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Abstract: With the development of information and technology, especially with the boom in big data,
healthcare support systems are becoming much better. Patient data can be collected, retrieved, and
stored in real time. These data are valuable and meaningful for monitoring, diagnosing, and further
applications in data analysis and decision-making. Essentially, the data can be divided into three
types, namely, statistical, image-based, and sequential data. Each type has a different method of
retrieval, processing, and deployment. Additionally, the application of machine learning (ML) and
deep learning (DL) in healthcare support systems is growing more rapidly than ever. Numerous
high-performance architectures are proposed to optimize decision-making. As reliability and stability
are the most important factors in the healthcare support system, enhancing the predicted performance
and maintaining the stability of the model are always the top priority. The main idea of our study
comes from ensemble techniques. Numerous studies and data science competitions show that by
combining several weak models into one, ensemble models can attain outstanding performance
and reliability. We propose three deep ensemble learning (DEL) approaches, each with stable and
reliable performance, that are workable on the above-mentioned data types. These are deep-stacked
generalization ensemble learning, gradient deep learning boosting, and deep aggregation learning.
The experiment results show that our proposed approaches achieve more vigorous and reliable
performance than traditional ML and DL techniques on statistical, image-based, and sequential
benchmark datasets. In particular, on the Heart Disease UCI dataset, representing the statistical type,
the gradient deep learning boosting approach dominates the others with accuracy, recall, F1-score,
Matthews correlation coefficient, and area under the curve values of 0.87, 0.81, 0.83, 0.73, and 0.91,
respectively. On the X-ray dataset, representing the image-based type, the deep aggregation learning
approach shows the highest performance with values of 0.91, 0.97, 0.93, 0.80, and 0.94, respectively.
On the Depresjon dataset, representing the sequence type, the deep-stacked generalization ensemble
learning approach outperforms the others with values of 0.91, 0.84, 0.86, 0.8, and 0.94, respectively.
Overall, we conclude that applying DL models using our proposed approaches is a promising method
for the healthcare support system to enhance prediction and diagnosis performance. Furthermore,
our study reveals that these approaches are flexible and easy to apply to achieve optimal performance.

Keywords: healthcare; prediction; deep learning; deep ensemble learning approaches

1. Introduction

Healthcare support systems are entering a new era with the backing of information
technology in the boom of big data and the Internet of Things. Following this context,
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artificial intelligence, especially deep learning (DL), is growing as a remarkable method
of making predictions and classifications. As a result, it is becoming a reliable source for
healthcare workers to make the final diagnosis and prescribe suitable treatments for their
patients [1,2]. The applications of DL in healthcare are wide and abundant. Furthermore,
improvements in the concepts and architectures of DL with outperformance in particular
fields of healthcare are being achieved. Hence, the applications of DL in healthcare still
have room for innovative research.

In data analysis, especially in the healthcare domain, there are three typical types of
data, namely, statistical data, image-based data, and sequential data. Examples of these
types are the records of patient information (diagnosis, operations, therapy, laboratory tests,
symptoms, etc.) representing statistical data, CT images representing image-based data,
and the recorded human index signals on wearable devices representing sequential data.
These three types of data have different methods of retrieval, processing, and deployment.
Statistical data essentially consist of independent variables or features and dependent
variables or labels. Each observation usually has its own information on every feature
and is represented by a row in a data table. Unlike statistical data, image-based data
are made up of pixels arranged side by side. Each image has three dimensions, height,
width, and depth, where height is the number of pixels lined up by height, width is the
number of pixels lined up by width, and depth is the number of pixel layers stacked on
top of each other. Sequential data are a special type of statistical data recorded in sequence
over a period of time. The values of data in this sequence are relevant to each other.
Due to the differences in the architecture of these three data types, particular prediction
and classification models are deployed for the corresponding requirements. This leads to
difficulty in implementing well-performing models in all data types.

Furthermore, in the healthcare support system, reaching the optimal performance is
always the top priority for prediction and classification, where the decision of the healthcare
workers needs to be accurate and tailored to each patient. Under these circumstances,
ensemble techniques are one of the best choices [3]. Essentially, the ensemble learning
technique combines many similar or different weak prediction models into a robust model.
In other words, the technique is able to reduce variance and prevent overfitting phenomena
in the training process [4,5]. As a result, it improves the accuracy and stability of the
prediction model in classification and regression tasks. By incorporating DL models
with ensemble learning techniques in this study, we propose three approaches collectively
known as deep ensemble learning: deep-stacked generalization ensemble learning, gradient
deep learning boosting, and Deep aggregation learning. In other words, by replacing the
core learning units of the corresponding ensemble technique with suitable DL models, our
proposed method can perform well with higher efficiency on all three data types.

The rest of this study is organized as follows. In Section 2, we review several recent
studies on the application of DL in the healthcare domain and consider the way they
were deployed on the three data types, as well as the proposed deep ensemble learning
models. In Section 3, we introduce our benchmark datasets, which represent the three
data types and provide a clear explanation, including some descriptive statistics. We also
introduce the concepts of DL with their corresponding data type. Later, we present the
proposed deep ensemble learning approaches and their architectures. Section 4 presents our
deployed methods. In detail, we propose a scratch workflow for our proposed approaches
and the step-by-step deployment of our experiment. Section 5 shows our experimental
results. We also compare our proposed approaches to other individual DL and traditional
machine learning techniques having similar ensemble concepts. Finally, our discussion
and conclusions are presented in Section 6.

2. Literature Review

Currently, with the development of artificial intelligence, variants and their appli-
cations of DL in healthcare are growing rapidly [6,7]. They show high performance in
early diagnosis and prediction, and as a result, can become a reliable reference source for
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healthcare workers to make the final decision for their patients [8,9]. Furthermore, these
DL-based applications are conducted in different ways according to their data type.

In particular, for the statistical data type, the multilayer perceptron is the most de-
ployed. In the study by Hosseinzadeh et al., a fine-tuned multiple multilayer perceptron
neural network was deployed for thyroid disease diagnosis on the Internet of Medical
Things (IoMT) [10]. In their application on IoMT systems, a final accuracy of 99% was
obtained. According to the results, the proposed system has a remarkable capability to
deal with overfitting during the training process. Abdar et al. used a multilayer perceptron
neural network (MLP) to enhance the diagnosis of liver disease [11]. The results indicate
that their MLP network, which is based on decision tree algorithms, achieved a higher
accuracy of 14.57% than other traditional ML methods. In addition, Verma et al. conducted
an MLP to classify coronary artery disease (CAD) in the CAD-56 and CAD-59 datasets
with high accuracy of 86.47% and 98.35%, respectively.

Being different from the statistical data type, the image-based data type has its own
deployment of DL concepts and applications. In detail, Stephen et al. proposed a convo-
lutional neural network model trained from scratch to classify and detect the presence
of pneumonia from chest X-ray image samples [12]. This model can help mitigate the
reliability and interpretability challenges often faced when dealing with medical imagery.
The result shows that their proposed method achieves a remarkable validation accuracy
of 94%. Another study by Babukarthik et al. proposed a genetic deep learning convolu-
tional neural network model to identify pneumonia due to COVID-19 using lung X-ray
images [13]. This method performs better compared to other transfer learning techniques
with a classification accuracy of 98.84%, a precision of 93%, a recall of 100%, and a specificity
of 97% in COVID-19 prediction. Moreover, for medical image segmentation, Teng et al.
proposed a deep multiscale convolutional neural network model [14]. Their proposed
method is not only able to boost the segmentation accuracy but is also robust compared
with other segmentation methods. For staging of liver fibrosis, Yasaka et al. proposed
a deep convolutional neural network approach using gadoxetic acid-enhanced hepato-
biliary phase magnetic resonance images [15]. They stated that this method exhibited
high diagnostic performance in the staging of liver fibrosis with the highest areas under
the ROC curve of 0.85. Another study by Yasaka et al. deployed a convolutional neural
network for the differentiation of liver masses with dynamic contrast-enhanced computed
tomography [16]. They conducted experiments on CT image sets of liver masses over three
phases (non-contrast-agent enhanced, arterial, and delayed). The masses were diagnosed
according to five categories. The experimental results showed that their proposed approach
achieves high performance with a median accuracy and AUC of 84% and 0.92, respectively.
The commonality of these studies is that they all use the convolutional neural network for
prediction and classification.

On the other hand, the sequential data type also has its own deployment of DL con-
cepts and applications. Specifically, in order to detect Congestive Heart Failure (CHF) via
Short-Term RR Intervals, Wang et al. proposed an LSTM-based deep network approach [17].
This method aims to help clinicians monitor CHF out-patients and also make sense of
HRV signals. The proposed model’s verification using the Beth Israel Deaconess Medical
Center-CHF dataset achieves 99.22% of the highest accuracy. An end-to-end system is
also provided to detect CHF using a short-term assessment of heartbeat. Another study
from Yin et al. presented the MC-LSTM in order to warn for health emergencies with
a low latency output and action and early detection capabilities [18]. They stated that
their proposed system can achieve high performance with early detection features on
trimmed and untrimmed cases of general-purpose and medical-specific datasets. Chen
et al. proposed an attention-based bidirectional LSTM (Att-BiLSTM) method with service
robots to classify outpatient categories according to textual content; hence, the robot can
tell them which clinic they should register with [19]. The Att-BiLSTM developed system
can achieve an accuracy of 96% correct responses to patients’ queries. Consequently, it
opens an innovative approach to improve artificial intelligence in healthcare applications.
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As mentioned in the above studies, they shared the commonality of using recurrent neural
networks (RNNs) for prediction and classification. In fact, there are even some studies that
showed that the convolution neural network can also be used for sequential data; however,
only the RNN concepts for sequential data will be applied here.

In general, the above methods all use DL with different modifications to deal with
the characteristics of data. However, they all have some limitations for running a model
independently. Because the above methods all use DL but are applied on different datasets,
for the convenience of comparison, we have divided them into three groups corresponding
to the three different data types with three different DL concepts. Table 1 describes each
disadvantage in detail for the respective data types.

Table 1. The particular and common disadvantages of mentioned methods.

Existing DL 1 Methods Particular Disadvantages Common Disadvantages

DL methods on statistical data
type (MLP 2)

The individual MLP are sensitive to the initial
randomization of their weight matrices.

The order in which we submit training data to
a neural network affects the result.

MLP often tends to end up in local minima of
their loss function.

They become useless on imbalanced datasets.
They require a large dataset to process and train the neural

network to get good results.
Each model is effective in solving just one particular class of

problems, not all.
The weight scale is faster than linearly when the network

increases in size.
The models are not all equal. Different model architectures may

solve the same problem with comparable accuracy while
requiring a significantly different amount of computation.
Overfitting happens easily when the network is trained so

many times

DL methods on image-based
data type (CNN 3)

The individual CNNs lack the ability to be
spatially invariant to the input data.

DL methods on sequential
data type (RNN 4)

The individual RNN models usually have
vanishing gradients and exploding problems.
Network stability is often difficult to ascertain

due to the nonlinear nature of the unit
activation output characteristics and the

weight adjustment strategies
1 Deep learning, 2 Multilayer perceptron, 3 Convolutional neural network, 4 Recurrent neural network.

In addition, the ensemble learning technique gains much reliability owing to its per-
formance in combining multiple predictive and classification models into one strong model.
Ensemble learning with the core learning unit as DL is an innovative and prospective
method. Several studies implemented this combination and showed its high performance
and reliability as a result. Suk et al. presented a deep ensemble sparse regression network
model to diagnose brain diseases [20]. Specifically, they combined the two conceptually
different methods of sparse regression and DL for diagnosis and prognosis of Alzheimer’s
disease and mild cognitive impairment. Their experiments achieved the highest diagnostic
accuracy in three classification tasks compared to other traditional ML and individual DL
models. A study by An et al. proposed the concept of deep ensemble learning, named
deep belief network, to classify Alzheimer’s disease [21]. In brief, their proposed model
has two layers, namely, a voting layer and a stacking layer. In the voting layer, they trained
two sparse autoencoders to reduce the bias and extract the most important features. In
the stacking layer, they applied a deep belief network with a nonlinear feature weighted
to rank the base classifiers that may impact conditional independence. They deployed
this network as a meta classifier. In the experimental results, their proposed framework
achieves a 4% better accuracy than the other six ensemble approaches. Shahin et al. pro-
posed a straightforward concept of ensemble learning by combining two DL architectures,
namely, ResNet50 and Inception v3 to classify seven different types of skin lesions [22]. The
experimental validation results achieve an accurate classification with a validation assur-
ance accuracy of up to 89.9%. By proposing a deep ensemble learning model, named the
deep-stacked generalization ensemble learning method, Nguyen et al. once again showed
the advantage of this approach compared to other individual DL models and traditional
ML models in the diagnosis of clinical depression from wearable device data [23]. Their
proposed method is based on the stacked generalization ensemble learning technique and
uses DL models as the core learning unit. The result on the independent validation set
showed outstanding performance compared to other corresponding individual DL models.



Int. J. Environ. Res. Public Health 2021, 18, 10811 5 of 19

The above evidence proves that DL and deep ensemble learning are prospective
approaches for enhancing prediction performance, thereby becoming reliable resources for
physician decision-making as a result.

3. Materials and Proposed Approaches

In this section, we introduce our benchmark datasets that represent the three data
types with a clear explanation including some descriptive statistics. We also introduce the
concepts of DL with the corresponding data type. After that, we present our proposed
deep ensemble learning approaches and their architectures.

3.1. Benchmark Materials and Their Specifications

To prove the performance of our proposed approaches, we conducted experiments
on three open datasets corresponding to the three data types. They are the Heart Disease
UCI (HDU) dataset representing the statistical data type, the X-ray dataset representing
the image-based data type, and the Depresjon dataset representing the sequence data
type [24–26]. The HDU is a classic statistical dataset provided by the UCI Machine Learning
Repository. It has a total of 270 samples with 13 recorded human index attributes. The HDU
contains 150 normal and 120 observations having heart disease samples. The X-ray dataset
is collected from pediatric patients with retrospective cohorts of one to five years. The
patients were graded by two expert physicians at the Guangzhou Women and Children’s
Medical Center. The dataset has a total of 5856 samples with 1583 normal images and
4273 pneumonia-presence images. The Depresjon dataset belongs to the sequential data
type, it contains the total gravitational acceleration measured by wearable devices on
23 depressed (unipolar and bipolar) patients and 32 healthy control people at one-minute
intervals. On this dataset, we applied a seven-day forward moving window with seven
days of recorded data at a one-minute interval to generate a total of 814 samples. Section 4.1
describes the way these samples were generated. In all, 267 samples belong to the group of
depressed patients and 547 samples belong to the control group of healthy people. The
detailed description of these datasets is presented in Table 2.

Table 2. Datasets description.

Dataset Variable # Sample # [Normal/Disease] Ratio 1 Data Type

HDU 2 13 270 1.25 Statistical
X-ray N/A 5856 0.37 Image-based

Depresjon 1 814 2.05 Sequential
1 Approximate ratio, 2 Heart Disease UCI dataset.

3.2. Deep Learning and Its Concepts

Deep learning is a subclass of ML. The main idea of DL comes from the multilayer
perceptron, which consists of nodes with corresponding activation functions, layers, and
connections. In the classification task, the information from nodes belonging to the previous
layer are initially fed to the forward layers via connections. The nodes belonging to the
forward layer then combine all the information and later yield the data by using the
activation function to feed to the forward nodes, and so on. In the end, the last layer
contains several nodes, representing the number of classes that need to be classified, which
will determine the probability of the corresponding predicted class (Figure 1).

The convolutional neural network (CNN) is another DL concept that is popular for
image-based classification tasks. The adjacent convolution and pooling layers are the main
components of this concept, and a fully connected layer at the end of the architecture
yields the final prediction or classification. In particular, the convolution layers extract the
features from previous layers using a sliding-window filter. The output of the convolution
layers will be reduced in dimension by the pooling layers. The output of these layers are
the so-called feature maps. In the end, the feature map of the last layer will be flattened
and fed into a fully connected layer to make the prediction (Figure 2).
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The recurrent neural network (RNN) is another neural network concept used to deal
with sequential data. It uses the sequence of previous information to make an upcoming
prediction or forecast. Essentially, the main components of this concept are the neural
network cells, the sequence of input, and the output over iterations (Figure 3). The output of
this cell later becomes its own input at the next state in a sequence. The way information is
delivered in this concept accounts for the name, recurrent. A well-known RNN architecture,
named long short-term memory (LSTM), is deployed in our experiments. The main
components of LSTM are gates with different corresponding activations: forget gate, input
gate, and output gate. These gates keep, store, or allow information go through to the next
state. Consequently, this model is able to process a long sequence of data with the extracted
and suitable-context information.
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In this study, the core learning unit (CLU) of our proposed approaches is a simple DL
based on the multilayer perceptron model for the statistical dataset, the ResNet50V2 models
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belonging to the convolution neural network, and the GRU models with an attention
mechanism belonging to the recurrent neural network, which are deployed for the image-
based and sequential datasets, respectively.

3.3. Proposed Deep Ensemble Learning Approaches

Ensemble learning essentially is a technique that combines many different or similar
classifier models into one, and later makes the final prediction based on the members’
prediction results. The ensemble learning technique is able to improve the stability and
accuracy of machine learning algorithms used in classification and regression by reduc-
ing variance and avoiding overfitting [27]. By taking advantage of these strengths, we
propose three deep ensemble l (DEL) methods based on three corresponding ensemble
learning techniques. They are deep-stacked generalization ensemble learning, gradient
deep learning boosting, and deep aggregated learning. The main idea of our proposed
approaches is to replace the core learning unit (CLU), the sub-classifier of ensemble models
for traditional architectures with suitable DL models. As a result, our proposed approaches
are deployed on the three data types. A further description of these proposed methods is
presented below.

Deep aggregated learning (DAL) is the most straightforward deployment technique in
our proposed deep ensemble learning family. The background of this method comes from
the bootstrap aggregation technique [28]. By using this technique as the backbone and the
deep neural networks (DNNs) as the sub-prediction model or CLU, we propose the DAL.
The workflow of our proposed DAL method is presented as follows. First, the dataset is
split into multiple subsets, and then multiple different or similar DNNs are trained from
their corresponding subset. The output of every single DNN later is aggregated using
a statistic, such as average, mode, etc., to yield the final prediction (Figure 4). In this
proposed approach, the mean is deployed as an aggregated function. The formula of this
approach is presented in Equation (1).

P =
∑n

i=1(Pi)

n
(1)

where:

• P: The final prediction.
• Pi: The prediction of ith model.
• n: The number of member model.
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In gradient deep learning boosting (GDLB), the main idea of this proposed approach
comes from the combination of the gradient boosting technique and the DNNs. In particular,
the main component of a gradient boosting architecture is the booster or the classifiers
and their residual output. The DNNs are deployed as the boosters following the gradient
boosting backbone. This architecture effort is to boost the weak boosters into a high-
performing classifier model. Specifically, the dataset is fed into every single booster. In
the beginning, the first booster yields the mean value of the target labels, which is the
so-called basement booster. The output of the first booster is the first prediction in the
sequence of the gradient boosting architecture. After that, the residuals between this
output and the real label turn into the next booster’s target value for training. In other
words, the second booster will try to predict the residuals made from the previous booster,
instead of predicting the real labels. The output of the second booster will be multiplied
with a random learning rate ranging from 0 to 1 and previous predictions, including the
basement prediction, will be added. This summation is the prediction of the second booster.
Subsequently, the residual between the second prediction and the real labels becomes the
target value of the third booster (Equation (2)). As a result, the residuals are minimized
over the number of iterations. In the deployment of this proposed approach, we replace the
traditional boosters with the CLU of DL models corresponding to the data type (Figure 5).

P = Pbase + λ

[
n

∑
i=1

(Ti − Oi)

]
(2)

where:

• P: The prediction of the model with n booster models.
• Pbase: The 1st prediction with default value.
• λ: The random learning rate ranging from 0 to 1.
• Ti: The target that needs to be predicted by ith model.
• Oi: The output of the ith model.
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The deep-stacked generalization ensemble learning (DeSGEL) proposed approach is
based on the stacked generalization concept [29]. In detail, there are two levels in making
the prediction. In the lower level, called level 0, the data are fed into several similar
classifier models for training. The information that goes through these models has been
bias-reduced and is also extracted and compressed to obtain the most valuable features.
The output of each classifier will then be combined into new so-called metadata. The
metadata will be sent to the higher level, called level 1. At this level, the data will be fed
into the last classifier to make the final prediction. This model is able to weigh the output
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of every single well-trained model from level 0 differently. As a result, it potentially gives
better performance in the final prediction. In this proposed approach, we deploy the CLU
of the DL models corresponding to the data type (Figure 6). The formula of this proposed
approach is presented in Equation (3).

Pn = f

{
n⋃

i=1

Pi

}
(3)

where:

• Pn: The prediction of model with n booster models.
• f : The final classifier function
• Pi: The prediction of ith classifier.
• n: The number of member models.
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4. Methods

In this study, to demonstrate the adaptability and outstanding performance of our
proposed approaches, we conducted the experiments on three open datasets corresponding
to statistical, image-based, and sequential data types. In addition, we also compared
our proposed approaches with the corresponding single DL model and other ML models
having the same methodology, namely, random forest, gradient boosting, and stacking
classifier. All of our deployments comparing ML models were implemented by the Scikit-
learn open-source library. The hyperparameter configurations of these deployed models
will be presented in Section 4.2. In general, we proceeded with our experiments in three
phases (Figure 7). In Phase 1, after the data reading step, we conducted preprocessing
steps on the different datasets with different methods to transform the data into suitable
formats. After that, in Phase 2, we built our proposed approaches and deployed other
traditional ML models corresponding to the dataset with the different data types. The
hyperparameters of the deployed models were also tuned in this phase. Finally, in Phase 3,
we evaluated the deployed models as well as our proposed approaches and conducted a
performance comparison among the models.
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Our experiments were conducted with Anaconda software v1.10.0, Python v3.7, with
an open-source packet library of ML and DL, named Scikit-learn v0.24.1 and Tensorflow
v2.1.0 [30–32]. All experimental processes are conducted on a single machine having
specifications as Intel(R) Xeon(R) E3-1220 v6 of CPU, 40GB DDR4 of RAM, and GeForce
GTX 1080 Ti 11GB of GPU memory. The detailed deployment of our workflow is presented
in sub-sections below.

4.1. Preprocessing (Phase 1)

With statistical datasets, there are issues such as missing data, irrelevant features, and
data with different-scale features. In order to deal with these matters, we first applied the
imputation method to fulfill the missing values with the mean of the non-missing values of
the corresponding feature. After that, we sliced the dataset into training, validating, and
testing sets into 10-fold training and validating sets with the ratio of 80:4:16. Subsequently,
we used the standard scaler method to make the feature on the same scale (Equation (4)).
In detail, the mean and standard deviation of the scaler were computed on the training set;
then, we performed standardization by centering and scaling on the training, validating,
and testing sets. In the end, a random forest (RF) was deployed to rank the importance of
the features. This RF contains 100 decision trees, with each tree built by a random subset
with two nodes. The RF is able to divide the dataset into two clusters, in which the samples
in the same cluster are similar to each other and different from the samples belonging to
the other clusters.

xscaled =
x − µ

σ
(4)

where:

• µ: Mean.
• σ: Standard deviation.

The samples for the image-based datasets were originally in different sizes. Therefore,
to feed the image into the training models, we first resized each image to 200 × 200 × 1
where 200 is the value of height and width, and 1 is the depth of the image. In addition,
the traditional ML models that we deploy in our study (e.g., random forest, gradient
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boosting, and stacking classifier) are not suitable for the image-based dataset. Hence,
before deploying these ML models, we transformed these images into statistics-based data
using the Convolutional Auto-Encoder (CAE), its architecture is presented in Table A1.
Generally, the CAE is used for image de-noising by extracting the most important features
of the image and then trying to generate similar images based on the extracted features on
the output layer. In detail, the main components of CAE are encoding convolutional layers,
a compressed convolutional layer, and decoding convolutional layers. In our experiments,
after splitting the data into training, validation, and testing sets, we first trained our CAE
model on the training set. The weight of a well-trained model is retained. After that, we
extracted the information from the compressed convolutional layer and fed it into the
traditional gradient boosting and random forest for training and making predictions. We
performed the same steps on the testing set; however, instead of training the DL model
again, we fed the data into the well-trained models with the frozen weights, and the output
of the compressed convolutional layer was fed into the traditional gradient boosting,
random forest, and stacking classifier.

Our sequential dataset, Depresjon, also contains missing values due to subjective
factors from the participants (e.g., participants took off their device when sleeping or taking
a shower, or when the device needed to be charged, etc.). To deal with the missing data, we
applied the mean imputation method. However, instead of filling the missing values by the
mean of the corresponding non-missing values for the corresponding features, we inserted
the mean of non-missing values coming from the same participant and the same missing
time of day. We also applied the seven-day forward moving window method to generate a
seven-day recorded sample (Figure 8). In other words, each sample was generated by a
window covering the information of every minute of seven consecutive days for a total of
10,080 recorded minutes. After generating a new sample, the starting point of this window
was moved to the next day. In total, 814 samples were generated including normal samples
and depression-appearance samples, and each sample contained 1440 recorded values
in sequence.
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4.2. Building Models, Starting Training and Tuning (Phase 2)

Our proposed models are built from three ensemble learning approaches, namely
DeSGEL, GDLB, and DAL. In general, the CLUs differ among the approaches and data
types. Specifically, for the statistical dataset, the CLUs are the simple fine-tuned DNN
models of which architectures are presented in Table A2. For the image-based dataset,
the CLUs are the well-known architecture of the CNN concept with a combination of
input, convolutional, pooling, and output layers named ResNet50V2 appended to a flat
feedforward neural network that makes the final prediction. The architecture of this model
is presented in Table A3. For the sequential dataset, the deployed CLUs consist of a Long-
Short Term Memory (LSTM), which is the architecture of the RNN concept, and a modified
simple DNN at the end. Their architectures are presented in Table A4. In addition, for the
DeSGEL approach, the level 1 classifiers are the same in all datasets (Table A5).
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In this study, we used the training set for tuning the hyperparameters and the inde-
pendent testing set for evaluating and comparing. In our experiment, we considered two
hyperparameters, namely, the number of sub-models and the number of epochs inside the
sub-models. The number of sub-models ranged from 5 to 50, and the number of epochs
ranged from 50 to 500, with a 50-step increment for each proposed approach. The best
hyperparameter sets for each data type are presented in Table A6. Furthermore, to enhance
the training performance, we also applied some tricky techniques, namely, changing the
learning rate and saving the network’s weight according to the best performance over the
epoch. All of these functions are provided in the Keras open-source library. Specifically, we
used the LearningRateScheduler function to change the learning rate (λ) every 50 epochs.
The updated λ was then calculated by the formula λ = λ − λ * 0.1. In addition, we ap-
plied the ModelCheckpoint function to save the weight of the network according to the
loss-of-validation set when it reached the minimum value. The optimization algorithm
for all DAL and DeSGEL sub-models was fixed with the Adam optimizer with a binary
cross-entropy loss function. However, the GDLB used mean squared error as the loss
function and stochastic gradient descent as the optimizer function because the predicted
values of the CLU are regression instead of binary class.

Additionally, traditional ML and DL models, random forest, gradient boosting, stack-
ing classifier, and DNN were also deployed to compare with the corresponding proposed
DEL approaches. Their best hyperparameter sets are presented in Table A6. The stacking
classifier, on the other hand, is a technique that combines many ML methods as low-level
models. The higher-level model is trained based on the output of the lower-level models
and yields the final prediction. Following this structure, in our experiment, we used ran-
dom forest and gradient boosting with the same-mentioned hyperparameter sets as the
low-level classifiers and a logistic regression with default parameters as the higher-level
classifier. Furthermore, the DNN was deployed on different data types following different
concepts. The architectures of these DL networks are similar to the CLUs of our proposed
approaches for the corresponding dataset. A summary of these hyperparameter sets is
presented in Table A6.

4.3. Evaluating Models (Phase 3)

In this study, the predictions were evaluated using a confusion matrix and its derived
metrics (Figure 9). Essentially, this matrix is made up of four components: true negative
(TN), true positive (TP), false negative (FN), and false positive (FP). The true negative
samples that were predicted as negative are represented by TN. The true positive samples
that are predicted as positive are represented by TP. The true positive samples that are
predicted as negative are represented by FN. The true negative samples that are predicted
as positive are represented by FP.
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From the confusion matrix, the accuracy, precision, recall, F1-score, Matthews correla-
tion coefficient (MCC), and area under the curve (AUC) metrics (Equations (5)–(9)) were
derived, in which the AUC represents the ability to distinguish among classes. Its value
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ranges from 0 to 1, where 1 is the best discrimination of the model. Formulas for the other
metrics are presented below.

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 Score =
2 × Precision × Recall

Precision + Recall
(8)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

5. Results

We conducted the experiments on three open datasets representing three kinds of data
types with seven models for each. In total, 21 trained-by-task ML and DL models were
deployed. Overall, the proposed DEL approaches show the outstanding outperformance
of other ML and individual DL models (Table 3).

Table 3. Comparison Results.

Heart Disease UCI (Statistical Dataset)

Model Accuracy Precision Recall F-Score MCC 1 AUC 2

DeSGEL 3 + DNN 4 CLU 5 0.87 ± 0.01 * 0.88 ± 0.01 0.78 ± 0.01 0.83 ± 0.01 0.73 ± 0.02 0.90 ± 0.00
GDLB 6 + DNN CLU 0.87 ± 0.02 0.86 ± 0.02 0.81 ± 0.04 0.83 ± 0.02 0.73 ± 0.03 0.91 ± 0.01
DAL 7 + DNN CLU 0.87 ± 0.01 0.88 ± 0.05 0.79 ± 0.04 0.83 ± 0.02 0.73 ± 0.03 0.89 ± 0.01

Average of proposed
approaches on mean

values
0.87 0.87 0.79 0.83 0.73 0.90

DNN 0.86 ± 0.01 0.90 ± 0.02 0.74 ± 0.04 0.81 ± 0.02 0.71 ± 0.03 0.87 ± 0.02
Gradient Boosting 0.75 ± 0.05 0.68 ± 0.07 0.75 ± 0.06 0.71 ± 0.04 0.49 ± 0.09 0.80 ± 0.05

Random Forest 0.85 ± 0.01 0.85 ± 0.05 0.78 ± 0.05 0.81 ± 0.01 0.70 ± 0.03 0.90 ± 0.01
Stack Ensemble 0.84 ± 0.03 0.82 ± 0.05 0.78 ± 0.11 0.79 ± 0.05 0.67 ± 0.06 0.89 ± 0.02

Average of traditional DL
and ML on mean values 0.83 0.81 0.76 0.78 0.64 0.87

X-ray (Image-Based Dataset)

Model Accuracy Precision Recall F-Score MCC AUC

DeSGEL + ResNet50V2
CLU 0.89 ± 0.01 0.86 ± 0.01 0.98 ± 0.01 0.91 ± 0.00 0.76 ± 0.01 0.88 ± 0.02

GDLB + ResNet50V2 CLU 0.84 ± 0.03 0.87 ± 0.04 0.88 ± 0.06 0.87 ± 0.03 0.65 ± 0.06 0.87 ± 0.03
DAL + ResNet50V2 CLU 0.91 ± 0.01 0.90 ± 0.02 0.97 ± 0.01 0.93 ± 0.01 0.80 ± 0.02 0.94 ± 0.01

Average of proposed
approaches on mean

values
0.88 0.88 0.94 0.90 0.74 0.90

CNN 8 (ResNet50V2) 0.88 ± 0.03 0.85 ± 0.03 0.98 ± 0.00 0.91 ± 0.02 0.75 ± 0.06 0.91 ± 0.05
Gradient Boosting with

CAE 9 0.85 ± 0.01 0.82 ± 0.01 0.97 ± 0.00 0.89 ± 0.00 0.68 ± 0.01 0.81 ± 0.01

Random Forest with CAE 0.86 ± 0.00 0.83 ± 0.00 0.98 ± 0.00 0.90 ± 0.00 0.71 ± 0.01 0.82 ± 0.00
Stack Ensemble with CAE 0.85 ± 0.01 0.82 ± 0.01 0.98 ± 0.00 0.89 ± 0.00 0.69 ± 0.01 0.81 ± 0.01

Average of traditional DL
and ML on mean values 0.86 0.82 0.98 0.90 0.71 0.84
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Table 3. Cont.

Depresjon (Sequential Dataset)

Model Accuracy Precision Recall F-score MCC AUC

DeSGEL + GRU 10 with
Attention CLU

0.91 ± 0.02 0.88 ± 0.04 0.84 ± 0.04 0.86 ± 0.04 0.80 ± 0.06 0.94 ± 0.03

GDLB + GRU with
Attention CLU 0.88 ± 0.01 0.85 ± 0.04 0.76 ± 0.03 0.80 ± 0.01 0.72 ± 0.01 0.93 ± 0.00

DAL + GRU with
Attention CLU 0.87 ± 0.02 0.88 ± 0.04 0.78 ± 0.05 0.79 ± 0.03 0.70 ± 0.03 0.90 ± 0.02

Average of proposed
approaches on mean

values
0.89 0.87 0.79 0.82 0.74 0.92

RNN 11 (GRU with
Attention)

0.84 ± 0.01 0.78 ± 0.08 0.71 ± 0.12 0.73 ± 0.04 0.63 ± 0.03 0.87 ± 0.02

Gradient Boosting 0.82 ± 0.01 0.72 ± 0.05 0.72 ± 0.09 0.71 ± 0.03 0.59 ± 0.03 0.86 ± 0.01
Random Forest 0.84 ± 0.01 0.73 ± 0.03 0.79 ± 0.07 0.76 ± 0.02 0.65 ± 0.03 0.89 ± 0.01
Stack Ensemble 0.84 ± 0.01 0.73 ± 0.04 0.82 ± 0.08 0.76 ± 0.03 0.65 ± 0.03 0.90 ± 0.01

Average of traditional DL
and ML on mean values 0.84 0.74 0.76 0.74 0.63 0.88

1 Matthews correlation coefficient, 2 Area Under the Curve, 3 Deep Stacked Generalization Ensemble Learning, 4 Deep Neural Network,
5 Core Learning Unit, 6 Gradient Deep Learning Boosting, 7 Deep Aggregated Learning, 8 Convolution Neural Network; 9 Convolution
Auto-Encoder; 10 Gate Recurrent Unit; 11 Recurrent Neural Network. The best performance values are bold. * Each experiment is
repeated 10 times and average results are presented in format: m ± d, where m is the average and d is the standard deviation across the
10 experiments, on the best hyper-parameter sets.

Specifically, on the HDU statistical dataset, our proposed DEL family of models almost
dominates the corresponding traditional ML and DL groups by 3 to 7% in all evaluation
metrics. There are different evaluation performances among the proposed approaches;
however, the gaps are not too great. These approaches share the highest accuracy, F1-score
and MCC of 0.87, 0.83 and 0.73, respectively. The GDLB with the CLU of DNN outperforms
others with the highest recall and AUC of 0.81 and 0.91. Even the individual DL model
shows the highest precision of 0.90, but only that metric is insufficient for a good model.

Furthermore, on the image-based dataset named X-ray, our proposed approaches
also show outstanding performance on the average evaluation metrics with values of 0.88,
0.88, 0.94, 0.90, 0.74 and 0.90, respectively. In particular, the DAL reaches the highest
performance in accuracy, precision, F1-score, MCC, and AUC of 0.91, 0.90, 0.93, 0.80 and
0.94, respectively. The DeSGEL obtained the highest recall of 0.98. However, the proposed
GDLB approach shows poor performance when compared with the in-family models and
also with the ML and individual DL group. The ML and DL models also achieve the
highest recall of 0.98.

Finally, on the sequential dataset, Depresjon, once again, the family of proposed
approaches completely outperforms the corresponding ML and DL groups by 3% to even
13% on the average evaluation metrics. In particular, the DeSGEL approach dominates
others in all evaluation metrics on accuracy, precision, recall, F1-score, MCC, and AUC of
0.91, 0.88, 0.84, 0.86, 0.80, and 0.94, respectively.

In summary, among the proposed approaches, the GDLB with DNN CLU is slightly
better than the others on the statistical datasets. On the other hand, the DAL approach
shows the best performance over other approaches in the DEL family supporting CNN
CLU (ResNet50V2). The DeSGEL with GRU combined with the attention mechanism
outperforms others in the sequence dataset.

The comparison of our proposed approaches with other DL and ML models is con-
ducted by deploying all models on one single computer with the specification mentioned
above. Table A7 presents the results of the training and classification processes in terms of
time and hardware-resource consumption. In conclusion, the proposed DEL approaches
combine multiple models in one runtime; hence, this processing step consumed more hard-



Int. J. Environ. Res. Public Health 2021, 18, 10811 15 of 19

ware resources and running time compared with other individual DL and ML methods.
In fact, the CLUs of the proposed approaches are trained and used to predict on GPU but
traditional ML methods are not; hence, we have not included GPU as a hardware-resource
consumption factor in the comparison.

6. Conclusions

Healthcare support systems are improving with the support of artificial intelligence,
especially DL. Several innovative studies applying DL in early prediction and diagnosis
have given good performance. However, machine- and software-based diagnosis and
prediction in healthcare are still under development. In this study, we propose DEL
approaches to enhance the accuracy and reliability of these predictions. The results show
that the approaches in the DEL family dominate over all other individual deployed models
in performance on all types of dataset. According to the experiment results, using DL as
the CLU, the GDLB approach is suitable for the statistical data type, the DAL approach
is advisable for the image-based data type, and the DeSGEL approach is recommended
for the sequential data type. In addition, the workflow and deployment method also
play an important role in the implementation process. Our study presents a general
and particular process from scratch on different types of data that do not require much
technical domain knowledge to implement. In addition, by replacing the suitable CLUs
of DL for each data type, the comparison between our proposed approaches and the
corresponding individual DL and ML models with similar architecture shows that the
proposed approaches outperform the others overall. Furthermore, the proposed approaches
are capable of tuning the hyperparameters such as learning rate, activation function,
optimization function, etc., to improve the learning process. In this study, we deploy
the same architecture of CLUs. However, our proposed approaches are flexible and
easy to apply to state-of-the-art models by replacing the CLU with these DL models
to achieve optimal performance in future applications. There are some limitations to
our approaches, such as the training time and hardware resource consumption due to
combining several DL models as the CLUs. However, this is a worthwhile trade-off as IT
hardware resources become more and more affordable, and the requirements of accuracy
and reliability are always the top priority in the healthcare field. Another important
factor in the healthcare support systems is the explainable feature affecting the prediction,
but in these approaches, we did not show a way to deal with this issue. This is also a
general drawback of DL approaches. The classification task is the main focus of our study.
However, there are further tasks that our approaches will be able to manage, such as
segmentation, forecasting, etc. In conclusion, we discovered that applying DEL models
using our proposed approaches is a prospective process in the healthcare support system
in order to enhance prediction and diagnosing performance.

Author Contributions: Conceptualization, D.-K.N. and C.-L.C.; methodology, D.-K.N. and C.-L.C.;
software, D.-K.N. validation, C.-H.L. and C.-L.C.; writing—original draft preparation, D.-K.N. and
C.-L.C.; writing—review and editing, D.-K.N., C.-H.L., and C.-L.C.; supervision, C.-L.C.; funding
acquisition, C.-L.C. All authors have read and agreed to the published version of the manuscript.

Funding: This study is funded by Ministry of Science and Technology, Taiwan, grant number MOST
108-2221-E-155-019-MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Depresjon Dataset could be downloaded at https://datasets.
simula.no//depresjon (accessed on 3 September 2021). The X-ray dataset could be downloaded
at https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (accessed on 3 Septem-
ber 2021). The Heart Disease UCI could be downloaded at https://github.com/khanhdc/Deep-
Ensemble-Leanring/blob/main/Dataset/heart.dat (accessed on 3 September 2021).

https://datasets.simula.no//depresjon
https://datasets.simula.no//depresjon
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://github.com/khanhdc/Deep-Ensemble-Leanring/blob/main/Dataset/heart.dat
https://github.com/khanhdc/Deep-Ensemble-Leanring/blob/main/Dataset/heart.dat


Int. J. Environ. Res. Public Health 2021, 18, 10811 16 of 19

Acknowledgments: The authors would like to thank the anonymous reviewers for provision of
constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Auto-Encoder architecture for ML Models on image dataset.

Layer (Type) Output Shape Parameter #

input_18 (InputLayer) [(None, 200, 200, 1)] 0
conv2d_117 (Conv2D) (None, 200, 200, 16) 160

max_pooling2d_51 (MaxPooling) (None, 100, 100, 16) 0
conv2d_118 (Conv2D) (None, 100, 100, 8) 1160

max_pooling2d_52 (MaxPooling) (None, 50, 50, 8) 0
conv2d_119 (Conv2D) (None, 50, 50, 8) 584

max_pooling2d_53 (MaxPooling) (None, 25, 25, 8) 0
conv2d_120 (Conv2D) (None, 25, 25, 8) 584

up_sampling2d_49 (UpSampling) (None, 50, 50, 8) 0
conv2d_121 (Conv2D) (None, 50, 50, 8) 584

up_sampling2d_50 (UpSampling) (None, 100, 100, 8) 0
conv2d_122 (Conv2D) (None, 100, 100, 16) 1168

up_sampling2d_51 (UpSampling) (None, 200, 200, 16) 0
conv2d_123 (Conv2D) (None, 200, 200, 1) 145

Table A2. The architecture of DNN CLU.

Layer (Type) Output Shape Parameter #

dense (Dense) (None, 248) 3224
dense_1 (Dense) (None, 64)
dense_2 (Dense) (None, 16) 1040
dense_3 (Dense) (None, 2) 34

Table A3. The architecture of CNN (ResNet50V2) CLU.

Layer (Type) Output Shape Parameter #

input_1 (InputLayer) [(None, 200, 200, 1)] 0
ResNet50V2 layers (None, 7, 7, 2048) 23,558,528

flatten (Flatten) (None, 100,352) 0
dense (Dense) (None, 64) 6,422,592

dense_1 (Dense) (None, 2) 130

Table A4. The architecture of RNN CLU and the Individual Corresponding RNN (GRU with Attention).

Layer (Type) Output Shape Parameter #

input_1 (InputLayer) [(None, 10,080, 1)] 0
gru (GRU) (None, 10,080, 128) 50,304

last_hidden_state (Lambda) (None, 128) 0
attention_score_vec (Dense) (None, 10,080, 128) 16,384

attention_score (Dot) (None, 10,080) 0
attention_weight (Activation) (None, 10,080) 0

context vector (Dot) (None, 128) 0
attention output (Concatenate) (None, 256) 0

attention vector (Dense) (None, 128) 32,768
dense (Dense) (None, 32) 4128

dropout (Dropout) (None, 32) 0
dense_1 (Dense) (None, 2) 66
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Table A5. The architecture of the classification model in level 1 of the DeSGEL approach.

Layer (Type) Output Shape Parameter #

dense (Dense) (None, 248) 3224
dense_1 (Dense) (None, 64) 15,936
dense_2 (Dense) (None, 16) 1040
dense_3 (Dense) (None, 2) 34

Table A6. The proposed approaches, ML and DL fine-tuned hyper-parameter sets on the target datasets.

Heart Disease UCI (Statistical Dataset)

Model Number of CLU 1 on
the Best MCC 2

Depth of CLU on the
Best MCC Trained Batch 3 Number of Epochs on

the Best MCC

DeSGEL 4 + DNN 5 CLU 5 N/A 1000 250
GDLB 6 + DNN CLU 33 N/A 1000 200
DAL 7 + DNN CLU 2 N/A 1000 500

DNN 1 N/A 1000 450
Gradient Boosting 200 4 N/A N/A

Random Forest 300 7 N/A N/A

Stack Ensemble The combination of the above RF 8 and GD 9 and
with the same hyper-parameter set.

N/A N/A

X-ray (Image-Based Dataset)

Model Number of CLU on
the Best MCC

Depth of CLU on the
Best MCC Trained batch Number of Epochs on

the Best MCC

DeSGEL + ResNet50V2 CLU 8 N/A 130 50
GDLB + ResNet50V2 CLU 8 N/A 130 100
DAL + ResNet50V2 CLU 15 N/A 130 100

CNN 10 (ResNet50V2) 1 N/A 130 50
Gradient Boosting with CAE 11 300 8 N/A N/A

Random Forest with CAE 80 8 N/A N/A

Stack Ensemble with CAE The combination of the above RF and GD and
with the same hyper-parameter set. N/A N/A

Depresjon (Sequential Dataset)

Model Number of CLU on
the Best MCC

Depth of CLU on the
Best MCC Trained batch Number of Epochs on

the Best MCC

DeSGEL + GRU 12 with
Attention CLU

4 N/A 150 100

GDLB + GRU with
Attention CLU 11 N/A 150 500

DAL + GRU with
Attention CLU 4 N/A 150 100

RNN 13 (GRU with Attention) 1 N/A 500
Gradient Boosting 2300 12 N/A N/A

Random Forest 60 3 N/A N/A

Stack Ensemble The combination of the above RF and GD and
with the same hyper-parameter set. N/A N/A

1 Core Learning Unit, 2 Matthews correlation coefficient, 3 The number of batch in every training epoch, 4 Deep Stacked Generalization
Ensemble Learning, 5 Deep Neural Network, 6 Gradient Deep Learning Boosting, 7 Deep Aggregated Learning, 8 Random Forest; 9 Gradient
Boosting; 10 Convolution Neural Network; 11 Convolution Auto-Encoder; 12 Gate Recurrent Unit; 13 Recurrent Neural Network.
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Table A7. Time and hardware resource consumption over methods (on the best hyper-parameter sets).

Heart Disease UCI (Statistical Dataset)

Model Training Time (s 1) Predicting Time (s) Training RAM Peak
Misappropriation (MB 2)

Prediction RAM Peak
Misappropriation (MB)

DeSGEL 3 + DNN 4

CLU 5 27.50 0.25 4095.53 4095.53

GDLB 6 + DNN CLU 55.44 36.36 601.21 625.64
DAL 7 + DNN CLU 17.89 1.83 21.74 26.37

DNN 11.69 0.76 8.21 11.98
Gradient Boosting 1.13 0.003 7.60 7.60

Random Forest 0.82 0.03 6.79 6.79
Stack Ensemble 5.65 0.04 3.56 3.56

X-ray (Image-Based Dataset)

Model Training Time (s) Predicting Time (s) Training RAM Peak
Misappropriation (MB)

Prediction RAM Peak
Misappropriation (MB)

DeSGEL + ResNet50V2
CLU 11147.09 17.32 1081.09 1681.54

GDLB + ResNet50V2
CLU 15,746.53 30.47 330.01 330.31

DAL + ResNet50V2
CLU 43,370.864 433.45 612.00 1534.29

CNN 8 (ResNet50V2) 2193.12 2.950 434.02 434.02
Gradient Boosting

with CAE 9 1940.56 0.016 101.46 101.46

Random Forest
with CAE 62.97 0.083 101.46 101.46

Stack Ensemble
with CAE 23,639.66 0.07 1182.86 1182.86

Depresjon (Sequential Dataset)

Model Training Time (s) Predicting Time (s) Training RAM Peak
Misappropriation (MB)

Prediction RAM Peak
Misappropriation (MB)

DeSGEL + GRU 10 with
Attention CLU

2888.29 4.62 58.783 52.32

GDLB + GRU with
Attention CLU 16,930.48 127.04 171.02 206.42

DAL + GRU with
Attention CLU 758.42 5.87 620.00 620.00

RNN 11 (GRU with
Attention)

1055.84 13.870 269.77 269.77

Gradient Boosting 139.46 0.010 55.35 55.35
Random Forest 31.01 0.36 28.82 28.82
Stack Ensemble 622.31 0.58 154.80 154.80
1 in second, 2 in Megabyte, 3 Deep Stacked Generalization Ensemble Learning, 4 Deep Neural Network, 5 Core Learning Unit, 6 Gradient
Deep Learning Boosting, 7 Deep Aggregated Learning, 8 Convolution Neural Network; 9 Convolution Auto-Encoder; 10 Gate Recurrent
Unit; 11 Recurrent Neural Network.
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