevitable harm (Poulin, 2006; Auld and
Tinsley, 2015). There are three main classes of parasites that
can cause disease in humans, including parasitic protozoa,
helminths, and ectoparasites. Parasitic protozoans are single-
celled organisms that parasitize the intestinal tract and other
tissues, thereby causing various diseases (De Bona et al.,
2018). Helminths are multicellular eukaryotic worms, including
nematodes, trematodes, and cestodes, which infect billions of
people worldwide (Scholte et al., 2018). In addition, severe disease
could also be caused by ectoparasites, like Sarcoptes scabiei, which
burrows into the skin to induce intense itching and the condition
known as scabies (Arlian and Morgan, 2017).

Parasitic infections are the most common infections in
humans, affecting billions of people worldwide and causing
deadly diseases (such as malaria) and often neglected tropical
diseases (Hotez et al., 2008). Parasitic infections induce the host
immune response, which occurs in an attempt to kill and clear
the invasion (Motran et al., 2017; Silva-Barrios and Stager, 2017).
The host complement system serves as the first line of defense
against parasitic invasion. Complement is a major part of innate
immunity that is activated by a robust and efficient proteolytic
cascade that eventually results in the opsonization and lysis
of many invading pathogens. It is also connected to adaptive
immunity and generates inflammatory responses through the
production of proinflammatory molecules (Holers, 2014). In
addition to its action as an innate and adaptive immunity
enhancer in the host’s defense against infection, the complement
system plays an alternative role in cell homeostasis by promoting
tissue regeneration, morphogenesis, and the coagulation cascade
(Kimura et al., 2003; Ricklin et al., 2010). The complement system
consists of more than 50 components, including plasma proteins
and membrane-bound proteins, some of which serve as PRM that
trigger complement activation, and others that act as regulatory
proteins that downregulate complement activation to prevent
self-damage or autoimmune inflammation (Ricklin et al., 2016).
The orchestrated balance between the efficient destruction of
pathogens and prevention of unnecessary complement activation
in the host tissue is tightly regulated by complement regulatory
mechanisms (Ricklin et al., 2016).

To survive within the host, the parasite must overcome
the host’s immune response. As a survival strategy, parasites
have developed sophisticated mechanisms to escape and defend
against complement attack. Parasites express various proteins to
effectively play these roles (Morais et al., 2018; Song et al., 2018).
Increasing evidence reveals that parasites escape complement
attack by using several approaches, including expression of
proteins to capture host regulatory proteins; expression of
proteins that are homologous to host regulators and interfere
with the functions of the host complement system (Jozsi,
2017); and expression of proteins that specifically bind to host
complement components and interfere with the final formation
of the MAC by inhibiting the classical, lectin, or alternative
activation pathways (Braschi and Wilson, 2006; Zhao et al., 2017;

Mendes-Sousa et al., 2018; Verma et al., 2018). In this review,
we compiled pertinent information regarding parasitic abilities
to escape host complement attack as a survival strategy
in the hostile environment, and the mechanisms underlying
complement evasion.

COMPLEMENT SYSTEM AND
ACTIVATION

The complement system in human consists of about 50 molecules
that are soluble plasma proteins produced mainly by the liver or
membrane-tethered proteins expressed on cell surface, including
effector molecules, receptors and regulators (Merle et al., 2015a;
Schmidt et al., 2016). Under normal circumstances, complement
components remain inactive pro-enzymes or zymogens. On
apoptotic cells and the pathogens lacking specific regulators
of complement, the complement activation occurs, and the
proteases become enzymatically active, resulting in a rapid
and efficient cascade (Merle et al., 2015a). Three possible
pathways exist for complement activation: the classical pathway,
the alternative pathway, and the lectin pathway. Although the
initiation steps of the three pathways differ, they converge at the
terminal pathway resulting in the lysis of the apoptotic cells and
the pathogens (Merle et al., 2015a). The activation cascades are
shown in Figure 1.

Triggering the Classical Pathway
The classical pathway is antibody-dependent and initiated by
C1 complex, when binding of C1q to antibody IgM or IgG
complexed with antigens (Duncan and Winter, 1988; Gaboriaud
et al., 2014; Pednekar et al., 2016). Such binding events cause C1q
conformational changes, which lead to the activation of C1r and
C1s. Consequently, activated C1s splits C4 and C2, which then
form C3 convertase (C4b2a) (Law and Dodds, 1997).

In addition to antigen-antibody immune complexes, C1q
can bind directly with certain proteins on the surface of
pathogens like bacterial cell walls, or polyanionic structures
such as the lipoteichoic acid (Prellner, 1981). The binding
of phosphatidylserine of the apoptotic cells, and other agents
such as pentraxins (C-reactive protein and pentraxin 3) to
C1q also initiates the classical pathway (McGrath et al., 2006;
Biro et al., 2007).

Initiation of the Lectin Pathway
The lectin pathway is activated by microbial sugars instead
of immune complexes. It is stimulated when MBL, ficolins
(M-ficolin, H-ficolin, and L-ficolin), or collectins (collectin-
10 and collectin-11) bind to mannose residues on the surface
of the pathogen (Bohlson et al., 2007; Garred et al., 2016).
Once bound with glycans, the MASPs become activated
from inactive zymogens. A conformational change occurs in
MASP-1, following which MASP-2 is cleaved (Garred et al.,
2016). Activated MASP-2 then cleaves C4 and C2 to form
C3 convertase (C4b2a) (Heja et al., 2012), which continues
the cascade as the classical pathway until the formation of
the MAC on the membrane of the pathogen. As the lectin
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FIGURE 1 | Complement activation cascades and functions. (A) Immune complex (IC) activates the classical pathway through activating C1 complex (C1qr2s2).
(B) PRMs such as MBL, ficolins and collectins, found in complexes with serine proteases (MASPs), bind to pathogen-associated molecular patterns (PAMPs) on the
pathogen surface to activate the lectin pathway. Activation of the classical and lectin pathway leads to cleavage of C4 and C2 to form a C3 convertase (C4b2a).
(C) The alternative pathway is initiated spontaneously by hydrolyzing C3 into C3(H2O) with factors FB, FD and FP. This leads to the formation of C3 convertases of
the alternative pathway [C3(H2O)Bb or C3bBb]. Complement activation then comes to a core stage that C3 convertase cleave C3 into the anaphylatoxin C3a and
the opsonin C3b. C3b then participates in the formation of the classical and lectin pathway C5 convertase (C4b2a3b) and the alternative pathway C5 convertase
(C3bBbC3b). C5 convertase cleave C5 into the anaphylatoxin C5a and C5b. Afterwards, C5b assembles with C6, C7, C8, and multiple C9 molecules on the target
surface to form MAC (C5b-9). MAC is a 10-nm aperture inserting into the target membrane, which results in the lysis of invading pathogens. The anaphylatoxins C3a
and C5a bind to their corresponding receptors, C3aR and C5aR, to mediate inflammation. C3b triggers opsonization which facilitate phagocytic removal of the
target. Complement modulates a variety of immune activities and acts as a linker between the native and the adaptive immune response such as augmentation of
antibody response and enhancement of immunologic memory.

pathway can be activated in the absence of antibody, it
plays an important role in early infection even before the
antibody is generated.

Initiation of the Alternative Pathway
The alternative pathway is activated by the spontaneous
hydrolysis of C3 to from C3(H2O). Physiologically, the
alternative pathway maintains constitutive activation at low-
levels in plasma by a hydrolytic process known as tick-over.
This spontaneous hydrolysis of a labile thioester bond converts
C3 to a bioactive form C3(H2O) (Merle et al., 2015a). This
results in a dramatic change in structure that exposes a binding
site for FB (Merle et al., 2015a). FB binds to both C3b and
C3(H2O), which can be cleaved into Ba and Bb by a plasma
protease, FD. At this point, C3bBb and C3(H2O)Bb are formed
as the C3 convertase of the alternative pathway. As C3bBb
and C3(H2O)Bb are unstable, properdin (factor P, FP) binds

with them to stabilize the alternative pathway C3 convertase
(Kemper and Hourcade, 2008).

Generation of C3 Convertase, C5
Convertase and Formation of Activation
of the MAC
All three pathways converge at the formation of C3 convertase,
which promotes the cleavage of C3 into C3a and C3b. When a
large quantity of C3b is generated, C5 convertase is formed by
the binding of C3b to C4b2a or C3bBb (C4b2a3b or C3bBbC3b),
which marks the activation of the terminal pathway (Schmidt
et al., 2016). C5 is cleaved into the potent anaphylatoxin C5a
and the bigger split fragment C5b by C5 convertases (Rawal
and Pangburn, 2001). Large quantities of C3a and a limited
quantity of C5a are released into the fluid phase, and then act
on endothelial cells and mast cells (Dias Da Silva and Lepow,
1967; Kohl, 2001; Schraufstatter et al., 2002) as anaphylatoxins
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because of their ability to induce a shock-like syndrome similar to
an allergic reaction (Coulthard and Woodruff, 2015; Hawksworth
et al., 2017). The cascade of reactions leading to the assembly
of the MAC on the membrane of the pathogen is initiated
by C5b. This cascade starts with the binding of C5b to the
monomer C6 to form the C5b6 complex, followed by further
binding to the monomer C7 to expose the hydrophobic site
on C7. The conformationally altered C7 is inserted into the
membrane to bind C8 onto itself. Subsequently, C8β binds
C5b67, and C8α-γ is inserted into the membrane, leading to the
polymerization and insertion of 10–16 molecules of C9 into the
membrane to form a pore (Parker and Sodetz, 2002). This 10-
nm aperture is formed by the MAC, which disrupts the integrity
of the lipid bilayer and allows the transfer of solutes and water
across the membrane, resulting in osmotic lysis of the pathogen
(Ricklin et al., 2010).

REGULATION OF COMPLEMENT
ACTIVATION

Activation of the complement system is tightly regulated to
prevent uncontrolled amplification of the effects that may cause
inflammation or autoimmune diseases (Zipfel and Skerka, 2009;
Liszewski and Atkinson, 2015). The first method of regulation
is hydrolysis. The complement-activated components that are
not bound to the surface of the pathogen, such as C3b and
C4b, are rapidly inactivated by hydrolysis. The second method
of regulation of complement activation is through a variety of
CRPs including RCAs. RCA proteins are the family of RCA
gene cluster including complement receptor 1 (CR1 and CD35),
membrane cofactor protein (MCP and CD46), decay accelerating
factor (DAF and CD55), C4BP, and FH and its alternative splice
product Factor H-like 1 (FHL-1) (Schmidt et al., 2016). Other
CRPs include C1-INH, FI, CPN1, S-protein, clusterin (SP40/40),
CRIg, C8BP, and protectin (CD59) (Noris and Remuzzi, 2013).
They target different components to modulate and balance
complement activation.

C1 Inhibitor
To inhibit the initiation stage, C1-INH, a plasma serine protease
inhibitor, binds to the active enzymes C1r/s through covalent
bond and dissociates it from C1q. C1-INH also binds through
covalent bond to MASP-1 and MASP-2 and makes them
dissociated from MBL. This leads to limit activation of the
classical pathway and lectin pathway (Jiang et al., 2001).

C3 and C5 Convertase Inhibitors
Negative regulatory proteins that are also present in the plasma
and/or on the cell membrane inhibit C3 and C5 convertases
(Zipfel and Skerka, 2009). The C4BP has a high binding affinity to
C4b and the C4b binding leads to the displacement of C2a from
C3 convertase (C4b2a) (Schmidt et al., 2016). FI, an active serine
protease in plasma, prevents the formation of C3 convertase and
inactivates C4b2a and C3bBb through binding to C3b and C4b
with the help of the cofactors FH, C4BP, MCP, and CR1. C3b is
cleaved by FI and MCP first into membrane-bound iC3b and C3f,

after which C3f is released into the fluid phase. The iC3b is then
further cleaved by FI and CR1 into C3dg bound on the surface,
and C3c released into the fluid phase. In the alternative pathway,
C3bBb is permanently inactivated. Similarly, C4b is inactivated
by FI and cleaved into C4c and C4d, thereby inhibiting the
formation of C4b2a.

Conformational change in C3b exposes an extended surface
in C3b that allows complement regulators FH, DAF, MCP, and
CR1 to bind, resulting in the accelerated decay of the alternative
pathway C3-convertase and inactivation of C3b (Alcorlo et al.,
2015). FH is capable of competing with FB to bind with C3b
(Zipfel and Skerka, 2009). DAF binds to C4b and dissociates C2a
and Bb from C3 convertases (Fujita et al., 1987). It also displaces
Bb from C3bBb to inhibit the formation of C3bBb or C3bBbC3b
(Dho et al., 2018). In addition, CRIg can bind with remnant
fragments of C3b (C3b, iC3b, and C3c) on the cell membrane to
inhibit the alternative pathway (Zipfel and Skerka, 2009).

MAC Inhibitors
At the stage of MAC formation, several inhibitory proteins
prevent the insertion of the MAC into the lipid bilayer. The
S-protein, also known as vitronectin, binds with C5b67, C5b-
8, and C5b-9 to inhibit MAC insertion. The SP40/40 not only
binds directly to the C5b-9 complex but serves as a cofactor of
the S-protein. Both C8BP and CD59 inhibit the binding of C9 to
C5b-8, and C9 polymerization (Zipfel and Skerka, 2009).

Thus, regulation of complement activation at various stages
of all three pathways spontaneously maintains homeostasis.
Otherwise, any breaks in this balance could lead to autoimmune
syndromes, such as atypical hemolytic uremic syndrome, with
clinical features of damaged red blood cells and platelets, and
kidney inflammation due to malfunction of the complement
system (Yoshida et al., 2018).

BIOLOGICAL AND ALTERNATIVE
FUNCTIONS OF COMPLEMENT
ACTIVATION

Complement Is Activated to Eliminate
Pathogens by MAC or Opsonization
When complement is activated, it contributes to the defense
against pathogens, which is not only evolved as part of the
innate immune system but remains a link to the adaptive
immune system. Complement destroys pathogens directly via
the MAC. Once complement activation has been initiated, all
three pathways lead to the formation of C3 convertase, which
initiates a cascade of enzymatic reactions that eventually lead to
the formation of the MAC on the surface of pathogens, resulting
in osmotic lysis of invading bacteria (especially Gram-negative
bacteria), viruses, and parasites (Merle et al., 2015b).

Moreover, complement fragment C5a recruits neutrophils,
monocytes, and macrophages to clear pathogens through a
process known as opsonization (Ricklin et al., 2010; Martin
and Blom, 2016). The C3b and C4b bind with CR1 expressed
on phagocytes and erythrocytes to enhance IgG-mediated
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phagocytosis or clear soluble immune complexes (Freeley et al.,
2016). In addition, iC3b can be specifically recognized by
CR3 and CR4 on monocytes and neutrophils (Wang et al.,
2015; Lubbers et al., 2017). This causes the phagocytes to
release toxic reactive oxygen compounds and microbicidal
components, such as lysozyme and proteases that kill pathogens
(Martin and Blom, 2016).

Alternative Functions of Activated
Complement Components
Besides the participation of complement in innate immune
defense, some of the original complement proteins, or
intermediate components generated during activation, have
many other immunity-enhancing functions. In addition to
initiating the classical activation of complement, C1q has many
unconventional functions. It is noteworthy that apart from
its role as part of the complement system, C1q recognizes
its receptors expressed on phagocytes, such as neutrophils
and macrophages, and stimulates these phagocytes to release
reactive oxygen species, such as H2O2 and superoxide, to
attack pathogens. Furthermore, C1q plays a role in modulating
dendritic cell (DC) maturation (Son et al., 2012), B cell
tolerogenic capacity, and IgM or IgG production (Young
et al., 1991). Moreover, C1q is reportedly involved in the
clearance of apoptotic cells via CD91, which is a multi-
protein-binding scavenger receptor complex containing CRT
(Ogden et al., 2001).

Anaphylatoxins C3a and C5a stimulate DCs to express the
major histocompatibility complex II (MHC-II) and CD86 via
C3a and C5a receptors, thereby promoting their maturation as
APCs (Peng et al., 2008, 2009). Locally produced C3a and C5a
also interact with their receptors on T lymphocytes involved in
maintaining T cell proliferation and differentiation (Strainic et al.,
2008). The interaction between C3d and complement receptor
CR2 on B cells during antigen-induced activation promotes B
cell activation and facilitates the transformation of naïve B cells
into antibody-producing effector and memory B cells (van den
Elsen and Isenman, 2011; Donius et al., 2013). These alternative
functions of complement components bridge the innate immune
response with the adaptive immune response to coordinate
the elimination of invading pathogens. The functions of the
complement system are shown in Figure 1.

COMPLEMENT EVASION BY PARASITES

Over millions of years of evolution, parasites, including parasitic
protozoans, helminths and ectoparasites, have developed
sophisticated mechanisms as strategies of survival to escape
immune attack in the host. The first strategy developed was
the inhibition of complement activation as the initial step to
evade host immune clearance, particularly at the early stages of
invasion. Complement plays an important role in the defense
against parasitic infections, which relies on its direct lysis on
invading parasites through the formation of the MAC, and
acts as a bridge to adaptive immune responses. Parasites have
evolved to develop several mechanisms that inhibit or interrupt

the functions of host complement as the first steps to escape
host immune attack.

Recruitment of Host Regulatory Proteins
to Inhibit Complement Activation
The C1-INH is a soluble regulator of complement activation
that negatively regulates the classical and lectin pathways by
inhibiting C1r, C1s, MASP-1, and MASP-2, the activating
proteases of the complement cascade. The intracellular protozoa,
Plasmodium falciparum, which causes the deadliest malaria
in humans (Rich et al., 2009), could recruit and utilize C1-
INH to inhibit complement activation (Mejia et al., 2016).
Merozoites, the invasive form of blood-stage malarial parasites,
actively recruit C1-INH to their surface when exposed to
human serum. A member of the merozoite surface protein
3 family, PfMSP3.1, worked as a direct interactive partner
to bind with C1-INH, to inhibit C1s, MASP1, and MASP2
(Kennedy and Wijeyewickrema, 2017).

Host complement FH, a CRP, is the main soluble inhibitor of
the alternative pathway against the formation of C3-convertase.
It achieves this inhibition by supporting the conversion of C3b
to iC3b (Zipfel and Skerka, 2009). Echinococcus granulosus, a
cestode that causes cystic echinococcosis in humans, expresses a
protein that sequestrates FH on the hydatid cyst wall to inhibit
complement C3b deposition (Diaz et al., 1997; Breijo et al., 2008).
The binding molecule remained unknown until further research
showed that it was InsP6, a major component of the acellular
laminated layer (LL) of the hydatid cyst wall, that was bound
with FH to inhibit the alternative pathway (Irigoin et al., 2008).
Mosquito midgut epithelial cells also express two proteins (40 and
100 kDa) as receptors that captured FH to inhibit the deposition
of C3b and impair activation of the alternative complement
pathway (Khattab et al., 2015).

Decay-accelerating factor (DAF; CD55), another human
complement regulatory factor, causes the accelerated decay of
C3 and C5 convertases by associating with C4b and C3b
deposited on the cell membrane (Fujita et al., 1987; Heine
et al., 2003). Schistosoma mansoni is a blood fluke that causes
intestinal schistosomiasis. When incubated with normal human
erythrocytes, but not with DAF-deficient erythrocytes, S. mansoni
became resistant to complement lysis in vitro (Horta and
Ramalho-Pinto, 1991). Further study showed that S. mansoni
acquired DAF from host erythrocytes via the expression of a GPI
anchor on the surface of the worm (Ramalho-Pinto et al., 1992).
The ability of the trypsin-treated S. mansoni worm to acquire
DAF was reduced (Ramalho-Pinto et al., 1992). Treatment with
GPI-specific phospholipase D (GPI-PLD) facilitated the binding
of DAF to the surface of the schistosomula (Carvalho et al., 1994).

As a membrane-bound inhibitor of the cytolytic MAC, CD59
reduces C9 polymerization on the cell surface by binding
to C8α and C9 (Venneker and Asghar, 1992). The N-linked
glycosylation of CD59 is related to its complement-inhibitory
activity (Ninomiya et al., 1992). P. falciparum is able to acquire
the intrinsic host factor, CD59, to restrict complement attack
on the infected erythrocyte (Wiesner et al., 1997). Furthermore,
P. falciparum expressed mannosyltransferase (PfPIG-M), which
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is involved in GPI synthesis, and thereafter increased the levels
of the GPI-anchored protein, CD59, on the cells, indicating
that the GPI anchor is involved in the capture of CD59 on the
surface of P. falciparum-infected erythrocytes (Kim and Hong,
2007). Trichomonas vaginalis, an anaerobic flagellated protozoan
parasite, also acquired CD59 from different host cells, including
red blood cells, during infection, to protect the parasite from
being lysed by host complement (Ibanez-Escribano et al., 2015).

Expression of Homologous Proteins With
Host Regulators of Complement
Activation
To avoid complement-mediated lysis, some parasites express a
variety of CRPs on their surfaces. As more parasite genomes
have been deciphered, parasitic helminths have been shown to
express many mammalian-like receptors for host growth factors,
cytokines, or hormones to regulate the growth, development,
signaling, and reproduction of the parasite (Hu et al., 2003). More
results suggest that parasites modulate host anti-parasite immune
responses by expressing host immunological inhibitors and
receptors of some immunological components (Ramirez-Toloza
and Ferreira, 2017). The antigenic similarity between host- and
parasite-expressed proteins may mask the host’s immune system
to recognize invading parasites, and thus protect the parasite
from elimination (Abu-Shakra et al., 1999).

Parasites express orthologs of host complement components
or regulators to modulate or inhibit the functions of the
host complement. S. japonicum, a blood fluke that causes
Asian schistosomiasis, expresses protein (Schistosome CRIT) that
share similarities with host complement C2 receptor inhibitor
trispanning (CRIT) (Inal, 2005). This expression is indicative of
their involvement in host complement activation or regulation.
Schistosome CRIT is located on the surface tegument of
the Schistosoma parasite and enables it to bind C2 via its
extracellular domain. It subsequently inhibits the binding of
C2 to C4b, to interfere with the formation of C3 convertase
(C4b2a). The CRIT is an example of molecular mimicry, as
it reportedly binds C2 with a domain that is homologous
to one region of human C4b. Both the classical and lectin
complement pathways are interrupted when C2 is hijacked
(Cestari Idos et al., 2009). The C2 binding site of schistosome
CRIT is located at an 11-amino acid sequence at the C-terminus
of the first extracellular domain, which is involved in the
inhibition of the classical complement pathway and reduction
of immune complex-mediated inflammation (Inal et al., 2003).
Trypanosoma cruzi, an intracellular protozoan parasite that
causes Chagas disease, also expresses CRIT on the surface of
trypomastigotes to inhibit C2-associated complement activation
(Ramirez-Toloza and Ferreira, 2017).

In addition to the C2 receptor inhibitor, adult schistosomes
express the C3 receptor on their surface tegument. During
complement activation, C3 binds to the worm’s surface through
the C3 receptor and stimulates the replacement of the outer
tegument, which is shed during complement attack (Silva
et al., 1993). Through this expression of the C3 receptor
and shedding of the C3–C3 receptor, parasites are able to

consume C3 from serum, and consequently become non-
activators of the alternative pathway (Marikovsky et al., 1986;
Rasmussen and Kemp, 1987).

In addition to its recruitment of host DAF on its surface
to avoid host complement lysis, the T. cruzi trypomastigote
also expresses DAF (T-DAF) on the surface of its virulent
forms to inhibit complement activation by blocking C3, similar
to mammalian DAF (Joiner et al., 1988; Kipnis et al., 1988;
Tambourgi et al., 1993). Further studies have demonstrated that
T. cruzi expressed a 160 kDa (GP160) complement regulatory
glycoprotein on the surface of trypomastigotes (Norris et al.,
1989). The gp160 gene was verified to share significant DNA
sequence homologous with the human DAF gene (Norris et al.,
1991). GP160 can inhibit the formation of the alternative and
classical C3 convertase as it is a member of the C3/C4 binding
family of complement regulators. This prevents the activation
and amplification of the complement cascade on the parasite’s
surface (Norris and Schrimpf, 1994; Norris et al., 1997).

An earlier study described a schistosome complement
inhibitor, a 94-kD protein of S. mansoni (SCIP-1), expressed on
the surface of S. mansoni larvae and adults, which was found to be
functionally and antigenically related to human CD59. It binds to
human C8 and C9, and inhibits the assembly of C5b-9 (Parizade
et al., 1994). In addition, other CD59 homologs have been
identified in the schistosome genome displaying the consensus
CCXXXCN sequence at the C terminus (Wilson and Coulson,
2009) and in the membrane fraction of the live schistosome
tegument (Castro-Borges et al., 2011). CD59 homologs (FhCD59-
1,2,3) have also been found on the surface tegument of the
trematode, Fasciola hepatica, a liver fluke (Shi et al., 2014).
FhCD59-2 showed a phylogenetic relationship with SmCD59-
2 on the surface tegument of S. mansoni (Shi et al., 2014).
However, analogs of mammalian cell-expressed recombinant
schistosome CD59 showed no inhibition of complement activity
in vitro, which possibly differs from the action of native proteins
expressed in the tegument (Farias et al., 2013). And both the
location and potential function of the CD59-like proteins in
F. hepatica even require further biochemical analyses to elucidate.

Expression of Proteins to Inhibit Host
Complement Activation
In addition to their expression of parasite-encoded regulators,
which mimic host complement regulators, to inhibit complement
activation, parasites also express or secrete a variety of proteins
that directly bind to some complement components to inhibit
their activation by targeting various stages (Figure 2).

Expression of Molecules That Inhibit C1q and MBL
The initiator of the classical complement pathway, C1q, plays
an important role both in complement activation and in the
activation of some immune cells by binding to the C1q receptor
on their surfaces. CRT is a calcium-binding protein with a
broad range of functions associated with immunomodulation
(Malhotra et al., 1990). It contains the globular N-domain,
proline-rich P-domain, and acidic C-domain, which can bind to
C1q, resulting in the inhibition of C1q-dependent complement
activity (Boelt et al., 2016). Studies have shown that CRTs
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FIGURE 2 | Regulation of complement activation by RCAs or
parasite-expressed proteins targeting different complement components at
the different steps of complement activation. Proteins showed in the blue
boxes are human complement regulatory proteins. Proteins showed in the red
boxes are parasites-generated to inhibit complement activation. (A) At the
initiation step, C1 inhibitor binds to the active enzymes C1r/s and MASP-2
and dissociates them from C1q and MBL, respectively. Calreticulin,
paramyosin, SMIPP-Ss, and N- and O-glycosylated molecules expressed by
parasitic protozoa or helminths bind to C1q, MBL and ficolins to inhibit
initiation of the classical and lectin pathway. (B) C3 convertase (C3bBb)
undergoes an accelerated decay mediated by complement receptor 1 (CR1),
decay accelerating factor (DAF), C4b-binding protein (C4BP) or factor H (FH).
C3b is inactivated to iC3b by factor I (FI) with cofactor CR1, FH, C4BP or
membrane cofactor protein (MCP). GP63 expressed by Leishmania binds to
C3 leading to proteolysis of the active component C3b to form the inactive
iC3b, thus preventing the formation of C3-convertase. GP58/68 expressed by
T. cruzi binds with FB and interferes the formation of C3 convertase to inhibit
alternative pathway. (C) Under normal conditions, CD59, S-protein
(vitronectin), and Clusterin (SP-40) prevent the formation of the MAC.
Paramyosin generated by helminth like T. spiralis bind with C8 and C9 to
inhibit the formation of MAC.

are expressed on the surfaces of several parasites, such as
Trypanosoma carassii, Necator americanus, Trichinella spiralis,
and Brugia malayi, where it acts as an inhibitor of C1q, to
facilitate the survival of the parasites in the hosts (Pritchard
et al., 1999; Oladiran and Belosevic, 2010; Yadav et al., 2014;
Zhao et al., 2017).

The tissue-dwelling nematode,T. spiralis, which causes serious
trichinellosis in humans, expresses CRT (Ts-CRT) that can bind
to C1q to inhibit the activation of the classical complement
pathway. This results in the failure of MAC generation on the
parasites, thereby conferring protection from the attack by the
activated complement (Zhao et al., 2017). Binding of Ts-CRT to
C1q also inhibited C1q involved pathogen-clearance functions,
such as reduced recruitment of immune effect cells (neutrophils,
eosinophils, and macrophages) to the site of parasitic infection

and reduced the release of reactive oxygen intermediates (ROIs)
and reactive nitrogen intermediates (RNIs) (Zhao et al., 2017).

The CRT expressed by B. malayi, a nematode that causes
lymphatic filariasis in humans, could bind to human C1q.
Bm-CRT inhibited C1q-dependent lysis of immunoglobulin-
sensitized red blood cells (Yadav et al., 2017). Molecular docking
has identified that interactions between Bm-CRT and C1q
occurred at the site of the C1qB chain (IgG/M and CRP binding
sites on C1q), and Bm-CRT conserved and non-conserved
regions of the N/P-domain, in which 37 amino acids were
involved in the interaction (Yadav et al., 2014, 2017). Mapping
of the C1q binding site in the Hc-CRT secreted by H. contortus
has shown that the N-terminal sequences of GKYYDDAKRD and
AKFPKKFT were involved in the binding of C1q and suppression
of complement-mediated cell lysis (Naresha et al., 2009).

Taenia solium, a tapeworm in the intestine of pigs that
causes cysticercosis in humans, secreted CRT bound to C1 and
induced a dose-dependent inhibition of C1-initiated complement
activation (Laclette et al., 1992). More studies have shown that
the S. scabiei secreted proteolytically inactive serine protease
paralogs (SMIPP-Ss) that are bound both to C1q to inhibit the
classical pathway, and to FP resulting in assembly failure of
the alternative pathway convertases and thereby inhibiting the
alternative pathway (Bergstrom et al., 2009).

Haemonchus contortus, a gastrointestinal nematode that
parasitizes domestic animals, expresses GAPDH, one of
the components of H. contortus ES products. The parasite
enzyme trapped C1q and inhibited the complement-
mediated lysis of sensitized sheep erythrocytes. The C1q
binding site of Hc-GAPDH was mapped to the N-terminal
(Vedamurthy et al., 2015).

Trypanosoma cruzi utilizes N- and O-glycosylated molecules
on the surface of trypomastigotes and amastigotes to bind with
L- and, H-ficolins, and MBL (Kahn et al., 1996). This results in
the failure of MASP-2-induced C2 and C4 cleavage (Cestari and
Ramirez, 2010; Ribeiro et al., 2015). Similarly, CRT of T. cruzi
could bind to the collagenous portion of L-ficolin to inhibit the
activation of the lectin pathway (Sosoniuk et al., 2014). Tc-CRT
also bound MBL thus inactivating the lectin pathway (Lidani
et al., 2017; Sosoniuk-Roche et al., 2017). Two scabies mite
proteins, SMIPP-S D1 and I1, were also shown to be capable
of binding with MBL to inhibit activation of the MBL-initiated
lectin pathway (Reynolds et al., 2014).

One more important C1-INH is the helminth-secreted Pmy,
which plays an important role in immunomodulatory functions
by evading complement-mediated lysis. T. spiralis and S. mansoni
express Pmy on their surfaces, which is also able to bind to C1q
to inhibit C1q-initiated complement activation (Deng et al., 2007;
Zhao et al., 2014).

Inhibition Occurs at the C3 and C5 Convertase Steps
Formation of the C3 and C5 convertases is a critical step for
complement activation. Inhibitors bind to C3 and C5 convertases
and interfere with their enzymatic reactions, thereby inhibiting
the final formation of the MAC. Inhibition of C3 and C5
convertases also inhibits the release of anaphylatoxin C5a and the
C5a-mediated recruitment of neutrophils.
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During T. cruzi infection in mammals, the infective
trypomastigote becomes resistant to lysis induced by the
alternative complement pathway. The majority of C3 on the
trypomastigote is in the inactive form, iC3b, which fails to
form C5 convertase (Joiner et al., 1986). T. cruzi express the C3

acceptor in the infective trypomastigote stage and is a molecule
of 25–30 kDa, whereas the C3 acceptor in the epimastigote
stage is GP72 to inhibit the formation of alternative pathway
C3 convertase (Joiner et al., 1986). A glycoprotein expressed
on the surface of the trypomastigote, with molecular weight of

TABLE 1 | A selection of host complement regulatory proteins utilized by parasite or parasite-produced complement regulatory proteins described in this review.

Recruitment of host regulatory proteins to inhibit complement activation

Proteins Species Ligands Effects Reference

PfMSP3.1 Plasmodium falciparum C1-INH To recruit and utilize C1-INH to inactivate C1s and MASP-2 Kennedy and Wijeyewickrema,
2017

InsP6 Echinococcus granulosus FH To recruit and utilize FH to inactivate the conversion of C3b
to iC3b

Irigoin et al., 2008

Proteins (40 and
100 kDa)

Mosquito midgut
epithelial cells

FH To capture FH to inhibit the deposition of C3b and impair
activation of the alternative complement pathway

Khattab et al., 2015

A GPI anchor on the
surface of the worm

Schistosoma mansoni DAF To acquire DAF from host erythrocytes to form a complex
with C4b and C3b deposited on the cell membrane causing
accelerated decay of C3 and C5 convertases

Ramalho-Pinto et al., 1992

PfPIG-M Plasmodium falciparum CD59 To acquire the intrinsic CD59 to reduce C9 polymerization
on the cell surface by binding to C8α and C9

Kim and Hong, 2007

Unknown Trichomonas vaginalis CD59 To acquire CD59 from different host cells, including red
blood cells to reduce C9 polymerization

Ibanez-Escribano et al., 2015

Expression of homologous proteins with host regulators of complement activation

Proteins Species Ligands Effects Reference

Complement Receptor
Inhibitor Trispanning
(CRIT)

Schistosoma japonicum
Trypanosoma cruzi

C2 To be homologous with host CRIT; To hijack C2 to interrupt
the classical and lectin complement pathways

Cestari Idos et al., 2009;
Ramirez-Toloza and Ferreira,
2017

Schistosoma mansoni C3
receptor

Schistosom mansoni C3 To be homologous with host C3 receptor; To consume C3
from serum, and consequently become non-activators of
the alternative pathway

Silva et al., 1993

T-DAF (GP160) Trypanosoma cruzi C3 C4 To be homologous with host DAF; To inhibit complement
activation by blocking C3 and C4

Norris et al., 1991, 1997;
Tambourgi et al., 1993; Norris,
1998

SCIP-1 Schistosom mansoni C8 C9 To be homologous with host CD59; To bind to human C8
and C9 and inhibit the assembly of C5b-9

Parizade et al., 1994

Expression of proteins to inhibit host complement activation

Proteins Species Ligands Effects Reference

Calreticulin Trichinella spiralis
Trypanosoma carassii
Necator americanus
Brugia malayi
Trypanosoma cruzi

C1q
L-Ficolin
MBL

To inhibit activation of the classical and lectin complement
pathway

Pritchard et al., 1999; Oladiran
and Belosevic, 2010; Sosoniuk
et al., 2014; Yadav et al., 2014;
Sosoniuk-Roche et al., 2017;
Zhao et al., 2017

Paramyosin Trichinella spiralis
Schistosom mansoni

C1q C8 C9 To inhibit activation of the classical complement pathway
and the formation of MAC

Deng et al., 2007; Zhang et al.,
2011; Zhao et al., 2014

SMIPP-Ss Sarcoptes scabiei C1q FP To inhibit activation of the classical and alternative pathway Bergstrom et al., 2009

SMIPP-S D1 and I1 Sarcoptes scabiei MBL To inhibit activation of the lectin complement pathway Reynolds et al., 2014

N- and O-glycosylated
molecules

Trypanosoma cruzi L-Ficolin
H-Ficolin

To inhibit activation of the lectin complement pathway Kahn et al., 1996

Glyceraldehyde-3-
phosphate
dehydrogenase (GAPDH)

Haemonchus contortus C1q C3 To inhibit haemolysis and MAC formation Sahoo et al., 2013; Vedamurthy
et al., 2015

GP58/68 Trypanosoma cruzi FB To bind with FB and inhibit alternative pathway Fischer et al., 1988

GP63 Leishmania mexicana C3b To form iC3b Yao et al., 2003

Protein (25–30 kDa)
(trypomastigote) GP72
(epimastigote)

Trypanosoma cruzi C3 To inhibit the formation of the C3 convertase in the
alternative pathway

Joiner et al., 1986
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58/68 kDa (Gp 58/68), is another CRP that inhibits the formation
of cell-bound and fluid phase alternative pathway C3 convertase,
possibly through its interaction with FB rather than C3b (Fischer
et al., 1988). Further investigation with recombinant protein
demonstrated that this protein binds to human complements
C3b and C4b to inhibit the activation of the complement cascade
(Beucher et al., 2003).

Hc-GAPDH, which inhibits the C1q-initiated classical
complement pathway, also could act as a C3 binding protein
(C3BP) to inhibit complement activation, as measured by
the hemolytic assay and MAC formation (Sahoo et al.,
2013). The binding of C3BP to C3 through its N-terminal
domain resulted in the inhibition of complement activation
(Vedamurthy et al., 2015).

The GP63 expressed by Leishmania, an intracellular protozoa
that causes leishmaniasis, is the most abundant surface
glycoprotein on Leishmania promastigotes (Yao et al., 2003) that
binds to C3 with high affinity, leading to proteolysis of the active
component C3b to form the inactive iC3b, thus preventing the
formation of C3-convertase (Yao, 2010).

MAC Formation Is Impeded
The terminal complement pathway is the final cytolytic step in
the complement cascade, which results in formation of the MAC,
a lytic assembly of C5b, C6, C7, C8, and multiple molecules of C9.
In addition to the expression of host CD59 homologs on their
surfaces to inhibit formation of the MAC and directly restrict
complement-mediated lysis, parasites also express several other
molecules that interfere with MAC formation as a final measure
of protection against complement attack.

Trichinella spiralis expressed paramyosin (Ts-Pmy) on the
surface of larvae and adult worms acts as an important
immunomodulatory protein by not only binding to C1q to inhibit
the initiating step of classical complement activation (Zhang
et al., 2011; Sun et al., 2015), but binding to C8, C9 to interfere
with MAC formation, and thus protecting the parasite from
complement-mediated killing (Hao et al., 2014). Mapping of the
C8/9 complement binding site has been narrowed down to 14
amino acid residues at the C-terminus (866Val-879Met) of Ts-Pmy,
which inhibited C9 polymerization and complement-mediated
lysis of rabbit erythrocytes (Zhao et al., 2014). The similar C8/C9
binding sites can also be found in S. mansoni-Pmy, located within
the amino acid sequence of 744Asp–866Met at the C-terminus
(Deng et al., 2007). The identification of complement binding
sites on CRPs is important to gain a better understanding of their
inhibitory mechanisms, as it relates to the design of drugs and
vaccines against parasitic infections.

The host CRPs used by parasites and the parasite-generated
CRPs described in this review are listed in Table 1.

PARASITE-GENERATED COMPLEMENT
REGULATORY PROTEINS AS VACCINE
AND DRUG TARGETS

Parasite-generated complement inhibitory proteins are actively
involved in the inhibition of host complement activation and

are important for the survival of parasites within the host.
Therefore, these proteins have emerged as prime targets for
the development of drugs and vaccines against infections, or
regulation of disease progression. Immunization with these
proteins may reduce the defensive ability of the parasites
against host complement attack, thereby rendering them more
susceptible to the host’s immune defense, and ultimately leading
to their expulsion from the host. Immunization with C4BP-
fused MSP119 induced protective immunity in BALB/c mice
against the otherwise lethal malarial parasitic challenge of
Plasmodium yoelii, possibly through protection of the parasite
from complement lysis (Ogun et al., 2008). Vaccination with
complement regulator CRIT ed1 synthetic peptide conferred
protection against the challenge of Schistosoma japonicum
in mice through the inhibition of complement activity both
in vitro and in vivo (Ma et al., 2017). T. cruzi expresses a
complement regulatory protein (Tc-CRP) as a major antigen
that induces the production of lytic antibodies during T. cruzi
infections, making it a potential target for vaccine development
(Henrique et al., 2016).

As an important CRP, Pmy has become another target of
interest for the development of vaccines against various helminth
infections. Mice immunized with native or recombinant Pmy
of S. mansoni show a significant reduction in worm burden
when challenged with S. mansoni cercariae (Pearce et al., 1988).
The monoclonal antibody, 9G3, which targets the complement
binding site of Ts-Pmy, could partially block its complement
inhibitory activity, thereby increasing complement-mediated
killing of larvae (Hao et al., 2014). Mice immunized with
recombinant protein (Yang et al., 2010), epitope peptides
(Wei et al., 2011; Gu et al., 2013, 2017), or the DNA
(Wang et al., 2016, 2017) of Ts-Pmy were conferred with
significant protection against the challenge of T. spiralis
muscle larvae. Thus, Ts-Pmy has become the leading vaccine
candidate for the control of trichinellosis. The RNAi-mediated
silencing of Pmy expression in T. spiralis was also verified
to reduce viability and infectivity of treated infective larvae
(Chen et al., 2012).

CONCLUSION

The complement system plays a major role in combating
the establishment of invading pathogens, and acts as the
first line of host defense against the invading parasites.
Parasites have developed sophisticated mechanisms as survival
strategies to defend against complement attack including
recruitment of host regulatory proteins and expression of
proteins either homologs to host regulators or directly blocking
activated complement molecules to evade or inhibit complement
activation. In this review, we analyzed a considerable number
of proteins that are expressed or recruited by parasites
and involved in the regulation of the host complement
system as a strategy to escape host complement-mediated
killing. Effective evasion of host complement attack is a
crucial step for the survival of parasites within the host.
Therefore, parasite-expressed CRPs have now become important
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targets for the development of drugs and vaccines against
parasitic infections.
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