
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19241  | https://doi.org/10.1038/s41598-020-74196-5

www.nature.com/scientificreports

Mapping of subthalamic nucleus 
using microelectrode recordings 
during deep brain stimulation
Nabin Koirala1, Lucas Serrano2,6, Steffen Paschen3,6, Daniela Falk4, Abdul Rauf Anwar3,5, 
Pradeep Kuravi3, Günther Deuschl3, Sergiu Groppa1,6 & Muthuraman Muthuraman1,6*

Alongside stereotactic magnetic resonance imaging, microelectrode recording (MER) is frequently 
used during the deep brain stimulation (DBS) surgery for optimal target localization. The aim of this 
study is to optimize subthalamic nucleus (STN) mapping using MER analytical patterns. 16 patients 
underwent bilateral STN-DBS. MER was performed simultaneously for 5 microelectrodes in a setting 
of Ben’s-gun pattern in awake patients. Using spikes and background activity several different 
parameters and their spectral estimates in various frequency bands including low frequency (2–7 Hz), 
Alpha (8–12 Hz), Beta (sub-divided as Low_Beta (13–20 Hz) and High_Beta (21–30 Hz)) and Gamma 
(31 to 49 Hz) were computed. The optimal STN lead placement with the most optimal clinical effect/
side-effect ratio accorded to the maximum spike rate in 85% of the implantation. Mean amplitude 
of background activity in the low beta frequency range was corresponding to right depth in 85% 
and right location in 94% of the implantation respectively. MER can be used for STN mapping and 
intraoperative decisions for the implantation of DBS electrode leads with a high accuracy. Spiking 
and background activity in the beta range are the most promising independent parameters for the 
delimitation of the proper anatomical site.

Deep brain stimulation of the subthalamic nucleus (STN-DBS), now established as a standard therapeutic option, 
is an effective therapy for patients with Parkinson’s disease (PD)1. The principle effects of the stimulation are for 
the improvement of major clinical motor symptoms like tremor, rigidity, and bradykinesia2. Parkinson’s disease 
and the effect of DBS for optimal clinical response have been shown to be a network level effect3,4. However, 
both clinical and computational observations have shown that the success of STN-DBS depends fundamentally 
in placing the DBS electrodes with high precision into the sensorimotor region of the STN corresponding 
to the dorsolateral posterior part of the nucleus5–9. The somatotopic arrangement of sensorimotor region in 
subthalamic nucleus and its relation to movement and tremor in PD patients has been well established10,11. To 
accomplish a high precision implantation in this region, preoperative MRI images-based navigation systems 
and intraoperative microelectrode recordings (MER) are widely used. The visualization technique for locating 
the STN by using preoperative MRI is prone to giving inaccurate results due to brain shift induced parenchymal 
alterations or cerebrospinal fluid loss12. Hence, the intraoperative MER allows improving the target localiza-
tion during stereotactic surgery by recording the electrical activity of the individual neurons from targeted 
structure. The main principle of this procedure for the STN-DBS is based on the fact that spike patterns for 
neurons in the subthalamic nucleus (STN) are characteristic and differ from neuronal spike patterns of the sur-
rounding structures13. Several previous studies have shown the association of dorsolateral posterior STN field 
potentials and firing rate to effective clinical outcome13–15, quantification of motor subtypes16, severity of rigidity 
and bradykinesia in PD17, optimal DBS implantation trajectory18 and simulation parameters19 among others. 
Recent studies have further used various recordings using MER for localizing dorsal–ventral border of STN20 
and predicting therapeutic volume of tissue activation21. Despite extensive research in the pathophysiological 
role and clinical correlation of these electrophysiological activity patterns in PD and target localization, studies 
focusing on the differential use of them for improving the accurate implantation of the electrodes in sensorimo-
tor region of STN is still insufficient. Moreover, specific use of all MER parameters either to accurately target the 
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STN region or to characterize any clinically relevant outcome has not been thoroughly investigated. In previous 
studies, it has been reported that most probable track of MER needle will pass through thalamus, zona incerta 
(ZI), STN and SNr in the same order. During which Thalamus and ZI could be characterized by low firing rates 
(average number of spikes) along with low amplitude of background activity but in case of STN, both firing rate 
and amplitude of background activity is reported to be high. Even though SNr exhibits different frequencies and 
shapes of spikes compared to STN, the relatively high firing rates and very close proximity to STN complicates 
the task of differentiating the two structures during surgery based only in firing rates17. Moreover, SNr has been 
proven to be promising target for deep brain stimulation (DBS) to treat the gait and postural disturbances in 
Parkinson’s disease (PD)22,23 but the critical development of differentiating STN and SNr border and position-
ing the DBS electrode within the SNr is still being investigated in recent studies24,25. In this study, we investigate 
extensive list of parameters using both spikes and background activity obtained using MER in different depth 
and locations in both STN and SNr for localizing optimal target location and depth. Here in this study, we show 
that by computing data driven parameters like maximum spike rate and beta frequency amplitude, we could 
accurately differentiate STN and SNr for achieving optimal therapeutic benefit while avoiding complications. 
We propose this method to exploit the obtained characteristics of spikes and background activity in different 
brain regions to complement the MRI-based detection of the sensorimotor region of STN and precisely predict 
the target location and depth in PD patients during DBS surgery.

Methods
Subjects and surgical procedure.  Sixteen patients with idiopathic PD without dementia (12 males, age 
64.06 ± 7.68, Hoehn and Yahr (H &Y) 3.19 ± 0.66) selected for DBS treatment were included in this study. All 
patients underwent bilateral STN implantation as previously described26. STN was targeted by stereotactic mag-
netic resonance imaging and microelectrode recording. As a part of the clinical routine, all patients were tested 
intraoperatively by a neurologist for the most common symptoms of overstimulation or stimulation outside of 
the target. They vary from disturbances of speech, eyelid apraxia, mydriasis, hypersalivation, diplopia, rigidity 
and verbal fluency. The permanent electrode (model 3389 DBS, Medtronic plc, Dublin, Ireland) and pulse gen-
erators (Activa Medtronic, biphasic stimulation) were implanted. The pulse setting was 60 μsec in duration at 
130 Hz, with voltage adjusted to the individual patient. The study protocol was done in accord with the ethical 
standards in accord with the Helsinki Declaration of 1975 and were approved by local ethics committee (Ethik 
commission, medizinische fakueltaet der Christian-Albrechts-Universitaet zu Kiel) and all patients gave the 
written informed consent for their anonymized data to be used for the research.

MER data acquisition.  The MER data (collected using Lead point MER acquisition system from Medtronic 
plc, Dublin, Ireland) from patients was recorded from all electrodes (for each side separately) inserted in either 
side of brain. Data was recorded simultaneously from all five needles arranged in standard “Ben’s Gun” pattern 
in each hemisphere for approximately 30 s (mean recording time for the whole group was 42.20 ± 7.43 s) with 
the sampling rate of 24,000 Hz. Considering the target location at 0 mm, MER recordings were obtained from 
each position at 1 mm MER displacement steps (depths), 10 mm above the dorsal border and 4 mm below the 
target nuclei. A microelectrode can detect the changes in the extracellular field caused by the current flows from 
the closest neuron and from other nearby cells27. For extracellular recordings, spikes are commonly identified 
as voltage signals that exceed a threshold, the details of different types of spikes and their origination has been 
very well reviewed in28.

MER data analysis.  MER data was analysed offline using in-house customised MATLAB (Mathworks Inc., 
Natick, USA) script and wave_clus (a MATLAB package for spike detection)29. The MER data and the analysis 
was segregated into following three components to extract different parameters of interest30.

•	 Artifacts removal

Here, artifacts are defined as the unwanted noise resulting from interference from power line, surgical equipment 
and other exogenous noises. The recorded MER data was trimmed to 30 s length for all the participants and 
was subjected to segmentation for removing exogenous artifacts. Segmentation is a process of dividing the data 
into epochs—a process of extracting specific time-windows from the continuous signal. Individual epochs were 
then inspected for the presence of artifacts and were discarded. In order to avoid artifacts due to concatenation 
of non-adjacent epochs we interpolated the epochs with pchip (Piecewise Cubic Hermite Interpolating Polyno-
mial) method31. During segmentation, the MER data was divided into non-overlapping epochs of 0.5 s and was 
arranged in an array S = [s(1), s(2),…, s(l)], where [s(1), s(2), …, s(l)] are non-overlapping epochs of MER data 
vector S. Afterwards, the variance coefficient (Vc) for each epoch was calculated by computing the quotient of 
variance using the following expression:

A critical threshold of 1.8 was set and all the epochs with value of Vc greater than this were discarded from 
further analysis32. Thus, obtained clean epochs were then analyzed individually for background activity and 
spike detection.

(1)Vc =
var{s[k]}

var{s[k − 1]}
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•	 Spikes detection

The algorithm used for spike detection could be divided into three main steps—spike sorting and detection, selec-
tion of spike features and clustering of selected spike features. The details of this method have been explained in 
detail previously in32,33, but to mention here briefly. First, a band pass filter (500 and 5000 Hz using fourth order 
Butterworth filter) was used to filter the high power, low frequency activity in order to visualize the spikes. One 
of the distinct features for classification of the background activity and spikes are the signal amplitude. Typically, 
the amplitude of background activity ranges from 2 to 6 µV whereas the typical spike amplitude ranges from 70 
to 150 µV (Fig. 1A). Here, we consider multi-unit spiking activity to be the signal from putative action potential.

In the first step, after removing the exogenous artifacts, spikes are detected with an automatic amplitude 
threshold. In the second step, wavelet coefficients from each spike was calculated using a four-level multi-
resolution decomposition using Haar wavelets and 64 wavelet coefficients were obtained for each spike. Each 
wavelet coefficient here would characterize the spike shapes at different scales and times. Hence, to choose the 
coefficients that best distinguishes different spike shapes, Lilliefors modification of Kolmogorov–Smirnov (KS) 
test for normality was used34. These selected coefficients representing a compressed set of spike features are then 
used as the input for clustering algorithm. In the final step, superparamagnetic clustering (SPC) was used for 
unsupervised clustering of the spikes35. SPC is based on the concept of simulated interactions between each data 
points and its K-nearest neighbors carried out in two steps. In the first step, interaction strength is computed 
(using Eq. 2) between each feature (similar spikes will have strong interaction) and in the second step Monte 
Carlo iterations (here 500) is performed for wolf algorithm to compute the probability of the change in state of 
nearest neighbors for different temperature (using Eq. 3)36,37.

Here, strength of interaction Jij is as above if xi is a nearest neighbor of xj , else 0. For the equation, a is the 
average nearest-neighbors distance and K is the number of nearest neighbors.

Here, pij is the probability that the nearest neighbor of xi will also change their state. T is temperature and 
δsi,sj is the point-point correlation whose details is discussed in38.

The clusters are thus formed based on the principle that, for temperatures corresponding to the superpara-
magnetic phase, only those points that are grouped together will change their state simultaneously38. A brief 
schematic workflow of spike detection and classification is shown in Fig. 1B.

•	 Background activity

Here we consider background activity to be the electrical activity of other cells around the recording electrode 
which could range from action potential from distant cells to subthreshold events in neurites of nearby cells or 
synaptic noise caused by the stochastic synaptic transmission39. After spike sorting, detected spikes with shapes 
and timestamps are saved, these timestamps are used for reconstruction of background noise. The reconstruc-
tion is done by substituting 0.5 ms before to 2.5 ms after each timestamp with 3 ms of spike-free consecutive 
signal from a random location within the same recorded trace. The reconstructed background noise was passed 
through a low pas filter of 500 Hz and is left with no significant spikes, leaving only a few, near-noise level and 
secondary neuron’s spikes35.

•	 Parameters computation

After the segmentation of spikes and background activity, overall mean for both of these parameters was esti-
mated for each subject separately. The estimation was done quantitatively by calculating the difference in vari-
ance for every 0.5 s to identify the artifact-prone segments. Using the spikes, modal interspike interval (ISI) and 
burst index (BI) were further assessed. For computing ISI, the most frequent value in the distribution (mode) 
was considered for the estimation. However, analysis of raw ISI has been shown to be vulnerable to fluctuations 
in the firing rate and an improved measure to incorporate these irregularities have been suggested before40–42. 
Hence, we further computed Local variation compensate for Refractoriness (LvR) (using Eq. 4) which has been 
shown to measure the local variation of ISI and enhance the invariance to firing rate fluctuations increasing the 
sensitivity of detection of signal characteristic40,43.

Here, Ii and Ii+1 are the ith and i + 1th ISIs, and n is the number of ISIs. R is the refractoriness constant.
Moreover, Burst index (BI) was computed as the reciprocal of the modal interval divided by the mean firing 

rate44. This index is computed based on the principle of maximization of Poisson surprise, whose detail deriva-
tion and formulation is explained in45.
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1
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Using the background activity, we further computed the parameters to observe the oscillatory characteristics 
of the obtained signal. Previous studies have revealed that basal ganglia activity in Parkinson’s disease involves 
increase in firing rate, a tendency toward bursting and abnormal synchronization in the neurons of the sub-
thalamic nucleus (STN)46–48. These abnormalities and association to the outcome of DBS has been observed 
in various frequency bands49–51. Hence, we computed spectral estimations (mean amplitude, maximum peak 
and root-mean-square value) in a range of frequency bands—low frequency (2–7 Hz), Alpha (8–12 Hz), Beta 
(sub-divided as Low_Beta (13–20 Hz) and High_Beta (21–30 Hz) ) and Gamma (31 to 49 Hz) using the power 
spectrum density with Welch method35.

Target localization and evaluation.  During the surgery, coordinates for anterior commissure (AC) and 
posterior commissure (PC) are determined and adapted to the coordinates of STN by direct visualization, which 
is in general 12 mm lateral, 3 mm posterior and 3 mm caudal in relation to Mid-AC-PC. Hence determined 
individualized depth is considered to be the correct target depth in the study. Furthermore, dorsolateral region 
of STN (individually determined for each subject using clinical/surgical procedure) is the target location and is 
considered as the correct implantation site. The optimal target location and depth for the electrodes were fur-
ther verified by evaluating the Unified Parkinson’s disease rating scale (UPDRS) score pre-operative (one week 
before) and post-operative (three months after). Only those patients were considered in the study who were 
significantly improved (UPDRS improvement of 75% or more, with medication) after the surgery.

All parameters mentioned above were calculated for the MER data recorded at different depths (from 10 mm 
above and 4 mm below the target nuclei). These parameters were then used for the prediction of implantation site 
(location) and correct depth and for the comparison with the results from visual inspection. So, the underlying 
hypothesis being, depths at which these parameters are observed to have relatively high amplitudes compared to 
other depths, resembling the visual inspection and is the target stimulation location in STN. Hence, the detection 
accuracy is calculated based on the number of times obtained parameters maximum value and clinical target 
coincides. Here, an experienced Neurologist (SF) specialized in movement disorders also observed the spike rate 
visually (VSR) for the purpose of comparison. Additionally, the parameters obtained in the target location were 
further correlated with clinical parameters using Pearson correlation coefficient for determining the sensorimo-
tor subdivision of the STN. The multiple comparison correction was performed for all the correlation results for 
each subset of independent variables using Bonferroni correction.

Results
32 possible final target locations from 16 subjects with bi-lateral DBS electrodes were identified. Mean Fourier 
transformed Beta band amplitude from the background activity in STN corresponded to the target depth in 
81.25% of the subjects. When splitting beta in low and higher frequency bands, lower beta (13–20 Hz) was accord 
to the target depth with even greater accuracy in 84.37% of the subjects. Mean Gamma band amplitude computed 
using the background activity in SNr corresponded to the target depth in 85.71% of the subjects. Similarly, the 
spikes rate in STN was in accord to the target depth in 84.37% of the subjects and the number of spikes in SNr in 
100% of them. Among other parameters, LvR was in accord to target depth precisely in 78.12% of the subjects. 
Table 1 shows the details of all computed parameters using the background activity, spikes, interspike interval 
and burst index and prediction accuracy.

For the localization of target location, maximum amplitude from lower beta frequency was found to have the 
best accuracy, corresponding in 93.75% of the subjects. Moreover, mean of low beta band was only correspond-
ing for 84.7% but the using overall beta band (13–30 Hz) the accuracy increased to 87.5% of the subjects. Mean 
and maximum amplitude in gamma frequency could only correspond to 68.75% and 65.60% of the subjects 
respectively. However, maximum spike rate was corresponding to the target location in 87.5% of the subjects. 
Details of all computed parameters and prediction accuracy for target location is shown in Table 2. Mean beta 

Figure 1.   (A) Example of the raw MER data indicated with spikes and the background activity. (B) The pipeline 
for processing of the MER data.
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misclassified four target points (two from the central and lateral respectively) as two from posterior and anterior 
respectively. The maximum beta amplitude misclassified only two target points one from the central and one 
from the medial. The mean gamma amplitude misclassified ten target points (five from the anterior and central 
respectively) as five from lateral and medial respectively. The maximum gamma amplitude misclassified only 11 
target points, eight from the central and three from the anterior. The correct prediction of the target location with 
mean and maximum amplitude of beta and gamma is as shown in Fig. 2. The schematic of the actual location of 
the electrodes are depicted in Fig. 3A and the reconstruction of the implanted electrodes using LeadDBS52 with 
projection to the MNI anatomical T1 template in Fig. 3B. In addition, receiver operating characteristics (ROC) 
curve results of the primary findings presented in the study is as shown in Fig. 4.

Further, a significant positive correlation was observed in STN between the maximum spike rate and maxi-
mum overall beta frequency amplitude (r = 0.709, p = 0.0002) which is probably driven by the lower beta band 
as the correlation of it to maximum spike rate was significant (r = 0.649, p = 0.0009) which was not the case for 
high beta band (r = 0.208, p = 0.30). Moreover, a significant correlation between maximum overall beta frequency 
amplitude and LvR was observed (r = 0.487, p = 0.007), similarly swayed by the correlation to low beta frequency 
band (r = 0.576, p = 0.008). A negative correlation between the mean amplitude in the gamma frequency band to 
maximum beta (r = -0.603, p = 0.0013) and to mean of low beta (r = − 0.575, p = 0.004) was further observed in 
STN. For clinical associations, correlations to the pre-operative UPDRS scores to the maximum beta frequency 
amplitude in STN also yielded significant results [Med off: r = 0.767, p = 0.000005, Med on: r = 0.602, p = 0.0013]. 
The percentage of levodopa reduction after the surgery was also found to be negatively correlated with the mean 
gamma amplitude in STN [r = − 0.579, p = 0.0024]. All correlation results have been detailed in supplementary 
table.

Table 1.   Successful target depth detections using background activity and spikes. The number of successful 
target depth detections using individual parameters extracted from the Background activity and spikes in 
the STN and SNr. Mean_low_freq and Max_low_freq, Mean and Maximum amplitude respectively in low 
frequency range (2–7 Hz); Mean_alpha and Max_alpha, Mean and Maximum amplitude respectively in alpha 
frequency range (7–13 Hz); Mean_low_Beta and Max_low_Beta, Mean and Maximum amplitude respectively 
in lower beta frequency range (13–20 Hz); Mean_high_Beta and Max_high_Beta, Mean and Maximum 
amplitude respectively in higher beta frequency range (21–30 Hz); Mean_Beta and Max_Beta, Mean and 
Maximum amplitude respectively in beta frequency range (13–30 Hz); Mean_Gamma and Max_Gamma, 
Mean and Maximum amplitude respectively in gamma frequency range (31–49 Hz); Mean_RMS and Max_
RMS, Mean and Maximum root mean square amplitude respectively of the background activity; ISI, Interspike 
interval; BI, Burst index and LvR, Local variation compensate for Refractoriness; Mean_SR and Max_SR, Mean 
and Maximum spiking rate respectively; Mean_VSR and Max_VSR, Mean and Maximum visual spiking rate 
respectively.

Parameters STN, successful detection SNr, successful detection

Mean_low_freq 56.25% (18/32) 14.28% (2/14)

Max_low_freq 59.37% (19/32) 15.38% (2/13)

Mean_Alpha 62.50% (20/32) 25.00% (3/12)

Max_Alpha 65.62% (21/32) 27.27% (3/11)

Mean_low_Beta 84.37% (27/32) 40.00% (2/5)

Max_low_Beta 78.12% (25/32) 28.57% (2/7)

Mean_high_Beta 71.87% (23/32) 33.33% (3/9)

Max_high_Beta 68.75% (22/32) 30.00% (3/10)

Mean_Beta 81.25% (26/32) 16.67% (1/6)

Max_Beta 75.00% (24/32) 25.00% (2/8)

Mean_Gamma 78.13% (25/32) 85.71% (6/7)

Max_Gamma 68.75% (22/32) 80.00% (8/10)

Mean_RMS 50.00% (16/32) 18.75% (3/16)

Max_RMS 75.00% (24/32) 25.00% (2/8)

ISI 68.75% (22/32) 25.00% (2/8)

BI 75.00% (24/32) 50.00% (4/8)

LvR 78.12% (25/32) 28.57% (2/7)

Mean_SR 53.12% (17/32) 73.33% (11/15)

Max_SR 84.35% (27/32) 100% (5/5)

Mean_VSR 34.38% (11/32) 9.52% (2/21)

Max_VSR 6.25% (2/32) 13.33% (4/30)
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Discussion
When comparing the parameters characterizing spike from MER recordings of STN targeting, our results 
revealed that maximal spiking rate provided the highest accuracy for the localization of the sensorimotor region 
of the STN in PD patients. Similarly, for those parameters obtained from background activity, mean low beta 
amplitude offered the highest accuracy for both target depth and target localization.

The most movement-related cells are located anterodorsally in STN and is the most effective target for high 
frequency stimulation in terms of clinical benefits for PD53. This somatotopic organization within the nucleus 
(sensorimotor, limbic and associative) has been further supported by recent high-resolution neuroimaging 
studies54. Moreover, Parkinson’s disease has been associated with the enlarged receptive fields in PD patients in 
comparison to healthy controls resulting in increased perceptive thresholds, reduced discriminative capacities 
and a mildly increased firing rate with bursting activity55,56. The STN, constituted mostly by excitatory gluta-
matergic neurons normally fires in an irregular pattern at medium frequency rates between 25 and 45 Hz57. In 
PD, degeneration of dopaminergic neurons located into the substantia nigra pars compacta (SNc) results in 
an hyperactivity of the STN and therefore an increase of its firing rates17. This fact also has been supported by 
experimental evidence utilizing the MPTP model of experimental parkinsonism in monkeys48,58,59. Even though 
increased firing rate of the STN is in this aspect a consistent finding in PD, the identification of the sensorimotor 
region of the STN based only on MER recordings presents technical limitations. During STN-DBS surgery, after 
the microelectrode passes in its trajectory through the dorsal region of the STN, it reaches a thin white matter 
layer before entering into the substantia nigra pars reticulata (SNr). This white matter layer is only a few hundred 
microns thick and usually cannot be identified before the electrode reaches the SNr. In addition, the firing char-
acteristics (reduced β band and tremor frequency oscillations) in the cells of STN ventral domain resembles the 
firing characteristics of SNr cells24. Although recent imaging studies have markedly contributed for improving 
the localization of STN or SNr regions , the intraoperative distinction of electrode placement within the dorsal 
STN or the SNr based on firing rate is still a daunting task. Hence, the obtained results of maximal firing rates 
from different depth and location detecting both the STN and SNr accurately supports previous findings and 
further facilitates a simpler and accurate technique for target distinction during the surgery.

Table 2.   Successful detections of target location using background activity and spikes.  The number of 
successful detections of target location (STN) using individual parameters obtained from Background activity 
and spikes. Mean_low_freq and Max_low_freq, Mean and Maximum amplitude respectively in low frequency 
range (2–7 Hz); Mean_alpha and Max_alpha, Mean and Maximum amplitude respectively in alpha frequency 
range (8–12 Hz); Mean_low_Beta and Max_low_Beta, Mean and Maximum amplitude respectively in lower 
beta frequency range (13–20 Hz); Mean_high_Beta and Max_high_Beta, Mean and Maximum amplitude 
respectively in higher beta frequency range (21–30 Hz); Mean_Beta and Max_Beta, Mean and Maximum 
amplitude respectively in beta frequency range (13–30 Hz); Mean_Gamma and Max_Gamma, Mean and 
Maximum amplitude respectively in gamma frequency range (31–49 Hz); Mean_RMS and Max_RMS, Mean 
and Maximum root mean square amplitude respectively of the background activity; ISI, Interspike interval; 
BI, Burst index and LvR, Local variation compensate for Refractoriness; Mean_SR and Max_SR, Mean and 
Maximum spiking rate respectively; Mean_VSR and Max_VSR, Mean and Maximum visual spiking rate 
respectively.

Parameter Successful detection (STN)

Mean_low_freq 50.00% (16/32)

Max_low_freq 43.75% (14/32)

Mean_Alpha 56.25% (18/32)

Max_Alpha 59.37% (19/32)

Mean_low_Beta 84.37% (27/32)

Max_low_Beta 93.75% (30/32)

Mean_high_Beta 65.62% (21/32)

Max_high_Beta 56.25% (18/32)

Mean_Beta 87.50% (28/32)

Max_Beta 93.75% (30/32)

Mean_Gamma 68.75% (22/32)

Max_Gamma 65.60% (21/32)

Mean_RMS 75.00% (24/32)

Max_RMS 56.25% (18/32)

ISI 62.50% (20/32)

BI 71.87% (23/32)

LvR 78.12% (25/32)

Mean_SR 81.25% (26/32)

Max_SR 87.50% (28/32)

Mean_VSR 65.62% (21/32)

Max_VSR 68.75% (22/32)
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In recent years, enhanced beta band activity in STN has been revealed in both animal model and humans for 
Parkinson’s disease60–62. Several studies have demonstrated high amplitudes of beta-activity inside the dorsolat-
eral portion, i.e. sensorimotor region, of the STN in PD patients63–65 and stimulation of this region produces the 
greatest improvement in parkinsonian motor signs15,63,66–69 and distinction of these region could even be used 

Figure 2.   Target location detected correctly from five different MER recording trajectory using the four 
parameters (Mean_Beta, Mean amplitude in beta frequency range (13–30 Hz); Max_Beta, Maximum amplitude 
in beta frequency range; Mean_Gamma, Mean amplitude in gamma frequency range (31–49 Hz); Max_Gamma, 
Maximum amplitude in gamma frequency range are depicted.

Figure 3.   (A) Raw microelectrode recordings (MER) obtained from different depth above and below the 
target. (B) Final electrode positions in all patients, using Lead-DBS 2.0 (https​://www.lead-dbs.org/). Subcortical 
structures are based on DISTAL atlas (Orange, STN; Green, GPi; Blue, GPe and red, red nucleus) and the 
background template is 7 T MRI ex vivo 100 micron human brain.

https://www.lead-dbs.org/
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to identify the physiological signatures of PD subtypes16,70,71. Increased beta band activity shows a remarkable 
selectivity for neuronal clusters connected directly with the primary motor cortex on the dorsolateral portion 
of the STN and decreases medially towards the associative sub region of the STN, where most projections are 
from the premotor cortices to enhance the alpha band activity14,72,73. These studies demonstrate that in addi-
tion to the spiking rate the increased beta band activity is also an important factor for determining the correct 

Figure 4.   Receiver operating characteristics (ROC) curve for the selected parameters obtained using spikes and 
background activity in the study. Area under the curve (AUC) with significance p < 0.000001 for Mean_Beta in 
STN was 0.81250 ± 0.05426 (standard error), Mean_Gamma in SNr was 0.84668 ± 0.04951, Max_SR in STN was 
0.84328 ± 0.04653 and in SNr was 1.0.
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target with MER recording. We found in our study that spiking rate correlated directly with beta band activity 
into the STN and both mean and maximal beta band amplitude particularly that in the lower frequency band 
(13–20 Hz) were highly accurate to identify the dorsolateral region of the STN in PD patients. These results hence 
validate the notion that high beta activity can be used to functionally isolate the sensorimotor division of the 
STN from other regions in PD patients using MER recordings. Moreover, the lack of localization accuracy (all 
lower than 70%) from lower frequency bands (low_freq and alpha) might further supports the findings of beta 
band oscillations having different temporal and spatial properties than these oscillations and is uncorrelated to 
tremor related oscillations35,74,75. It has been shown previously that increase of beta frequency within the STN 
correlates with the severity of motor disturbances in PD patients, predominantly rigidity and bradykinesia. The 
reduction of which is observed under treatment with L-Dopa as well as during STN-DBS indicating the signifi-
cant improvement of motor symptoms76–78. We found a strong correlation between maximal beta band activity 
and worse motor performance in pre-operative UPDRS scores during both ON and OFF medication states. This 
suggests that the identification of the sensorimotor subdivision of the STN based on increased beta band activity 
may be of maximal accuracy in the subgroup of patients with severe rigidity and bradykinesia. However, when 
separating beta in low and high frequency band, the correlation to UPDRS score during both medication ON and 
OFF states were different with maximum amplitude of low_beta significantly correlating to UPDRS but not the 
maximum amplitude of high_beta band. This discrepancy might be linked to previously postulated theories of 
beta activity in human STN having an ‘antikinetic’ role which could be more specifically played by the low-beta 
rhythm, whereas the high-beta rhythm could be essentially physiological46,50,61.

Along with beta band, gamma band activity into the STN in PD patients has also been shown to be directly 
generated within the STN and might play a pro kinetic role79–82. Gamma oscillations have also been shown to be 
increased during imagination and voluntary performance of grips and movements83, promoting movement by 
cortical stimulation to increases the rate of force production80 and as well correlates with improvement of motor 
symptoms after treatment with L-Dopa in PD84. In contrast to the beta band activity, oscillatory field potential 
activity in PD patients during off medication is less prominent in the gamma band, existing a negative correla-
tion between beta and gamma oscillations in STN after treatment with dopaminergic medications85. In line with 
these findings, we observed a negative correlation between the mean gamma and maximal beta band activity. 
However recent publications have shown that the coupling between beta and gamma activity is pathological86. 
Some of them argues that beta phase and gamma amplitude is synchronized via phase-amplitude coupling 
(PAC) in Parkinson’s disease patients and this coupling decrease during DBS87,88. But others showed that these 
pathological coupling between beta and broadband gamma found previously is unlikely to reflect alterations in 
neural activities at gamma frequencies but rather just the alterations in beta frequency in PD patients89. To this 
regard, although we found a strong negative correlation between maximal beta and mean gamma activity in the 
STN, there was also a higher reduction of dopaminergic medication after DBS associated to lower mean gamma 
band activity. Moreover, the presence of high gamma activity in patients with high dose of L-Dopa even after 
DBS implies an association between gamma oscillations and worse response to DBS treatment. Low-gamma 
frequency has been also reported to be enhanced during periods of significant rest tremor90 and reduction of 
tremor is associated with gamma power suppression into the STN in patients with PD91. It is further suggested 
that neurons in dorsolateral STN receives inputs in both beta and gamma frequencies and oscillates at gamma 
frequency during tremor and beta during bradykinesia and rigidity90. If the same group of neurons in the STN 
oscillate at gamma or beta frequencies according to the preponderance of tremor or bradykinesia, it would be 
expected to have high correlations on mean gamma and mean beta firing activity in our findings for correct 
target detection. However, from our data we could not directly infer whether there is a correlation between cor-
rect target identification through either mean gamma or beta activity and the differential symptomatic pattern 
of the patient (predominance of tremor vs rigidity/bradykinesia).

The choice of optimal DBS contact for programming has a significant impact on the therapeutic efficacy13,65. 
Moreover, even with the possibility of MER recordings, the localization of the STN and implantation in the 
right part is still hard to achieve because of coarse spatial resolution of the lead which in turn leads to pick up 
also electrical activity of areas more remotely located92. Hence, the proposed comprehensive set of parameters 
in this study obtained using both spikes and background activity data in different depths and locations in and 
outside of STN, we believe would assist the neurosurgeon and neurologist involved in identifying the target with 
the optimal clinical outcome for the patient with more ease. Even though the MER algorithm is robust enough 
in detecting the physiologically defined optimal target, cautions should be made in interpretation of the data. 
As explained in previous literature, with the commercially available systems now having five microelectrodes 
arranged in a cross with a microelectrode at the end of each segment and one at the center, there would be a 
substantial probability that the physiologically defined optimal target would not be within the area covered by 
the fixed microelectrode array12.

Conclusions
The analysis of specific electrophysiological parameters using spike and background activity characteristics 
from the MER recordings during STN-DBS allows a high accuracy for correct target detection in PD patients. 
The intraoperative recording and automated analysis of spiking and background activity in the beta range could 
evolve to a very promising marker with a translational value for the clinical practice. We found that spiking rate 
was consistent for detecting the target depth and increased beta activity allowed identifying the STN borders 
and differentiate it from neighboring structures particularly the SNr. Also, the target selection and definitive 
electrode placement within the STN based on higher beta range activity correlates with an improved clinical 
outcome and especially an improvement of bradykinesia.
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