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ABSTRACT

Cells deficient in c-Fos are hypersensitive to ultra-
violet (UV-C) light. Here we demonstrate that mouse
embryonic fibroblasts lacking c-Fos (fos—/—) are
defective in the repair of UV-C induced DNA lesions.
They show a decreased rate of sealing of repair-
mediated DNA strand breaks and are unable to
remove cyclobutane pyrimidine dimers from DNA. A
search for genes responsible for the DNA repair
defect revealed that upon UV-C treatment the level
of xpfand xpg mRNA declined but, in contrast to the
wild type (wt), did not recover in fos—/— cells. The
observed decline in xpf and xpg mRNA is due to
impaired re-synthesis, as shown by experiments
using actinomycin D. Block of xpf transcription
resulted in a lack of XPF protein after irradiation of
fos—/— cells, whereas the XPF level normalized
quickly in the wt. Although the xpg mRNA level was
reduced, the amount of XPG protein was not altered
in c-Fos-deficient cells after UV-C, due to higher
stability of the XPG protein. The data suggest a new
role for c-Fos in cells exposed to genotoxic stress.
Being part of the transcription factor AP-1, c-Fos
stimulates NER via the upregulation of xpf and thus
plays a central role in the recovery of cells from UV
light induced DNA damage.

INTRODUCTION

The genome is permanently harmed by endogenous and
exogenous insults. The dose of exposure, however, inducing
DNA damage is variable, depending on life style and numer-
ous endogenous and environmental factors. Therefore, DNA
repair might be supposed to be highly regulated, adapted to
the level of the genotoxic insult. In fact, promoters of several
DNA repair genes are subject to modulation by genotoxins,
indicating that fine-tuned mechanisms of regulation of DNA
repair have been evolved. For example, ultraviolet (UV-C)

light increases the expression of the DNA repair proteins
DDB2, XPC, Pol I, Ligl and Fenl (1-5).

There are two important players that are thought to be
involved in the regulation of DNA repair: p53 and c-Fos.
Both transcription factors are induced by many types of geno-
toxic stress and implicated in maintaining genomic stability
and cell survival. Thus, mouse embryonic fibroblasts
(MEFs) deficient in p53 are more sensitive to UV-C light
than the corresponding wild type (wt) (6). This was also
found for MEFs that are deficient in c-Fos (7). Whereas for
pS53-deficient cells hypersensitivity is ascribed to be due to
the abolition of G,/S checkpoint control (8,9), impaired
base excision repair (10,11) and nucleotide excision repair
(12), the hypersensitivity of c-Fos-deficient cells remained
up to now enigmatic.

Our initial finding that MEFs derived from c-fos knockout
mice are hypersensitive to UV-C light was explained on the
basis of an impaired recovery of the cells from the UV-C
induced block of DNA replication (7). Hypersensitivity of
c-Fos-deficient cells was confirmed by determining apoptosis
and chromosomal aberrations in both established and primary
MEFs treated with UV light and various chemical genotoxins
(13,14). The c-Fos protein together with a member of the Jun
family or ATF1 forms the heterodimeric activator protein AP-
1 (15,16) that stimulates a broad spectrum of genes harbouring
AP-1 sites in the promoter. c-fos is immediate-early inducible
upon transcriptional activation by growth factors (17), heavy
metals (18), UV light (19), alkylating agents (20) and other
forms of genotoxic stress (21). The fact that cells lacking c-
Fos are hypersensitive to genotoxins, responding with an
increased frequency of cell death and chromosomal aberra-
tions, suggests that c-Fos plays an important role in the cellu-
lar defence against DNA damaging agents. On the other hand,
c-Fos overexpression drives malignant transformation (22,23),
which might explain why c-Fos is expressed at high level in
several human tumors (24,25). c-Fos overexpression was
also shown to provoke resistance to chemotherapy by protect-
ing cells against the anticancer drug cisplatin (26,27).

Here we examined the role for c-Fos in the regulation of
DNA repair. Comparing the expression of ~130 DNA repair
genes (by means of a DNA repair microarray) in wt and c¢-fos
knockout (fos—/—) cells after UV-C exposure, we found the
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NER genes xpf and xpg to be differentially expressed.
Whereas normal cells recover quickly from xpf and xpg
mRNA downregulation, in fos—/— cells sustained depression
of xpf and xpg gene activity was observed. This results in
reduced repair protein level, notably XPF, decreased repair
of UV-C induced pyrimidine dimers (CPDs) and persistence
of NER intermediate DNA single-strand breaks (SSB). Thus,
c-Fos appears to be involved in the recovery from transcrip-
tional inhibition leading to reconstitution of the original gene
activity that was depressed upon genotoxic treatment. Based
on the findings, we propose a novel concept for the biological
function of the ‘classical’ cellular immediate-early genotoxic
response: stimulation of re-expression of DNA repair genes
(notably xpf) upon DNA damage and fast restoration of
normal DNA repair capacity.

MATERIALS AND METHODS
Cell lines

The cell lines used (fos+/4+1-98M designated as wt, fos—/—7-
98M designated as fos—/—) were described previously (6,14).
The cells were grown in DMEM containing 10% fetal bovine
serum (FBS), in 7% CO, at 37°C.

UV-C treatment

Growth medium was removed and cells were irradiated with
UV-C light at a dose rate of 1 J/m* per second with a radium
NSE 11-270 low pressure UV-C lamp (Philips). Thereafter,
the removed medium was returned and cells were incubated
at 37°C for the appropriate time periods.

Preparation of cell extracts and western blot analysis

Nuclear extracts were prepared as described previously
(28). Samples of 25 pg protein extract were separated by
10% SDS-PAGE and electroblotted onto nitrocellulose
membranes, which were then incubated with antibodies as
described previously (29). Monoclonal anti-p53 and c-fos
antibodies (sc-99, sc-52; Santa Cruz Biotechnology) were
diluted 1:500 in 5% non-fat dry milk, 0.2% Tween/
phosphate-buffered saline (PBS) and incubated overnight at
4°C. Monoclonal anti-XPF antibody (MS1385-PO; Neomark-
ers) was diluted 1:1000 in 5% non-fat dry milk, 0.1% Tween/
PBS and incubated overnight at 4°C. Polyclonal anti-ERK?2
and polyclonal anti-XPG antibodies (sc-154, sc-12558;
Santa Cruz Biotechnology) was diluted 1:3000 and incubated
overnight at RT. The protein—antibody complexes were visu-
alized by ECL (Amersham).

Preparation of RNA, RT-PCR and real-time RT-PCR

Total RNA was isolated using the RNA II Isolation Kit from
Machery and Nagel. An aliquot of 2 g RNA was transcribed
into cDNA by Superscript II (Invitrogen) in a volume of 40 pl
and 3 pl was subjected to RT-PCR. RT-PCR was performed
by the use of specific primers (MWG Biotechnology) and
Red-Taq Ready Mix (Sigma-Aldrich). The PCR program
used was as follows: 1.5 min, 94°C [denaturation: 45 s,
94°C; annealing: 1 min, 56—62°C; elongation: 1 min, 72°C,
25 cycles], 10 min, 72°C. Real-time PCR was performed
using the LightCycler FastStart DNA Master SYBR Green
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I Kit (Roche Diagnostics) and the light cycler of Roche
Diagnostics.

Southwestern analysis

Genomic DNA was isolated from subconfluent grown cells
by the use of the QIA(amp) blood mini kit (Qiagen). DNA
(0.5 pg) was transferred to a positively charged nylon mem-
brane (Hybond plus; Amersham) by vacuum slot-blotting,
denatured with 0.3 M NaOH, neutralized with 5x SSC and
fixed by baking the membrane for 2 h at 80°C. Monoclonal
antibodies specific for thymine dimers (Kamiya Biomedical
Company) were used at a dilution of 1:100. The additional
western blot procedure and detection was performed as
described above.

Measurement of RNA synthesis

Transcription blocka%e upon UV-C exposure was checked by
the incorporation of ["H]uridine. Cells were exposed to UV-C
and post-incubated for 1-8 h. One hour before the end of the
post-incubation period 0.5 uCi/ml [5,6-*H]uridine was added
to the medium. Thereafter, cells were washed twice with PBS
and 6% trichloroacetic acid (TCA) to remove unincorporated
[PHluridine. Cells lysis was performed by adding 2 ml of
0.1 N NaOH to the cells and overnight incubation. An aliquot
of 0.5 ml of the lysate was mixed with 4 ml scintillation
cocktail and counted in a liquid scintillation counter. The
incorporated radioactivity in cells not exposed to UV-C was
set to 100%.

BrdU incorporation

Cells were cultured in DMEM (10% FBS) and, after exposure
to UV-C, the thymidine analogue BrdU (10 uM) was added
to the medium. After 1 h of incubation, the incorporation
was analysed using a BrdU Incorporation Kit (Roche) in a
microplate reader.

Cloning and transfection of mouse XPF ¢cDNA

The XPF cDNA from fos+/+1-98M MEFs was amplified by
RT-PCR using specific primers and cloned in the vector
pcDNA3.1/V5-His-TOPO to generate the vector pcDNAtopo-
mXPF. This vector was utilized for transient transfection of
MEFs using the Fugene HD system from La Roche.

Single-cell gel electrophoresis (SCGE, comet assay)

Exponentially growing cells were exposed to UV-C and, after
the indicated time periods, trypsinized and washed with
ice-cold PBS. Alkaline cell lysis and electrophoresis was
essentially performed as described previously (30).

Chromatin immunoprecipitation assay (ChIP)

Cellular genomic DNA and proteins were cross-linked within
the cells by the addition of 190 ul of 37% formaldehyde to
the medium (7 ml) for 10 min in a 10 ml dish. The reaction
was stopped by the addition of 700 ul of 1.25 M glycine.
After 5 min incubation medium was removed, cells were
washed twice with PBS, collected and resuspended in 1 ml
PBS containing 1 pl phenylmethylsulfonyl fluoride (PMSF).
Genomic DNA was fragmented by sonification to a fragment
size between 500 and 1500 bp. Sodium lauroyl sulphate was
added to a final concentration of 0.5%. After 20 min mixing,
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membrane fragments were removed by centrifugation
(10 min, 10000 g). Equal amounts of fragmented DNA
were subjected to immunoprecipitation (IP) using a
c-Fos-specific antibody (sc-52; Santa Cruz) and protein
G-Sepharose. Immunoprecipitated proteins cross-linked to
DNA were washed four times in 1 ml wash buffer (1% Triton
X-100, 0.1% SDS, 150 mM NaCl, 2 mM EDTA 8.0, 20 mM
Tris—HCI, pH 8.0 and protease inhibitors). After the final
washing step the immunoprecipitate was resuspended in
1 ml washing buffer containing 500 mM NaCl. After an

additional centrifugation step, the immunoprecipitate was
resuspended in 400 pl elution buffer (1% SDS and 100 mM
NaHCO;) and 500 pg/ml proteinase K and RNase I were
added and incubated 30 min at 37°C. Cross-links were
reversed by heating 65°C overnight. The probe was adjusted
to 200 mM NaCl, proteins were removed by phenol-
chloroform extraction, DNA was recovered by ethanol pre-
cipitation and resuspended in 50 pl aqua bidest. PCR was
performed using specific primers for the AP-1-binding site
of XPF and, as negative control, B-actin.
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Figure 1. Characterization of wt and fos—/— cells. (A) To analyse the c-Fos and p53 status, wt and fos—/— cells were exposed to 20 J/m>. At different times after
exposure, cells were harvested, nuclear extracts were prepared and 25 pg were subjected to western blot analysis (c, non-exposed control). The filter was
incubated with p53, c-Fos and, for loading control, ERK2-specific antibody. (B) To analyse the c-fos and p53 mRNA status, wt and fos—/— cells were exposed to
20 J/m?. At different time points after exposure, cells were harvested and total RNA was isolated. Two micrograms were subjected to cDNA synthesis, followed
by RT-PCR with specific primers (c, non-exposed control). As internal control, gapdh was amplified. (C) DNA replication in wt and fos—/— fibroblasts as a
function of time after UV-C treatment (7.5 J/m? UV-C), as measured by BrdU incorporation. Data are the mean of at least three independent experiments.



RESULTS
Characterization of wt and c-Fos-deficient cell lines

We used isogenic embryonal mouse fibroblasts (MEFs) that
are wt and knockout for c-fos (fos—/—). Both cell lines are
‘wt’ for p53. Because p53 frequently mutates in mouse fibrob-
lasts, the maintenance of the p53 status was carefully checked
before each experimental series. As shown in Figure 1A,
wt and fos—/— cells display no detectable basal level of
p53 protein, but a clear pS3 accumulation 2—-8 h after UV-C
treatment (20 J/mz). (The sustained activation of p53 in
fos—/— cells 8 h after UV exposure could be indicative of
remaining DNA lesions; see below.) In contrast to the p53
protein, the corresponding mRNA increased only slightly
(Figure 1B). This is in line with the p53 accumulation upon
genotoxic stress to be due to stabilization and nuclear translo-
cation. The expression of the c-Fos protein (Figure 1A) and
mRNA (Figure 1B) was also enhanced upon UV-C treatment
of wt cells. As expected, it was not expressed in fos—/— cells.

c-Fos-deficient cells are impaired in the
removal of pyrimidine dimers

UV-C light induces the formation of CPDs that inhibit DNA
replication (31). DNA replication is much stronger inhibited
and less efficiently restored in c-Fos-deficient cells than in the
wt (Figure 1C), which was taken to indicate that fos—/— cells
suffer from a DNA repair defect. To analyse the repair
capacity of fos—/— cells, we determined the induction and
repair of CPDs. As demonstrated in Figure 2A (showing a
representative blot) and Figure 2B (quantification of three
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independent experiments), CPDs were detectable already 5
min after treatment with UV-C (7.5 and 20 J/mz) to a similar
level in wt and fos—/— cells. Within the 12 h post-incubation
period, CPDs were significantly removed from DNA in the wt
cells (by ~60%). This did not occur in fos—/— cells, in which
repair of CPDs was much less efficient (~20% removal).
Repair of CPDs upon treatment with a higher dose of UV-
C (20 J/m*) was found only in wt cells whereas in fos—/—
cells CPDs were not removed at all (Figure 2A and B, right
panel). For control, dilution experiments with ['*C]thymidine
pre-labelled cells were performed (data not shown), exclud-
ing an impact of DNA replication on the CPD level deter-
mined in the post-incubation period.

c-Fos lacking cells are deficient in the
processing of single-strand breaks

To elucidate which step in the repair of CPDs is disturbed in
c-Fos lacking cells, alkaline SCGE was conducted. Cells
were exposed to different doses of UV-C and harvested 6 h
later for analysis. As shown in Figure 3A, fos—/— cells
showed a significant increased accumulation of DNA SSBs.
To analyse whether the increased amount of DNA SSBs
upon UV-C is due to increased formation of CPDs or lack
of repair in fos—/— cells, time course experiments were per-
formed. As shown in Figure 3B, 2 h after UV-C exposure
both wt and fos—/— cells displayed a transient induction of
DNA SSBs. These are considered to be repair intermediates.
Whereas in the wt repair of these breaks occurred during the
8 h post-incubation period, fos—/— cells did not return to
control level. They rather showed an increase in DNA breaks
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Figure 2. Removal of CPDs from DNA in wt and fos—/— cells. Induction and repair of UV-C lesions in wt and fos—/— MEFs was determined by southwestern
analysis. Cells were exposed to 7.5 (left panel) or 20 (right panel) J/m* UV-C. At different time points following irradiation, genomic DNA was isolated, equal
amounts of DNA were blotted and subjected to incubation with anti-CPD antibodies (c, non-exposed control). (A) Presentation of representative blots. (B) For
quantification, the CPD signal measured 5 min after treatment was set to 100%. Data are the mean of three independent experiments + SD.
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Figure 3. Formation and repair of DNA SSBs. To analyse the NER-mediated
formation and repair of DNA SSBs, alkaline single-cell gel electrophoresis
(SCGE, comet assay) was performed. (A) wt and fos—/— cells were exposed
to different UV-C doses and harvested after 6 h. (B) Cells were exposed to
20 J/m? and subjected to SCGE after incubation times of 2, 4, 6 and 8 h and
(C) after short incubation times between 0 and 1 and after 6 h. Data
(OTM = Olive tail moment) of three independent experiments =+ inter-
experimental SD are shown.

during the post-incubation period, indicating a defect in the late
step of NER in which repair intermediates are sealed. There-
fore, the NER incision step appears to be unaffected. This
was again shown using shorter incubation times after UV-C
treatment. In both cell lines, the formation of DNA strand
breaks occurred already 10 min after UV-C exposure, reaching
similar maximum levels 30 min after irradiation (Figure 3C).

Expression profile of DNA repair genes

To determine whether the c-Fos-related phenotype, i.e. lack
of CPD removal and defective sealing of repair intermediates,

is due to impaired regulation of DNA repair gene(s), the
expression of genes involved in DNA repair and translesion
synthesis was studied by microarray analysis followed by
confirmative RT-PCR. Comparing wt and fos—/— cells trea-
ted with UV-C, we observed no differential expression of
most of the genes involved in NER (xpa, xpb, xpc, xpd,
ddbl, ddb2, erccl, csa, csb and ligl) or translesion
synthesis (polH, poll, polK, polL and polM) (data not
shown). Interestingly, however, microarray analysis revealed
that the xpf level was slightly enhanced 6 h after UV-C expo-
sure in wt cells, whereas in fos—/— cells it was clearly
reduced. The mRNA level of xpg was significantly enhanced
in wt cells, which was not found in fos—/— cells (data not
shown).

Expression of NER endonucleases upon UV-C exposure

To substantiate the findings obtained by microarray analysis,
quantitative real-time PCR was performed. The compiled
data obtained by three independent experiments are shown
in Figure 4A. Treatment of wt cells with 7.5 J/m? increased
the mRNA expression of xpzf and, more pronounced, xpg.
Upon treatment with 20 J/m~ the xpf mRNA level dropped
below 50% control level, whereas the xpg expression was
still enhanced above the control. In fos—/— cells exposure
to 7.5 J/m? reduced the xpf and xpg mRNA level to 50 and
90%, compared with the unirradiated control. With 20 J/m?
the expression level of xpf and xpg dropped to 20 and 50%
of control level, respectively. Comparable results were
obtained by semi-quantitative RT-PCR, which was per-
formed to verify the specificity of the products quantified
by real-time RT-PCR and, moreover, to examine the time
course of xpf and xpg mRNA re-synthesis in more detail.
As shown in Figure 4B, the level of xpf mRNA was not sig-
nificantly reduced in the wt, whereas in fos—/— cells it
declined immediately after UV-C treatment and was nearly
not detectable up to 12 h after irradiation. It recovered only
16 h later. The xpg mRNA level in the wt slightly dropped
1-2 h after irradiation and recovered 4—6 h later, whereas
in fos—/— cells recovery did not occur within this period.
In contrast to xpf and xpg, the mRNA level of the NER
endonuclease ERCC1 did not show significant variation
upon UV-C treatment (Figure 4B).

Decrease in xpf and xpg mRNA level is related
to high-mRNA instability

To identify the mechanism responsible for the decrease in xpf
and xpg mRNA expression upon UV-C, the stability of the
mRNA was determined. To this end, wt cells were exposed
to actinomycin D or o-amanitin for 3 or 6 h. Thereafter,
RNA was extracted and the expression of xpg, xpf, erccl
and gapdh was analysed by RT-PCR. As shown in Figure 5A,
treatment with actinomycin D or o-amanitin reduced dra-
matically the xpf and xpg mRNA level. In contrast, the
expression level of erccl (and gapdh included for control)
mRNA was not altered by the inhibitors. The data demon-
strate low stability of xpf and xpg mRNA and high stability
of erccl (and gapdh) mRNA. As shown in Figure 5B, the
same was found after exposure to actinomycin D for 1 or
2 h. Here we also show that actinomycin D reduces the xpf
and xpg level to comparable amounts in wt and fos—/—
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Figure 4. RNA expression of xpf, xpg and erccl. (A) Exponentially growing wt and fos—/— MEFs were exposed to 7.5 or 20 J/m? UV-C for 6 h. Total RNA was
isolated and real-time RT-PCR was performed using xpf, xpg or, as positive control, gapdh specific primers. For quantification, the expression was normalized
with gapdh and the untreated control was set to 1. Data are the mean of three independent experiments + SD. (B). In a different set of experiment, wt and fos—/—
cells were exposed to 20 J/m? UV-C for different time points, total RNA was isolated and semi-quantitative RT-PCR was performed using xpf, xpg, erccl or, as

positive control, gapdh specific primers (c, non-exposed control).

cells, indicating no difference in the stability of the mRNA
species between the two cell lines. Taken together, the data
revealed that lack of re-synthesis and low stability of xpf
and xpg mRNA are responsible for the observed decrease
in the mRNA levels observed in c-Fos-deficient cells after
UV-C exposure. It might be speculated that mRNA synthesis
is generally blocked in fos—/— cells compared with the wt.

This however was not the case. As shown in Figure 5C, treat-
ment with 20 J/m? UV-C reduced the overall transcription
up to 40% control level both in wt and fos—/— cells within
a 12 h post-incubation period. Therefore, the stimulatory
effect of c-Fos on mRNA re-synthesis upon UV-C appears
to be related to a specific subset of blocked genes, notably
the repair genes xpf and xpg.
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Figure 5. Impact of transcription blockage on xpf and xpg mRNA expression.
(A) Exponentially growing wt cells were exposed to 1 UM actinomycin D or
0.1 uM co-amanitin for 3 or 6 h and total RNA was isolated. Two micrograms
were subjected to cDNA synthesis, followed by RT-PCR with xpf, xpg
or erccl specific primers. As internal control, gapdh was amplified.
(B) Exponentially growing wt and fos—/— cells were exposed to 1 uM
actinomycin D for 1 or 2 h and total RNA was isolated. Two micrograms
were subjected to cDNA synthesis, followed by RT-PCR with xpf, xpg
or erccl specific primers. As internal control, gapdh was amplified.
(C) Transcription blockage upon UV-C exposure was checked by incorpora-
tion of [*H]uridine. Cells were exposed or not exposed to 20 J/m* UV-C for
different time points and the incorporated radioactivity was determined as
described in Materials and Methods. The incorporated radioactivity of the
non-UV-C exposed probe (0 h) was set to 100%. Data are the mean of three
independent experiments + SD.

Deficient xpf re-synthesis leads to lack of XPF protein

Does impaired xpf and xpg mRNA synthesis lead to reduced
protein levels? The expression level of XPF and XPG was
determined and shown in Figure 6. UV-C did not influence
the XPF level in wt cells. It led, however, to a strong reduc-
tion in fos—/— cells 6-18 h after treatment (Figure 6A). This
is in line with the observed decline and lack of re-synthesis in

the xpf mRNA level in fos—/— cells. In contrast, the expres-
sion of XPG protein was enhanced 612 h after irradiation in
the wt and unaltered in fos—/— cells (Figure 6B).

XPF complementation partially restores CPD removal

To proof the importance of XPF expression for CPD removal,
we cloned the murine xpf cDNA in the vector pcDNAtopo-
mXPF. The vector was used for transient transfection of
fos—/— cells. Transfection efficiency was ~60%, as mea-
sured by parallel transfection using a GFP construct. The
transfection was also checked by western blotting, detecting
the XPF protein (data not shown). As demonstrated in
Figure 6C, XPF transfection provoked removal of CPDs in
fos—/— cells. Quantification revealed that the complemented
cells removed up to 40% of the CPDs 12-16 h after UV-C,
whereas in mock transfected cells no repair was observed.

Importance of AP-1 for XPF re-synthesis

To further substantiate the role of c-Fos (AP-1) in the regula-
tion of re-synthesis of XPF, inhibitor experiments were per-
formed. As shown in Figure 7A and B, down-modulation of
xpf mRNA and XPF protein can also be achieved in UV-C
irradiated wt cells by pre-treatment with SP600125, a specific
JNK inhibitor that attenuates AP-1-mediated gene activation
(32). This is opposed to fos—/— cells in which SP600125 did
not further reduce the XPF level. This supports the hypothesis
that c-Fos/AP-1 is involved in controlling the re-synthesis of
XPF upon DNA damage. A computer-based study revealed a
AP-1 consensus binding site in the putative promoter region
of the xpf gene. To analyze if the xpf promoter is recognized
by c-Fos/AP-1 under in vivo conditions, ChIP experiments
were performed using a c-Fos-specific antibody. As
shown in Figure 7C, c-Fos was found to bind to the xpf
promoter. This binding was clearly enhanced in wt cells trea-
ted with UV-C (Figure 7C, lanes 5 and 6). c-Fos did not rec-
ognize the B-actin promoter, which was used as negative
control.

DISCUSSION

Previously we showed that MEFs deficient for c-Fos are
hypersensitive to the cytotoxic, apoptosis-inducing and clas-
togenic effects of UV-C light (6,7,14) and other genotoxins
(13). The reason for the hypersensitivity of c-Fos-deficient
cells remained enigmatic. Cells lacking c-Fos display a defect
in the recovery from UV-C induced DNA replication inhibi-
tion, indicating a defect in the repair or processing of UV-C
induced DNA lesions rather than impaired signalling. To
establish a role for c-Fos in DNA repair, we compared the
DNA repair efficiency of isogenic wt and c-Fos lacking
mouse fibroblasts upon UV-C exposure. Here we report for
the first time a defect of c-Fos-deficient cells in the repair
of these lesions. Whereas wt cells removed most of the
CPDs within a post-incubation period of 12 h, fos—/— cells
were unable to repair CPDs. It is important to emphasize
that the cell lines used in our study are phenotypically p53
wt, which was confirmed by the induction of p53 target
genes (p21 and gadd45) in both cell lines (data not shown).
Therefore, the molecular mechanism underlying the repair
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Figure 6. Expression of XPF and XPG protein and impact of XPF transfection on CPD removal. (A and B) Exponentially growing wt cells were exposed to
20 J/m? UV-C for the indicated times. Protein extracts were prepared and 25 pg were subjected to western blot analysis. The filter was incubated with XPF
(A) or XPG (B) specific antibodies. For loading control, ERK2 was detected. (C) Exponentially growing fos—/— cells were transfected with an empty vector or
the vector pcDNAtopo-mXPF. Twelve hours after transfection, cells were exposed to UV-C light and were harvested after 0—18 h of recovery. Genomic DNA
was isolated, equal amounts of DNA were blotted and subjected to incubation with anti-CPD antibodies. For quantification, the CPD signal 5 min after treatment
was set to 1. Data are the mean of three independent experiments = SD (right panel) from which a representative experiment is shown (left panel).

defect in fos—/— cells is different from the repair defect
reported for p53-deficient MEFs (5,12).

CPD removal is accomplished by NER, which can be
divided into four steps: recognition, incision/excision,
re-synthesis and ligation. Which one of these steps is defec-
tive in fos—/— cells? To examine the incision/excision step,
we analysed the formation and repair of DNA SSBs that
are formed during NER by dual incision at defined positions
flanking the DNA damage (33,34). Although the formation
of SSBs upon UV-C occurs in both cell lines equally, their
sealing during NER clearly did not occur in fos—/— cells.
As c-Fos is part of the dimeric transcription factor AP-1, it
was pertinent to conclude that c-Fos regulates genes involved
in the repair of UV-C induced DNA lesions. To verify this
hypothesis, microarray analysis was performed using a self-
constructed array containing the presently known DNA repair
genes (5). As to the basal level of expression, there was no
significant difference in the expression of NER genes between
wt and c-Fos lacking cells. However, upon UV-C irradiation
a remarkable and highly reproducible change was observed in
the expression pattern of the endonucleases xpf and xpg. This
was substantiated by semi-quantitative PCR and real-time
RT-PCR. The study revealed that xpg and, even more
pronounced, xpf mRNA is more reduced in fos—/— cells
than in the wt upon irradiation. With high doses of UV-C
(20 J/m?) the expression of xpf and xpg was also slightly
attenuated in wt cells. However, it recovered quickly to
basal level, which was not the case in fos—/— cells. There-
fore, we conclude that c-Fos regulates the re-synthesis of
xpf and xpg genes upon DNA damage.

As demonstrated in experiments using the transcription
inhibitor actinomycin D (and o-amanitin), the xpf and xpg
mRNAs are quite unstable, being degraded already after
2 h of treatment with the inhibitor. Therefore, even a transient
block of transcription of xpf and xpg will result in reduced
transcript levels. Interestingly, the overall inhibition of tran-
scription induced by UV-C was similar in wt and c-Fos-
deficient cells. Therefore, it appears that c-Fos/AP-1 is a
key component involved in the abolition of the block of tran-
scription of a subset of genes, notably the repair genes xpf and
xpg.

Interestingly, the impaired re-synthesis of xpf and xpg
mRNA resulted in a significant reduced level of XPF but
not XPG protein in fos—/— cells. This indicates that either
the XPG protein is much more stable or the remaining
mRNA is sufficient for maintaining the XPG protein expres-
sion. Since the XPG protein was found to be present in
fos—/— cells, we conclude that the blocked re-synthesis
of XPF protein is responsible for the NER defect observed
in c-Fos-deficient cells. This was strongly supported by the
finding that transfection of XPF provoked CPD removal in
fos—/— cells.

The important role of c-Fos/AP-1 for triggering the
re-synthesis of xpf was verified using a specific inhibitor of
AP-1 and ChIP analysis. Inhibition of Jun kinase and,
thereby, AP-1 transactivation abolished the re-synthesis of
xpfin wt cells. We also show by ChIP experiments that c-Fos/
AP-1 binds in vivo to the xpf promoter.

The lack of XPF but not XPG protein in c-Fos-deficient
cells upon UV-C treatment is compatible with the data
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Figure 7. Effect of INK inhibition on XPF level and Chip analysis. (A and B)
Exponentially growing wt and fos—/— cells were not exposed (c, control),
exposed to 20 J/m? UV-C (UV-C), pre-incubated with 10 uM SP600125 and
thereafter exposed to 20 J/m* UV-C (UV-C + SP) or incubated with 10 uM
SP600125 only (SP). Total RNA was isolated 6 h later and protein extracts
were prepared 12 h after exposure. Expression of xpf mRNA (analysed by
RT-PCR) (A) and XPF protein (determined by western blot analysis)
(B) upon treatment with the JNK inhibitor. (C) Chip analysis: exponentially
growing wt cells were not exposed (¢, control) or exposed to 20 J/m*> UV-C
(UV-C). Six hours after exposure, cells were harvested and dealt with as
described in Materials and Methods. Immunoprecipitation was performed
using a c-Fos-specific antibody. PCR was performed using specific primers
for the AP-1-binding site of the xpf promoter and, as negative control, for the
B-actin 5'-untranslated region.

obtained by measuring the level of DNA SSBs. Here we found
incision but not restitution of SSBs to occur in c-fos—/— cells.
During NER, the 3’ incision is performed by XPG (35,36)
whereas the 5’ incision is accomplished by the XPF-ERCCI
complex (37). The 3’ incision is a pre-requisite for the 5 inci-
sion (34). Obviously, fos—/— cells are able to perform the
3’ incision (by XPG) but not the subsequent 5’ incision step
(executed by XPF-ERCC1). This explains why SSBs occurred
and CPDs were not removed from DNA of c-Fos-deficient
cells. Thus, they resemble the phenotype of XPF defective
cells that are able to generate 3’ but not 5’ incision next to
the lesion (34). Since mouse cells remove CPDs only from
transcriptional active genes (38), we suppose the repair defect
of fos—/— cells is restricted to transcription coupled repair.
In summary, we provide evidence that c-Fos-deficient
cells display a defect in the repair of CPDs due to impaired
re-synthesis of XPF. c-fos is a paradigmatic example of a
gene that is promptly induced upon DNA damage, notably
UV light. How relevant is the finding as to the natural UV
exposure? A dose of 10 J/m? induces ~0.3 CPDs per kbp
DNA. This dose is comparable to ~80 kJ/m? simulated sun
light or 1 kJ/m*> UV-B (39). It has further been reported
that 0.062 CPDs per kbp are induced during a 30 min sunbath
in August (in Paris). This would correspond to a sun exposure
period of 2.5 h (40), yielding a similar amount of CPDs than
10 J/m* UV-C light. Therefore, our finding as to the role of
c-Fos/AP-1 in regulating the re-synthesis of XPF might be

highly relevant for the recovery of skin cells from DNA
damage after sun exposure. We should also consider the
possibility that individuals might be variable in the regula-
tion of the expression of c-Fos/AP-1 triggered genes and,
therefore, might be impaired in DNA repair and susceptibility
to UV light without showing mutations in NER genes. The
data provide a firm basis for future studies in this direction.
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