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Abstract
Overdiagnosis of breast cancer, defined as diagnosing a cancer that would otherwise
not cause symptoms or death in a patient’s lifetime, costs U.S. health care system over
$1.2 billion annually. Overdiagnosis rates, estimated to be around 10%–40%, may be
reduced if indolent breast findings can be identified and followed with noninvasive
imaging rather than biopsy. However, there are no validated guidelines for radiologists
to decide when to choose imaging options recognizing cancer grades and types. The
aim of this study is to optimize breast cancer diagnostic decisions based on cancer types
using a large-scale finite-horizon Markov decision process (MDP) model with 4.6 mil-
lion states to help reduce overdiagnosis. We prove the optimality of a divide-and-search
algorithm that relies on tight upper bounds on the optimal decision thresholds to find an
exact optimal solution. We project the high-dimensional MDP onto two lower dimen-
sional MDPs and obtain feasible upper bounds on the optimal decision thresholds. We
use real data from two private mammography databases and demonstrate our model
performance through a previously validated simulation model that has been used by the
policy makers to set the national screening guidelines in the United States. We find that
a decision-analytical framework optimizing diagnostic decisions while accounting for
breast cancer types has a strong potential to improve the quality of life and alleviate the
immense costs of overdiagnosis. Our model leads to a 20% reduction in overdiagnosis
on the screening population, which translates into an annual savings of approximately
$300 million for the U.S. health care system.

K E Y W O R D S
breast cancer, diagnostic decisions, large-scale dynamic programming, Markov decision processes, overdiag-
nosis

1 INTRODUCTION

Breast cancer is the most common nonskin cancer affect-
ing women in the United States. Approximately one in every
eight American women is expected to develop invasive breast
cancer during their lifetime, and one in every 36 Ameri-
can women is expected to die from this disease. An effec-
tive way to reduce breast cancer mortality is early diagno-
sis through screening mammography (Khatib & Modjtabai,
2006). Although there is a controversy on the starting age
and the frequency of mammography screening, many medi-
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cal organizations such as The American College of Obstetri-
cians and Gynecologists (ACOG) recommend annual screen-
ing mammography beginning at age 40 (ACOG, 2020).

Using a mammography exam, radiologists identify find-
ings, categorize these findings with descriptors, and render
a recommendation based on an estimate of the probability of
cancer. There are three main postmammographic diagnostic
options for radiologists:

(i) additional imaging and biopsy,
(ii) short-term follow-up mammography in 6 months, or

(iii) routine follow-up mammography in a year.
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Surprisingly, there are only a few validated quantitative
guidelines for radiologists to decide which option to choose
after a mammography exam.

Although screening mammography saves thousands of
lives every year through early diagnosis, it has several harms
including a large number of false positives and overdiagno-
sis. In particular, overdiagnosis of breast cancer, defined as
diagnosing a condition that would otherwise not cause symp-
toms or death in a patient’s lifetime, has been the focus of
many recent studies in the breast cancer literature over the last
decade (Srivastava et al., 2019) and received extensive media
coverage (CNN, 2018; Medscape, 2020; New York Times,
2017; Washington Post, 2017). The proportion of breast can-
cer cases that were overdiagnosed has been estimated to
be between 10% and 40% (Bleyer & Welch, 2012; Duffy
et al., 2005; Jørgensen et al., 2017; Miller et al., 2014). In
2012, scientists from diverse disciplines gathered at National
Cancer Institute’s (NCI) meeting on overdiagnosis to evalu-
ate the problem of cancer overdiagnosis and acknowledged
the necessity of new screening and diagnostic guidelines to
lessen overdiagnosis (Esserman et al., 2013). A recent study
further revealed that breast cancer overdiagnosis costs the
U.S. health care system over $1.2 billion every year (Ong &
Mandl, 2015).

A major cause of overdiagnosis is diagnosing indolent
tumors, which either never progress or progress so slowly
that the patient dies of other causes before the tumor pro-
duces symptoms (Welch & Black, 2010). Several autopsy
studies report such findings in patients who die before cancer
becomes symptomatic (Esserman et al., 2013). However, cur-
rent diagnostic guidelines do not consider the differential risk
of developing indolent and aggressive tumors. In the current
clinical practice, a scalar risk corresponding to the cumulative
risk of breast cancer is used for making the diagnostic deci-
sions, where findings with more than 2% probability of cancer
are recommended biopsy regardless of the age of the woman
(BI-RADS, 2003). There have been encouraging findings in
the cancer genomics literature showing that gene expression
signatures may predict indolent or aggressive cancer (Esser-
man et al., 2017; Irshad et al., 2013), yet no previous study in
the medical and operational literature that aimed to improve
the current clinical guidelines has considered tailoring diag-
nostic decisions based on the risk of developing different can-
cer types (see Section 2). Can neglecting the age-specific dif-
ferences between indolent and aggressive cancers in mak-
ing diagnostic decisions contribute to the alarming rates of
overdiagnosis? Our main aim in this paper is to affirmatively
answer this question through proposing an alternative per-
spective on breast cancer diagnosis that requires a two-step
modeling approach. The first step is to estimate a multidi-
mensional breast cancer risk vector, which encompasses the
risk of aggressive and indolent types of cancers and use it
for decision making instead of a scalar risk representing the
cumulative probability of cancer risk. Using such a multidi-
mensional risk vector enables special care for indolent dis-
eases, which are more likely to be overdiagnosed compared
to more aggressive diseases. And the second step is to pro-
vide novel optimization algorithms to overcome the compu-

tational challenges that inevitably arise with the use of multi-
dimensional risk estimates for diagnostic decision making, a
phenomenon known as the curse of dimensionality.

The purpose of this paper is therefore to determine the
optimal breast cancer diagnostic decisions with a practically
pertinent setup tailored to the type of cancer and to evalu-
ate its effect on reducing overdiagnosis, based on a woman’s
age. Our goal is to offer a remedy for overdiagnosis through
a multidimensional optimization of breast cancer diagnos-
tic decisions based on disease types and consequently skip-
ping aggressive diagnostic procedures on patients who do not
need them. To determine whether a patient needs an inva-
sive postmammogram procedure, we use quality-adjusted life
years (QALYs) to measure her health gain from such pro-
cedures. Our approach offers a potent solution to the lack
of a comprehensive optimization tool to guide radiologists
in making decisions that integrate indolent and aggressive
types of breast cancer and thus eliminates a major cause
of overdiagnosis. We develop a large-scale Markov deci-
sion process (MDP) model to find the optimal postmammog-
raphy diagnostic actions based on mammographic descrip-
tors and demographic factors to maximize the total expected
health benefits measured by QALYs. Using a multidimen-
sional risk model contributes to the existing models in the
literature that use a simplified scalar risk, ignoring the sub-
stantial differences among breast cancer types. We derive
the structural properties of the optimal diagnostic policies to
develop easy-to-implement and efficient algorithms to find
an exact optimal solution for the otherwise computationally
intractable MDP.

Among various breast cancers, a prevalent and well-
studied indolent type is ductal carcinoma in situ (DCIS),
which is defined as the presence of abnormal cells inside the
milk ducts that have not spread outside the ducts. Between
1975 and 2004, the age-adjusted incidence rate of DCIS
increased from 1.87 to 32.7 per 100,000 women-years (Virnig
et al., 2009). DCIS is categorized into three types with respect
to tumor growth rate: low-, intermediate-, and high-grade
(Allred, 2010). While DCIS is not life-threatening, the cur-
rent clinical practice is to diagnose and treat all DCIS cases
because DCIS can progress to invasive breast cancer (Fisher
et al., 2001). However, DCIS may remain indolent for several
years and not progress to invasive cancer in a woman’s life-
time. Furthermore, DCIS sojourn time, defined as the mean
duration of the preclinical phase, depends on its grade, with
high-grade DCIS progressing to invasive cancer faster than
low-grade. As a result of the substantial differences among
the progression rates of different DCIS grades, experts sug-
gest that mammography findings that may indicate low-grade
DCIS may be followed with noninvasive imaging rather than
biopsy in older women (van Luijt et al., 2016). We analyti-
cally investigate the effects of this hypothesis by incorporat-
ing the grade of DCIS, which captures the heterogeneity of
DCIS tumors concerning their potential for leading to cancer
death, into our model.

Our contributions in this paper can be summarized as fol-
lows. First, we provide patient-specific optimal diagnostic
thresholds by assessing a multifaceted risk vector for each
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woman using mammographic findings. We then evaluate the
effect of the optimal diagnostic policies obtained by our
model on reducing breast cancer overdiagnosis based on the
patient’s age. Furthermore, rather than solving an approxi-
mate dynamic programming, we develop an efficient and eas-
ily implementable divide-and -search (DS) algorithm to find
the exact solution to the given large-scale MDP in polynomial
time. We also provide a projection method from the high-
dimensional MDP into lower dimensional MDPs to introduce
feasible upper bounds on the diagnostic thresholds by utiliz-
ing the analytical characteristics of the breast cancer decision-
making problem. The proposed dimension reduction method
supplements the solution algorithm by providing limits on the
necessary parameters to be calculated and stored. We opti-
mally solve the MDP model using clinical data from two
established hospitals and demonstrate our model performance
through a previously validated simulation model that has been
used by the policymakers to set the national screening guide-
lines in the United States. Our results show that the optimal
diagnostic guidelines provided by our model lead to a sig-
nificant reduction in overdiagnosis, where the rate of reduc-
tion increases with age. While the current form of the solu-
tion algorithm and the dimension reduction method is tailored
for breast cancer diagnostic decisions, our framework has the
potential for use in other medical decision-making problems
that involve a variety of disease types.

The remainder of this paper is organized as follows. Rel-
evant literature is surveyed in Section 2. A large-scale MDP
model to optimize the breast cancer diagnostic decisions is
presented in Section 3. The structural properties of the opti-
mal policy are derived in Section 4. An efficient algorithm
to exactly solve the given large-scale MDP is developed in
Section 4.1. A reduced dimension model to provide feasi-
ble bounds on the optimal diagnostic thresholds found by
the solution algorithm is presented in Section 4.2. In Sec-
tion 5, we describe the estimation of model parameters that
are used to conduct the numerical experiments given in Sec-
tion 6. Finally, concluding remarks and future extensions are
presented in Section 7.

2 LITERATURE REVIEW

The operations research literature on the optimization of
breast cancer policies focuses on two different aspects of the
problem: screening and diagnosis. On the screening side, sev-
eral models have been proposed either from a population-
based perspective (Cevik et al., 2018; Maillart et al., 2008) or
from a personalized perspective (Ayer et al., 2012, 2015). On
the diagnostic side, Chhatwal et al. (2010) propose a finite-
horizon discrete-time MDP model to determine the optimal
biopsy threshold based on a scalar risk of cancer. Alagoz
et al. (2013) provide an extension by including the short-
term follow-up as a diagnostic action to improve clinical rel-
evance. Ayvaci et al. (2012) consider diagnostic decisions
under budgetary constraints and develop a mixed-integer pro-
gramming formulation to optimally solve the corresponding

constrained MDP model. Contrasted with our work, these
papers use a scalar probability of cancer and make policy
recommendations without discriminating whether the find-
ings indicate an indolent or aggressive cancer. Furthermore,
as a result of the lack of a multidimensional risk model,
they ignore the heterogeneity of cancer types with respect to
their rate of progression and potential for leading to cancer
death.

The problem of overdiagnosis and overtreatment has been
considered in various settings. A major stream in the lit-
erature focuses on reporting overdiagnosis rates through
prospective cohort studies or follow-ups of randomized con-
trolled trials that compare the incidence among an inter-
vened population to a reference population (Bleyer & Welch,
2012; Duffy et al., 2005; Jørgensen et al., 2017; Miller et al.,
2014). A few other studies propose analytical frameworks to
quantify overdiagnosis or overtreatment. Paç and Veeraragha-
van (2015) study the overtreatment problem using a queu-
ing game approach, and conclude that experts may tend to
overtreat their customers by exploiting their informational
advantage over them unless such a tendency is not weakened
by congestion. In our setting, information asymmetry is not a
concern. Arrospide et al. (2015) use discrete event simulation
to assess the effectiveness of the Basque Country screening
program using several measures including overdiagnosis in
Basque women. Gunsoy et al. (2014) develop a Markov sim-
ulation model to evaluate the effects of different screening
strategies on overdiagnosis and mortality using a cohort of
British women. Madadi et al. (2018) propose a mixed-integer
linear model to obtain screening policies that minimize a lin-
earized function of breast cancer overdiagnosis and mortality.
Seigneurin et al. (2011) perform approximate Bayesian com-
putation analysis with a stochastic simulation model to quan-
tify overdiagnosis by screening mammography in a cohort of
French women. Davidov and Zelen (2004) present a mathe-
matical framework to derive the probability of overdiagnosis
and apply this framework to hypothetical early detection pro-
grams for prostate cancer.

The main differences between our work and the relevant
literature on overdiagnosis are that they:

(i) do not consider all breast cancer types and the resulting
heterogeneity in the progression of the disease,

(ii) ignore sequential decision making that is observed in
diagnostic decisions, and

(iii) do not evaluate age-specific decisions based on patients’
risk of cancer.

Compared to the literature, we implement a medically accu-
rate model of the progression for each disease type and design
a comprehensive decision-making scheme optimizing age-
specific diagnostic decisions by concomitantly integrating the
risks of indolent and aggressive types. Accordingly, we can
establish the optimal policies that improve the early diagnosis
of aggressive diseases while minimizing unnecessary proce-
dures on low-risk diseases, which would not be possible using
traditional approaches.
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This paper further contributes to the growing literature
on sequential decision making using a multidimensional risk
vector to discriminate types of outcomes. Although includ-
ing a high-dimensional risk vector enhances the rationality
of the model, it also increases the size of the problem and
makes MDPs harder to solve due to the curse of dimensional-
ity (Puterman, 1994). Therefore, the use of multidimensional
system states in sequential decision making is mostly lim-
ited to the areas of applications such as machine maintenance
(Eckles, 1968; Helm et al., 2015; Makis, 2008), where, unlike
the problem of interest, the total number of states is not very
large to make the problem intractable to provide an exact
solution.

3 MODEL FORMULATION

We formulate the breast cancer diagnostic decision problem
as a discrete-time, finite-horizon, large-scale MDP model and
refer to it as the large-scale diagnostic decision model (LSM).
We assume that the decision maker is the radiologist who
is acting on behalf of the patient and the patient follows
the recommendations of the radiologist. Diagnostic decisions
are assumed to be made at discrete points t = 0, 1, 2, … ,T ,
T < ∞, where t is defined as the number of 6-month intervals
between the age of 40 and 100 (Arias, 2015). After a routine
annual mammogram, the patient’s risks of low-, intermediate-
, high-grade DCIS and invasive cancer are estimated by the
radiologist using one of the methods described in Section 5.
Here, the grade of DCIS refers to its cytologic grade, which
is classified by pathologists into three categories: grade 1 or
“low-grade,” grade 2 or “intermediate-grade,” and grade 3
or “high-grade”(Allred, 2010). We define the system state
using a cancer risk vector at time t as xt ∈ ̄ ∪ {PT ,D}. Here,
PT represents the posttreatment state, D represents the death
state, and ̄ is the set of risk vectors x = [x0, x1, x2, x3, x4]
such that xi ∈ {0, 1, … , 100} for i = 0, 1, 2, 3, 4 and

∑4
i=0 xi =

1001. The risk vectors x ∈ ̄ are breast cancer probability
vectors such that x0, x1, x2, x3, and x4 represent the proba-
bilities of being cancer-free, low-grade DCIS, intermediate-
grade DCIS, high-grade DCIS, and invasive cancer, respec-
tively. The risk vectors are discretized for notational clarity.
For example, if the probability of being cancer-free is 50%,
low-grade DCIS is 20%, intermediate-grade DCIS is 15%,
high-grade DCIS is 10%, and invasive cancer is 5%, then the
corresponding risk vector is [50, 20, 15, 10, 5].

Based on the risk vector (5-tuple), the radiologist may
recommend: (i) immediate biopsy, (ii) short-term follow-up
with a mammogram in 6 months, and (iii) routine follow-up
with a mammogram in a year. If the radiologist recommends
a biopsy and the biopsy confirms DCIS or invasive cancer,
the patient moves to the posttreatment state, immediately
starts receiving treatment, and the decision process ends. If
the biopsy outcome is negative (benign) or the woman is
recommended to have a short-term or routine follow-up, she
stays in the decision process until the next corresponding

decision epoch unless she dies at any point during that time
interval. Therefore, the decision process ends either when
the patient develops breast cancer or dies. Accordingly,
we define the action space for a patient in state x ∈ ̄ as
Ax = {Short-term follow-up(Sf),Annual mammogram(Am),
Biopsy(Bx)}. When the patient is in state PT or D, the
decision problem ends and there is no action associated
with these states. Figure 1 depicts the decision process of
the LSM.

Patients’ risk of developing breast cancer types stochasti-
cally evolves throughout the decision process. Let pt(j|x, a)
represent the probability that the patient will be in state j at
time t + 1, given that the patient is in state x and the action
is a ∈ x at time t. We define pt(PT|PT , a) = pt(D|D, a) = 1
for every a ∈  and t = 1, … ,T , since the posttreatment and
death states are absorbing. We assume that the patient is not
allowed to move to the posttreatment state without having
a biopsy, hence we define pt(PT|x, a) = 0 for a ∈ {Sf,Am}
and x ∈ ̄ .

We define an equivalent state space to ̄ , denoted by
 , such that for any x ∈  , x = [x1, x2, x3, x4], where 0 ≤

x1, x2, x3, x4 and
∑4

i=1 xi
t ≤ 100.2 Definition 1 provides the

marginal probabilities of outcomes corresponding to each
state xt ∈  .

Definition 1. For any x ∈  , 𝜌i(x) denotes the proba-
bility of being cancer-free, low-grade DCIS, intermediate-
grade DCIS, high-grade DCIS, and invasive cancer, for
i = 0, 1, 2, 3, 4, respectively, that is, 𝜌i(x) := xi∕100 for i =

0, 1, 2, 3, 4, where x = [x1, x2, x3, x4] and x0 = 100 −
∑4

i=1 xi.

Once a biopsy is performed, the patient is only allowed
to move to the posttreatment state, PT , or the perfect
benign state, [0,0,0,0], depending on the outcome of the
biopsy. Therefore, using the definition of 𝜌0(xt), if the
patient is in state xt and has a biopsy at time t, we
have pt([0, 0, 0, 0] | xt,Bx) = 𝜌0(xt) and pt(PT|xt,Bx) = 1 −
𝜌0(xt) for every xt ∈  . If the outcome of a biopsy
performed at time t is benign, then no further screen-
ing action is taken until the next decision epoch t +
1 (in 6 months) and the patient’s state evolves through
the transition probability pt(x

′|0⃗,Sf). If the actions is an
annual mammogram, the transition probabilities can be
computed using the one-step transition probability matrix
of short-term follow-up action. That is, pt(xt+2|xt,Am) =∑

xt+1∈
pt(xt+1|xt,Sf)pt+1(xt+2|xt+1,Sf), where we define

pt(xt+1|xt,Am) = 0 if xt+1 ≠ xt for all t.
We define death probabilities corresponding to different

outcomes/diseases as follows.

Definition 2. pi
t(D) denotes the probability of death dur-

ing the decision epoch t, when the patient is cancer-free,
has low-grade DCIS, intermediate-grade DCIS, high-grade
DCIS, and invasive cancer, for i = 0, 1, 2, 3, 4, respectively.
Accordingly, if the patient is in state xt and the action is Sf
at time t, the probability of death is given by pt(D|xt,Sf) =
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F I G U R E 1 State transition diagram for the large-scale
diagnostic decision model (LSM)

∑4
i=0 𝜌

i(xt)p
i
t(D). Similarly,

pt(D|xt,Am) =
∑

xt+1∈∪{D}

pt(xt+1|xt,Sf)pt+1(D|xt+1,Sf)

= pt(D|xt,Sf) +
∑

xt+1∈

pt(xt+1|xt,Sf)pt+1(D|xt+1,Sf).

(1)

We use QALYs to measure the benefit of postmammogra-
phy actions capturing the patient survival and the associated
quality of life (Drummond et al., 2015). QALYs associated
with noninvasive imaging options, rt(xt,Sf) and rt(xt,Am),
are calculated considering the possibility of death at any time
during discrete time intervals to account for the half-cycle
correction as follows:

rt(xt,Sf) =
1
2

(1 − pt(D|xt,Sf)) +
1
4

pt(D|xt,Sf) − ut(Sf)

=
1
2

4∑
i=0

𝜌i(xt)(1 − pi
t(D))

+
1
4

4∑
i=0

𝜌i(xt)(p
i
t(D)) − ut(Sf),

(2)

where ut(Sf) is the disutility associated with the short-term
follow-up at decision epoch t. Similarly,

rt(xt,Am) = (1 − pt(D|xt,Am)) +
1
2

pt(D|xt,Am) − ut(Am),

(3)

where ut(Am) is the disutility associated with annual mam-
mogram at time t.

When a patient undergoes a biopsy, the QALYs accrued
depend on the outcome of the biopsy. If the outcome
is benign, then the patient moves to the [0, 0, 0, 0] state
and receives an intermediate reward, rt(xt,Bx,B). If, on
the other hand, the outcome is malignant, then the patient
moves to state PT and receives a lump-sum reward,

rt(xt,Bx,C). We have rt(xt,Bx,B) =
1

2
(1 − p0

t (D)) +
1

4
p0

t (D)

and rt(xt,Bx,C) =
∑4

i=1
𝜌i(xt)

1−𝜌0(xt)
ri

t(Bx), where ri
t(Bx) is the

expected postbiopsy reward when the patient is diagnosed
with a cancer type i for i = 1, 2, 3, 4. Accordingly, the total
QALYs associated with a biopsy at time t, rt(xt,Bx), is given
by

rt(xt,Bx) = 𝜌0(xt)rt(xt,Bx,B)

+ (1 − 𝜌0(xt))rt(xt,Bx,C) − ut(Bx), (4)

where ut(Bx) is the disutility of biopsy. Although different
preferences of older and younger patients toward mammogra-
phy screening and biopsy may be modeled by defining time-
dependent disutilities, we assume all disutilities are station-
ary in this study. Additionally, the effect of overtreatment
can be introduced into the model by including an appropri-
ate disutility associated with the estimated risk of overtreat-
ment as a function of patient’s age and type of cancer to the
lump-sum reward received when the biopsy reveals a cancer
with type i, that is, ri

t(Bx). Finally, our model assumes that
any diagnosed DCIS patient is treated with an appropriate
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treatment and does not investigate the optimal treatment plan
for these patients.

The optimal value function, t(xt) can be calculated by
solving the standard form of Bellman’s equation (Puterman,
1994):

t(xt) = max

{
rt(xt,Bx) + 𝛾𝜌0(xt)

∑
x′∈

pt
(
x′|0⃗,Sf

)
t+1(x′),

rt(xt,Sf) + 𝛾
∑

x′∈

pt
(
x′|xt,Sf

)
t+1(x′),

rt(xt,Am) + 𝛾2
∑

x′∈

pt
(
x′|xt,Am

)
t+2(x′)

}
, (5)

where 𝛾 ∈ [0, 1] is the 6-month discount factor capturing the
effect of timely decisions, 0⃗ := [0, 0, 0, 0], xt ∈  , and t =
0, … ,T − 2. For t = T − 1, the optimality equation becomes

t(xt) = max

{
rt(xt,Bx) + 𝛾𝜌0(xt)

∑
x′∈

pt

(
x′|0⃗,Sf

)

t+1(x′), rt(xt,Sf) + 𝛾
∑

x′∈

pt
(
x′|xt,Sf

)
t+1(x′)

}
,

(6)

where xt ∈  . Finally, for t = T , we introduce a boundary
condition given by

T (xT ) = rT (xT ), (7)

where xT ∈  and rT (xT ) denotes the extrapolated QALYs at
the end of the decision horizon when the patient is in xT . We
define a∗(xt) as the optimal action corresponding to xt ∈  at
time t.

4 ALGORITHM DEVELOPMENT AND
STRUCTURAL RESULTS

In this section, we present the details of the algorithm devel-
opment and structural results related to the LSM as well as
the solution algorithms. In its current form, the cardinality of
the state space, which is approximately 4.6 million, makes
the LSM computationally intractable. Therefore, we conduct
a structural analysis of the LSM to develop computationally
efficient algorithms.

In this context, we first introduce a DS algorithm in Sec-
tion 4.1 to find an exact solution to the LSM by diving the
large state space into smaller hyperplanes and evaluating only
a small subset of the state space. Theorem 1 and Proposi-
tion 2 prove the optimality of the solution obtained by this
algorithm. The complexity and performance of the DS algo-
rithm highly depend on the upper bounds for the optimal
biopsy decision thresholds, and accordingly, we develop a
novel dimension reduction method to find such upper bounds

in Section 4.2. Theorem 2 proves that the value functions
obtained by our dimension reduction method provide upper
bounds for the optimal biopsy decision thresholds in the
LSM. We then use the results of Section 4.2 to implement
the DS algorithm using the dimension reduction method and
solve the LSM optimally in polynomial time.

For our structural analysis, we need an ordering of patients
with respect to their cancer risk, but no simple method exists
to rank the multidimensional risk vectors. We start with the
following partial order definition that will be used throughout
this section.

Definition 3. We define the risk-based order ≤ as a com-
ponentwise order on  , so that for any x, y ∈  , x ≤ y if and
only if xi ≤ yi for i = 1, … , 4. The risk-based order is a partial
order on  .

Although not every pair of risk vectors are comparable
under the risk-based order, we show that those observing the
order exhibit significant structural properties. We also intro-
duce a total order over the state space in the following defini-
tion.

Definition 4. We define the reward-based order ≤
r

imitating

the reverse of the order between the intermediate and bound-
ary rewards, so that x ≤

r
y if and only if rt(x, a) ≥ rt(y, a) for

a ∈ {Bx,Sf,Am} and t = 0, 1, … ,T , without loss of general-
ity. This reward-based order is a total order over  .

The total order defined in Definition 4 imitates the radi-
ologist’s assessment of a patient’s condition under different
risk states. Using such an order, we derive structural results
on the optimal value functions over the entire state space,
which are later used to prove fundamental results on the opti-
mal actions for state pairs that are comparable under the risk-
based order. Lemma 1 establishes that the risk-based order
implies the reward-based order. The proofs of the remark as
well as all other results in this paper are included in Online
Appendix E.

Lemma 1. For any x, y ∈  if x ≤ y, then x ≤
r

y.

The following list enumerates the major assumptions that
are used throughout this section.

(A-1) The reward function rt(xt, a) is nonincreasing in xt
with respect to the total order, for all a ∈ {Bx,Sf,Am}
and t = 0, 1, … ,T .

(A-2) The expected postbiopsy reward when the patient is
diagnosed with a disease with type i, ri

t(Bx) is nonin-
creasing in i for all t = 0, 1, … ,T .

(A-3) The transition probability matrices, ℙAm
t and ℙSf

t ,
are with increasing failure rate (IFR) (Barlow &
Proschan, 1965) with respect to the total order, that is,∑

y≥
r

x′ pt(y|x, a) is nondecreasing in x for any x′ ∈  ,

a ∈ {Sf,Am} and t = 0, 1, … ,T .
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Assumption (A-3) is a widely used assumption on transi-
tion probability matrices to analyze the structure of the opti-
mal policy in the optimization literature (Chhatwal et al.,
2010; Puterman, 1994). The following proposition proves
the monotonicity of the optimal value function, t(x), with
respect to the reward-based order over the entire state space:

Proposition 1. For any x, y ∈  and t = 0, 1, … ,T, if x ≤
r

y,

then t(x) ≥ t(y).

We next provide an upper bound, Zmax
t , and a lower bound,

r4
t (Bx), on t(x) for any x ∈  in Lemma 2, and defer intu-

itive explanation of these bounds until after Theorem 1.

Lemma 2. For any x ∈  and t = 0, 1, … ,T, let Zmax
t be

recursively defined as

Zmax
t = max

{
rt(0⃗, Sf) + 𝛾(1 − p0

t (D))Zmax
t+1 , rt(0⃗,Am)

+𝛾2(1 − p0
t (D,Am))Zmax

t+2

}
, (8a)

Zmax
T−1 = rT−1(0⃗, Sf) + 𝛾(1 − p0

T−1(D))Zmax
T , (8b)

Zmax
T = rT (0⃗), (8c)

then the optimal value function t(x) satisfies

Zmax
t ≥ t(x) ≥ rt(x,Bx,C). (9)

Our main result in this section is provided in Theorem 1,
which exploits the risk-based order among different states to
compare the optimal actions of a pair of states that are com-
parable under the risk-based order.

Theorem 1. For any t and i ∈ {1, 2, 3, 4}, if Zmax
t ,

rt(x,Bx,C), and rt(x,Bx) satisfy the following condition:

10−2 ⋅
[(

1 − p0
t (D)

)
⋅ Zmax

t+1 −
(
pi

t(D) − p0
t (D)

)
× rt+1(x + ei,Bx,C)

]
≤ rt(x + ei,Bx) − rt(x,Bx), (10)

where ei denotes the vector with a 1 in the ith coordinate and
0 elsewhere, then for any xt ≤ yt, if a∗(xt) = Bx, then a∗(yt) =
Bx.

For an intuitive interpretation of inequality (10), first
observe that Zmax

t defined in Equation (8) represents the
expected life of a patient with zero risk of cancer if she
remains at zero risk and never has a biopsy starting from
time t, and rt(xt,Bx,C) represents the expected postbiopsy
reward when the patient receives a biopsy with a malignant
outcome. Recall from the optimality equations in (5) that
the reward of the biopsy action includes the immediate and

lump-sump rewards associated with the biopsy as well as the
expected benefit from continuing the decision process after
a benign outcome. Inequality (10) implies that when the risk
of malignancy slightly increases by 1%, with a probability
of 1%, the marginal benefit of biopsy should be higher than
the difference between the expected additional benefits of
receiving a benign biopsy outcome, surviving the next deci-
sion epoch, and spending the rest of life with no risk of can-
cer (as represented by (1 − p0

t (D)) ⋅ Zmax
t+1 ) and the expected

reduced benefits of surviving the next decision epoch and
receiving a malignant biopsy outcome (as represented by
(pi

t(D) − p0
t (D)) ⋅ rt+1(x + ei,Bx,C).

Theorem 1 significantly reduces the complexity of solving
the LSM by reducing the search space for the optimal action
iteratively. While there exists no obvious method to create a
single scalar threshold for the optimal actions in the LSM due
to its multidimensional state space, Theorem 1 provides mul-
tiple biopsy thresholds that can be used to develop a computa-
tionally tractable algorithm to find an exact optimal solution
to the LSM.

We next develop and prove the optimality of an algorithm
that relies on Theorem 1 to find an exact optimal solution to
the LSM in Section 4.1.

4.1 DS Algorithm

We next develop an algorithm to solve the LSM optimally in
polynomial time. Section 4 established a method to correlate
the optimal actions of states that are comparable under the
risk-based order, however, not all states in the multidimen-
sional state space of LSM are comparable under the given
risk-based order. Our approach in developing a polynomial-
time solution algorithm involves finding an appropriate par-
tition of the state space into smaller sets, which are compa-
rable with each other at least over some of their elements, in
such a way that determining the optimal action for a manage-
able number of these sets would suffice to deduce the opti-
mal action for the entire state space. In that respect, we begin
with separating the large state space into smaller segments
by creating sets of states according to their nonbenign (i.e.,
malignancy) probabilities in Definition 5.

Definition 5. Let Σk be defined as the set of state vectors with
total nonbenign probability of k∕100, where k ∈ {0, … , 100},
that is, Σk := {x ∈ |x1 + x2 + x3 + x4 = k}.

The choice of hyperplanes in Definition 5 is of particular
interest to our model because for any state vector y ∈ Σ𝓁 with
𝓁 > k, there exists at least one vector x ∈ Σk that is compa-
rable to y under the risk-based order. In other words, for any
𝓁 > k, the hyperplane Σ𝓁 contains states that have a higher
risk of malignancy compared to at least some in Σk. There-
fore, if one can identify a hyperplane that consists of states
for which the optimal action is a biopsy, which we refer as
a full-biopsy hyperplane, then the results of Theorem 1 can
be used to conclude that any hyperplane with a greater index
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A L G O R I T H M 1 Divide-and-Search (DS) Algorithm

Step 0: Initialize

The terminal rewards vT (xT ).

Set t = T − 1 and k = 1

Step 1: Calculate for xt ∈ Σi

(i): rt(xt ,Am) + 𝛾2 ∑
x′∈ pt(x

′|xt ,Am)t+2(x′)

(ii): rt(xt , Sf ) + 𝛾
∑

x′∈ pt(x
′|xt , Sf )t+1(x′)

(iii): rt(xt ,Bx) + 𝛾𝜌0(xt)
∑

x′∈ pt(x
′|0⃗, Sf )t+1(x′)

Step 2: Determine

the maximum of (i)–(iii) in Step 1 to set a∗t (xt) and t(xt) for xt ∈ Σk

Step 3: Analyze

if a∗t (xt) = Bx for all xt ∈ Σi then

Set a∗t (xt) = Bx and t(xt) = rt(xt ,Bx) + 𝛾𝜌0(xt)
∑

x′∈ pt(x
′|0⃗, Sf )

t+1(x′) for all xt ∈ Σ𝓁, 𝓁 > k. And set biopsy cut-off kt = k

else

Increment k and return to step 1

end if

Step 4: Observe

if t > 0 then

Decrement t.

If there exists an upper bound Kt on the biopsy cut-off kt , skip the
calculation of pt(x

′|xt , a) for all a ∈ {Sf ,Am}, xt ∈ Σk, k ≥ Kt,
return to step 1

else

Stop.

end if

should also be a full-biopsy hyperplane. Proposition 2 for-
mally proves this observation, which plays a key role to solve
the LSM optimally in polynomial time.

Proposition 2. For any t ∈ [0,T] and k ∈ {0, … , 100}, if
a∗t (xt) = Bx for all xt ∈ Σk, then a∗t (yt) = Bx for all yt ∈ Σ𝓁
with 𝓁 ≥ k, given that inequality (10) holds.

Among full-biopsy hyperplanes, identifying the one with
the smallest index is important to establish the minimum
number of states that need to be evaluated to determine the
optimal actions for the entire state space. Let kt denote this
smallest index at time t, which we refer to as the biopsy cut-
off at time t. The result provided in Proposition 2 implies that
for any 𝓁 ≥ kt, Σ𝓁 should be a full-biopsy hyperplane.

We are now ready to formally present the solution algo-
rithm in Algorithm 1. At each decision epoch, the algorithm
first divides the state space into hyperplanes, and then, start-
ing with the ones that consist of states with a high probability
of being cancer-free, it determines the optimal actions and
value functions for each state in a hyperplane. By targeting
the hyperplanes with a lower probability of malignancy, the
algorithm aims to enclose the set of states for which a biopsy
is optimal. DS algorithm provides a variant of the divide-and-
conquer approach and integrates a selective nature to the con-

ventional backward induction method, which would exhaus-
tively search the optimal actions of all 4.6 million states. The
algorithm iteratively divides the large state space into smaller
comparable sets and performs a selective search through only
a few of these sets. The selective search strategy significantly
reduces the computational complexity as the calculation of a
limited number of optimal value functions suffices to provide
the optimal actions for all states.

At each decision epoch, Algorithm 1 starts with the set
of states Σ0, which consists of only the [0,0,0,0] state, and
continues to search for the optimal actions corresponding to
the states that belong to Σi for i = 1, 2, … until it stops at the
first full-biopsy hyperplane Σkt

. As a trivial example, when
kt = 2, Algorithm 1 starts with the [0,0,0,0] state to observe
that the corresponding optimal action is not biopsy. Then it
continues with Σ1, which consists of the [1,0,0,0], [0,1,0,0],
[0, 0, 1, 0], and [0,0,0,1] states, to observe that the optimal
action for at least one of the states is again not biopsy. Finally,
the algorithm continues with Σ2 only to identify that the opti-
mal action for all of the states in the set is biopsy, then the
algorithm stops and directly assigns the optimal actions for
the rest of the states in Σk for k > 2. Here, identifying the
biopsy cutoff kt is the first step on reducing the computational
complexity. Once kt is identified, we can calculate the optimal
actions and value functions of the states that belong to Σj with
j ≥ kt in (||).

When Algorithm 1 stops at a biopsy cutoff kt, it
assigns the optimal action for any state belonging to
Σi with i > kt as biopsy without further evaluation.
For any given kt, Algorithm 1 sets t(xt) = rt(xt,Bx) +
𝛾𝜌0(xt)

∑
x′∈ pt(x

′|0⃗,Sf)t+1(x′) for any xt ∈ Σi with i > kt.

Since the inner product
∑

x′∈ pt(x
′|0⃗,Sf)t+1(x′) does not

depend on xt, the calculation of t(xt)s for all xt ∈ Σi with
i > kt only requires a scalar multiplication and a summation
for any xt ∈ Σi with i > k, and therefore, it can be done in lin-
ear time. Considering that the number of elements of the set
Σi is

(i+3

3

)
, at each decision epoch t, Algorithm 1 explicitly

calculates the optimal actions and the value functions of only(kt+4

4

)
states in total. For the remaining

(104

4

)
−
(kt+4

4

)
states,

the optimal actions and value functions are set in linear time.
Step 4 of Algorithm 1 checks if there exists any upper

bound on the biopsy cutoff kt exogenously fed to the algo-
rithm, and if so, it skips the calculation of the transition
probabilities pt(x

′|xt, a) for all a ∈ {Sf,Am}, xt ∈ Σi, i > kt.
As a result, Step 4 can provide a further reduction in the
time and memory complexity of the algorithm if we are able
to identify tight upper bounds on kt at time t. We provide
such upper bounds in Section 4.2 by implementing alterna-
tive MDP models using dimension reduction on the original
state space.

4.2 Dimension reduction method

To provide upper bounds on the biopsy cutoff kt in Algo-
rithm 1, we introduce alternative MDP models with a smaller
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state space by projecting the state space of the LSM onto
a lower dimension. We refer to these alternative MDPs
as reduced dimension diagnostic decision models (RDMs),
namely, the RDM-upper and the RDM-lower, and use them
to obtain feasible bounds on the optimal value functions and
biopsy cutoff, kt, of the DS algorithm given in Section 4.1.
Accordingly, the RDM-upper and RDM-lower supplement
the LSM by significantly improving the complexity of its
optimal solution algorithm.

The dimension reduction is accomplished by merging
different DCIS grades into a single DCIS category, and
therefore, projecting five-dimensional state space onto three-
dimensional space.3 The (reduced-dimension) state space of
the RDM-upper and RDM-lower is defined as follows:

̄ :=

{
[y0, y1, y2]

|||| y0 = x0, y2 = x4, y1

=
3∑

i=1

xi, [x0x1x2x3x4] ∈ ̄

}
, (11)

where the posttreatment state and the death states are pre-
served through the projection  . The number of states in

the reduced-dimension problems, which equals
(102

2

)
+ 2 =

5153, is significantly lower than the number of states in the
LSM, which is around 4.6 million, and this allows the exact
calculation of the optimal value functions of the RDM-upper
and RDM-lower.

At each decision epoch t = 0, 1, … ,T , Qt = [qt(.|.)] and
Q̃t = [q̃t(.|.)] represent the transition probability matrices,
𝜏t(yt, a) and 𝜏̃t(yt, a) represent the intermediate expected
rewards accrued when the patient is in state yt ∈ ̄ and
action a ∈ {Bx,Sf,Am} is recommended, and finally 𝔳t(yt)
and 𝔳̃t(yt) represent the optimal value functions of state yt ∈
̄ in the RDM-upper and the RDM-lower, respectively. The
details of the selection and estimation of the parameters for
the reduced dimension problems are given in Section 5. The
optimality equations for the RDM-upper and the RDM-lower
are similar to those of the LSM given in Section 3 and are
omitted for the brevity of presentation.

Definition 6 introduces a concept similar to stochastic
dominance to compare the transition probability matrix of the
LSM with those of the RDM-upper and the RDM-lower. It
compares the transition probabilities from yt in the reduced
dimension space ̄ with the probabilities from the set of
states in the original space ̄ , which are projected to yt under
the projection  .

Definition 6. A transition probability matrix Q =
[q(.|.)] of the RDM-lower dominates the transition prob-
ability matrix P = [p(.|.)] of the LSM if q(y′|y, a) ≥
maxx∈−1y

∑
x′∈−1y′ p(x′|x, a) for all y′, y ∈ ̄ , and a ∈

{Sf,Am}, where −1 is defined as the inverse projection

given by

−1[y0, y1, y2] :=

{
x ∈ ̄|x0 = y0, x4 = y2,

3∑
i=1

xi = y1

}
.

(12)

Similarly, Q̃ is dominated by P if q̃(y′|y, a) ≤
minx∈−1y

∑
x′∈−1y′ pt(x

′|x, a) for all y′, y ∈ ̄ , and
a ∈ {Sf,Am}.

In Section 5, we present the details of the estimation of the
transition probability matrices Pt, Qt, and Q̃t for any t. We
further prove in Section 5 that the given estimations of Pt, Qt,
and Q̃t provide an example of a Qt that dominates Pt, and a
Q̃t that is dominated by Pt at any time t. Since the definitions
of Qt and Q̃t given in Section 5 do not require the calcula-
tion of Pt, Algorithm 1 can use the bounds provided by the
RDM-upper and RDM-lower on the biopsy cutoff defined in
Section 4.1, and skip the calculation and storage of a substan-
tial portion of 4.6 million rows of Pt, significantly reducing
the time and memory complexity.

Proposition 3 presents upper and lower bounds on the opti-
mal value functions of the LSM using those of the RDM-
upper and RDM-lower.

Proposition 3. For any t = 0, 1, … ,T, if Qt dominates Pt, Q̃t
is dominated by Pt, and 𝜏t(yt, a), rt(xt, a), and 𝜏̃t(yt, a) satisfy
the following assumption:

𝜏t(yt, a) ≥ rt(xt, a) ≥ 𝜏̃t(yt, a) (13)

for all yt ∈ ̄ , xt ∈ −1yt, and a ∈ {Bx, Sf,Am}, then the
following inequalities hold,

𝔳t(yt) ≥ t(xt),

𝔳̃t(yt) ≤ t(xt),
(14)

for all yt ∈ ̄ , xt ∈ −1yt.

The bounds provided in Proposition 3 will be next used in
Theorem 2 to find an upper bound on the biopsy cutoff of the
DS algorithm. Proposition 3 can further be used to approxi-
mate the optimal value functions for other large-scale prob-
lems for which the application of the DS algorithm is not fea-
sible. Such an approximation would be particularly useful in
problems, where, for example, the decision maker is inter-
ested in assessing the efficiency of a policy by estimating its
expected QALY gains. Additionally, if the biopsy cutoff kt
given in Algorithm 1 were found to be too high that no effi-
cient method to calculate the exact optimal solution exists,
then Proposition 3 could be used to provide an approximate
optimal solution to the LSM.
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Theorem 2 presents the sufficient conditions for the opti-
mal solutions of the RDM-upper and RDM-lower to provide
an upper bound on the biopsy cutoff of the DS algorithm.

Theorem 2. For any t, if Qt dominates Pt, Q̃t is domi-
nated by Pt, and (13) holds for all yt ∈ ̄ , xt ∈ −1yt,
a ∈ {Bx, Sf,Am}, then for any yt ∈ ̄ satisfying the follow-
ing inequality:

𝜏̃t(yt,Bx) + 𝛾𝜌0(yt)
∑

y′∈̄

q̃t(y
′|0⃗, Sf)𝔳̃t+1(y′)

≥ max

{
𝜏t(yt, Sf) + 𝛾

∑
y′∈̄

qt(y
′|yt, Sf)𝔳t+1(y′),

𝜏t(yt,Am) + 𝛾2
∑

y′∈̄

qt(y
′|yt,Am)𝔳t+2(y′)

}
, (15)

a∗(xt) = Bx for all xt ∈ −1yt in the LSM. Therefore, for any
K, if (15) is satisfied by ∀ yt ∈ ΣK, then kt ≤ K holds, where
kt is the biopsy cutoff defined in Section 4.1.

Theorem 2 utilizes the bounds on the optimal value func-
tions of the LSM given by Proposition 3 to derive the desired
upper bounds. As a direct consequence of Theorem 2, the
optimal solutions of the RDM-upper and RDM-lower can be
used to reveal any yt ∈ ̄ satisfying (15) and, therefore, to
produce an upper bound on kt, which can be augmented in
Algorithm 1 to achieve a significant complexity reduction. In
addition to the time complexity of the DS algorithm intro-
duced in Section 4.1, the calculation and the storage of the
large-scale transition matrix of the LSM also require inten-
sive computational effort. The upper bound provided by The-
orem 2 on kt, further allows skipping the calculation and stor-
age of a significant fraction of these transition probabilities
at every decision epoch t, and substantially reduces both the
time and memory complexity of the DS algorithm. For an
upper bound of K on kt, we skip the calculation and storage
of

(104

4

)
−
(K+4

4

)
transition probability vectors of size

(104

4

)
at decision epoch t. The largest upper bound we obtained
on the biopsy cutoff for all ages is 16, which is consistent
with the practical observations. Comparing the number of
states sufficient to find the optimal policy at the worst case,
which is

(20

4

)
= 4845, to the total number of states, which is(104

4

)
≈ 4.6 million, demonstrates the magnitude of the reduc-

tion in the complexity gained by taking advantage of the
upper bounds obtained by the dimension reduction method
in optimally solving the LSM.

In Section 5, we provide the details of our parameter selec-
tion for the LSM, RDM-upper, and RDM-lower, and prove
in Lemma 3 that Pt, Qt, and Q̃t defined in Section 5 satisfy
the necessary conditions given in Theorem 2. Therefore, Sec-
tion 5 concludes the dimension reduction algorithm by pro-
viding sufficient parameters to obtain an upper bound on the
biopsy cutoff of the DS algorithm. Note that, since the results

of Proposition 3 and Theorem 2 hold for any RDM-upper
and RDM-lower satisfying the assumptions on the transition
matrices, they have a broader range of applications rather than
being limited to our setup.

5 PARAMETER ESTIMATION

In this section, we present the data sources and the estima-
tion of the parameters. Section 5.1 describes the sources of
the clinical data that are used in our numerical study, and
Section 5.2 presents the details of the estimation of transi-
tion probabilities and rewards for the LSM, the RDM-upper,
and the RDM-lower, respectively. Further details of parame-
ter estimation are presented in Online Appendix A.

5.1 Data sources

There are five sources for our model parameters:

∙ University of Wisconsin-Madison (UW) and University of
California, San Francisco (UCSF) Data: These private
data sets include consecutive mammograms collected at
the University of Wisconsin-Madison and University of
California, San Francisco, which we utilize for our numer-
ical results. Initially, we obtained two large data sets of
consecutively collected mammography practices; 41,682
mammograms collected between January 1, 2006, and
December 31, 2012, at UW and 146,996 mammograms
collected between January 7, 1997, and December 18
2007, at UCSF. From these large data sets, we extracted
5607 biopsies based on the descriptors and final assessment
categories that specify the cancer type. We also verified
the outcomes through state cancer registries that systemat-
ically record cancer cases and incorporate false negatives,
that is, malignant cases that are missed during the lecture
of mammograms. Combining these two data sets from UW
and UCSF allows us to demonstrate the generalizability
of our computational results among different practices and
provides us a unique breast cancer data set that has sev-
eral novel components including breast cancer types. To
the best of our knowledge, our database is the largest in
the United States with information regarding breast cancer
types and registry matching.

∙ U.S. Life Tables: 2011 United States life tables reported
by the Centers for Disease Control and Prevention (CDC)
(Arias, 2015). These tables are used to estimate age-
specific mortality for patients with no breast cancer.

∙ SEER Data: This data set includes breast cancer survival
statistics from the Surveillance, Epidemiology, and End
Results (SEER) program of the NCI, (Siegel et al., 2015).
We used this data set to estimate the age-specific prob-
abilities of death from breast cancer as well as the age-
dependent lump-sum postbiopsy rewards.

∙ University of Wisconsin Breast Cancer Simulation
(UWBCS) Model: The UWBCS is a member of the
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Cancer Intervention and Surveillance Modeling Network
(CISNET), a consortium of NCI-sponsored groups using
statistical modeling to evaluate the impact of cancer
control interventions on population trends, and to help
establish the optimal cancer control policies (Alagoz
et al., 2018b). The UWBCS is a discrete-event, stochastic
simulation model that analyzes breast cancer incidence
and mortality in the United States and can address signif-
icant policy questions regarding breast cancer screening,
diagnosis, and treatment. The UWBCS model has been
calibrated to the breast cancer incidence and survival data
reported by the SEER program and cross-validated against
data from a state’s Cancer Reporting System. The U.S.
Preventive Services Task Force (USPSTF) used CISNET
models, including UWBCS, to set the breast cancer screen-
ing policy in the United States both in 2009 and in 2016
(Alagoz et al, 2018a). We used the UWBCS simulation
model to examine the comparative effectiveness of the
optimal breast cancer diagnostic policies on a population
level.

∙ Risk Prediction Models: These models predict the risk of
cancer as a multidimensional risk vector, which includes
the risk of aggressive and indolent types of cancers.
The risk predictions are based on mammographic fea-
tures and demographic risk factors using a multivariate
logistic regression model (details are provided in Online
Appendix C) and a tree augmented naive Bayes network
(Kuusisto, 2015). These models are used alongside with
the UW and UCSF data in estimating the transition proba-
bilities as well as in the numerical illustration of our find-
ings.

5.2 Parameter estimation

We use the rates of progression between different breast
cancer types to calculate the one-step transition probability
matrix. Let 𝛿ij represent the 6-month probability of progres-
sion from i to j for 0 ≤ i < j ≤ 4, where 0 represents being
cancer-free, 1 represents the occurrence of low-grade DCIS, 2
represents the occurrence of intermediate-grade DCIS, 3 rep-
resents the occurrence of high-grade DCIS, and 4 represents
the occurrence of invasive cancer.

Then, we define the one-step transition probability from
state x = [x0, x1, x2, x3, x4] to y = [y0, y1, y2, y3, y4] given that
the action is Sf at time t using multinomial distribution as

pt(y|x,Sf) =
𝜁1∑

i=(y1−x1)+

𝜁2∑
j=(y2−x2)+

𝜁3∑
k=(y3−x3)+

(x0

i

)
(x0 − i

j

)(x0 − i − j
k

)( x0 − i − j − k

x0 − y0 − i − j − k

)
𝛿i

01 𝛿
j
02 𝛿

k
03 𝛿

x0−y0−i−j−k
04 𝛿

y0

00

( x1

x1 − y1 − i

)
𝛿

y1−i
11

𝛿
x1−y1+i
14

( x2

x2 − y2 − j
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𝛿

y2−j
22

𝛿
x2−y2+j
24

( x3

x3 − y3 − k

)
𝛿

y3−k
33 𝛿

x3−y3+k
34 , (16)

where 𝜁1 := min{y1, y1 + y4 − x1 − x4, x0 − (y2 − x2)+ −
(y3 − x3)+}, 𝜁2 := min{y2, y1 + y2 + y4 − x1 − x2 − x4 −
i, x0 − i − (y3 − x3)+}, 𝜁3 := min{y3, y1 + y2 + y3 + y4 −
x1 − x2 − x3 − x4 − i − j, x0 − i − j}, and, f+ and f− are
positive and negative parts of a function f , respectively.
The transition probability given in (16) is estimated using
the probability of having y0 benign, y1 low-grade DCIS,
y2 intermediate-grade DCIS, y3 high-grade DCIS, and y4

invasive findings at time t + 1, when we have x0 benign, x1

low-grade DCIS, x2 intermediate-grade DCIS, x3 high-grade
DCIS, and x4 invasive findings at time t.

For the RDM-lower defined in Section 4.2, the one-
step transition probability from state x = [x0, x1, x2] to y =
[y0, y1, y2] given that the Sf action is chosen at time t is simi-
larly defined using multinomial distribution as

qt(y|x,Sf) =
x0−y0−(−x1−x2+y2)+∑
i=(x0+x2−(y0+y2))+

(x0

i

)( x0 − i
x0 − y0i

)
𝛿i

0D

𝛿
x0−y0−i
04 𝛿

y0

00

( x1

x1 − y1 + i

)
𝛿

i+x1−y1

D4 𝛿
y2−i
DD , (17)

where 𝛿0D represents the 6-month probability of progression
from benign to DCIS, 𝛿D4 represents the 6-month probabil-
ity of progression from DCIS to invasive, and 𝛿DD represents
the probability of not progressing from DCIS to invasive in
6 months. The definition of one-step transition probability of
the RDM-upper, q̃t(y|x,Sf), is similar to (17), with a small
adjustment that 𝛿0D, 𝛿DD, and 𝛿D4 replace 𝛿0D, 𝛿DD, and

𝛿D4 in (17), respectively. We define 𝛿0D = 𝛿0D =
∑3

i=1 𝛿0i,

𝛿D4 = maxi∈{1,2,3} 𝛿i4, and 𝛿D4 = mini∈{1,2,3} 𝛿i4.
To validate our approximation of the one-step transition

probability matrix, we calculated the lifetime risk of being
diagnosed with breast cancer for a 40-year-old woman given
that she is cancer-free at her current age. We found that the
lifetime risk of invasive cancer approximated by our one-step
transition probability matrix, 12.46%, is comparable to one
reported by the NCI, 12.17% (Howlader et al., 2016). We
also calculated the risk of being diagnosed with breast can-
cer in 10 years for a 60-year-old woman using our transition
probability matrix, and again observed that the 10-year risk
of invasive cancer approximated by our transition probability
matrix, 3.35%, is comparable to the one reported by the NCI,
3.46%.

In Lemma 3, we prove that Pt = [pt(.|.)], as defined in (16),
and Qt = [qt(.|.)] and Q̃t = [q̃t(.|.)], as defined in (17), satisfy
the necessary conditions of Theorem 2 for any t. Lemma 3
allows the use of the RDM-upper and RDM-lower in obtain-
ing feasible upper bounds for the LSM.
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Lemma 3. Let Pt = [pt(.|.)], Qt = [qt(.|.)], and Q̃t = [q̃t(.|.)]
be defined by (16), (17), and the modified version of
(17), respectively. Then, for any y′, yt ∈ ̄ , the following
inequalities hold:

qt(y
′|yt, a) ≥ max

xt∈−1yt

∑
x′∈−1y′

pt(x
′|xt, a), (18)

q̃t(y
′|yt, a) ≤ min

xt∈−1yt

∑
x′∈−1y′

pt(x
′|xt, a), (19)

where a ∈ {Sf,Am}.

Finally, the rewards of the RDM-lower, 𝜏t(yt, a), and RDM-
upper, 𝜏̃t(yt, a), for a ∈ {Bx,Sf,Am}, are set as follows:

𝜏t(yt, a) = max
xt∈−1yt

rt(xt, a) and

𝜏̃t(yt, a) = min
xt∈−1yt

rt(xt, a). (20)

6 NUMERICAL RESULTS

In this section, we provide our numerical results using the
clinical data. First, we provide the optimal age-specific diag-
nostic policies based on a patient’s risk of low-, intermediate-,
high-grade DCIS, and invasive cancer using the LSM. Then,
we incorporate the optimal policies of the LSM into the
UWBCS simulation model to examine the comparative effec-
tiveness of the optimal breast cancer diagnostic policies on
a population level. Thus, we estimate the potential rate of
reduction in overdiagnosis obtained by following the opti-
mal multidimensional diagnostic guidelines over the current
clinical practice. Finally, we evaluate the value of our model-
ing and solution approach by comparing the performance of
the LSM to that of a conventional optimization model, which
ignores breast cancer types and only includes a scalar state to
represent breast cancer.

6.1 Optimal diagnostic policies

The high dimensionality of the state space limits the presen-
tation of the optimal diagnostic policies as a function of DCIS
risks only to several risk levels of invasive cancer for certain
ages. Figure 23 provide the optimal diagnostic strategies as
a function of low-, intermediate-, and high-grade DCIS risks
for various ages when the risk of invasive cancer is 0% and
1%, respectively. To demonstrate the patterns observed in the
optimal strategies, the optimal diagnostic policies are only
provided for selected ages. The optimal diagnostic policies
corresponding to the cases where the risk of invasive cancer
is higher than 1% are omitted here and summarized in a com-
pact form later in this section.

In Figure 23, the X, Y , and Z axes represent the percent-
age risk of high-, intermediate-, and low-grade DCIS, respec-
tively. Since the risk of invasive cancer is fixed in these
figures, the probability of being cancer-free can be calculated
by subtracting the sum of these probabilities from 1. The sur-
faces in Figure 2 and Figure 3 represent the biopsy and short-
term follow-up thresholds such that for any state below the
short-term follow-up threshold surface, the optimal action is
annual mammography; for any state between the two thresh-
old surfaces, the optimal action is the short-term follow-up;
and, for any state above the biopsy threshold surface, the opti-
mal action is a biopsy. Figure 2 and Figure 3 illustrate a sig-
nificant discrepancy between the biopsy thresholds of low-,
intermediate-, and high-grade DCIS with an increasing trend
as the patients get older.

Figure 4 presents the age-specific optimal diagnostic poli-
cies as a function of aggregate DCIS risks for various risk lev-
els of invasive cancer to better illustrate the effect of age on
the optimal diagnostic thresholds. This compact presentation
further allows demonstrating the optimal thresholds when the
risk of invasive cancer is higher than 1%. In Figure 4, the hor-
izontal axis represents the age and the vertical axis represents
the aggregate probability of DCIS. Figure 4 shows that the
optimal diagnostic thresholds in terms of aggregate DCIS

(i) increase with increasing age at any level of invasive can-
cer risk and

(ii) decline with increasing risk of invasive cancer, so that at
3% risk of invasive cancer the optimal action is biopsy
for all patients younger than 75 regardless of their risk of
DCIS.

Therefore, Figure 4 implies that the current diagnostic guide-
lines of biopsying any findings with more than 2% probability
of cancer would be optimal only if the findings clearly indi-
cate aggressive cancer. These findings highlight that neglect-
ing the age-specific differences between indolent and inva-
sive types of breast cancer in making diagnostic decisions
results in aggressive biopsy decisions, and we next show in
Section 6.2 that these aggressive biopsy decisions not only
reduce the quality of life in patients who would be better off
with noninvasive imaging but also lead to significant rates
of overdiagnosis.

6.2 The population impact of the optimal
diagnostic policies from the LSM

In the current clinical practice, diagnostic decisions are made
through a scalar risk of cancer, which corresponds to the
cumulative sum of the risks of low-, intermediate-, high-
grade DCIS, and, invasive cancer, where a decision threshold
of 2% is used for biopsy recommendations regardless of
patient’s age or breast cancer type (BI-RADS, 2003). Our
numerical findings confirm our initial hypothesis that ignor-
ing age-specific differences between indolent and aggressive
cancers in setting a biopsy threshold may significantly
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F I G U R E 2 Optimal breast cancer diagnostic decisions when the probability of invasive cancer is 0%. For any state: below the black surface, the optimal
action is Am; between the gray surface and the black surface, the optimal action is Sf; above the gray surface (white area), the optimal action is Bx

F I G U R E 3 Optimal breast cancer diagnostic decisions when the probability of invasive cancer is 1%. For any state: below the black surface, the optimal
action is Am; between the gray surface and the black surface, the optimal action is Sf; above the gray surface (white area), the optimal action is Bx

contribute to the alarming rates of overdiagnosis. To better
assess the population-level impact of using the optimal
guidelines from the LSM instead of the standard of care,
we use the UWBCS simulation model to estimate the com-
parative effectiveness of the optimal policies in terms of the
reduction in overdiagnosis, QALY gains, and the reduction
in total costs related to screening, diagnosis, and treatment
on the screening population.

Using the UWBCS model, we simulate women who were
born in 1970 until all women from this birth cohort die.

To comply with the LSM model assumptions, we consider
the annual screening scenario with a 100% participation rate
starting from age 40. Online Appendix B provides a more
detailed discussion of the UWBCS model as well as the run
settings used in our numerical experiment.

Table 1 demonstrates the population impact of the opti-
mal diagnostic policies obtained by the LSM over the current
practice in terms of the total QALY gain; the total decrease
in cost, given by the total savings in the costs of surveillance
mammography screening, diagnosis, and treatment; and the
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F I G U R E 4 Age-specific optimal breast cancer diagnostic decisions as a function of aggregate DCIS risk for different levels of probability of invasive
cancer

TA B L E 1 Comparative effectiveness of the optimal breast cancer
diagnosis

Age QALY gain Cost gain
Reduction in
overdiagnosis (%)

40–54 7.1593 $23,777 0.12

55–59 18.9036 $367,084 0.54

60–64 110.5733 $1,397,448 3.65

65–69 197.4755 $4,319,253 6.49

70–74 288.6219 $8,158,207 9.92

75–79 348.7793 $11,056,208 15.24

>80 134.2853 $14,093,638 15.53

Total 1105.7982 $39,415,616

Abbreviation: QALY, quality-adjusted life year.

ratio of overdiagnosis averted for different age groups based
on an initial population of 10 million women. Table 1 estab-
lishes that acknowledging the heterogeneity of cancer types,
and accordingly, using the optimal personalized diagnosis in
lieu of current clinical practice provides an overall 11.057
QALY and $394, 156 savings per 100,000 women. When pro-
jected on the U.S. population of women aged 40 and older,
these numbers translate into 8310.86 QALY-gained across
the population and over $296 million cost savings in the
total breast cancer diagnostic expenses. Table 1 also con-
firms that a significant reduction in overdiagnosis can be
obtained by replacing the current diagnostic practice with the
optimal policy of the LSM, and highlights that the result-
ing QALY gains, cost savings, and overdiagnosis reduction
become more prominent with increasing age.

F I G U R E 5 Percentage of overdiagnosis averted using the optimal
policy from the large-scale diagnostic decision model (LSM) [Color figure
can be viewed at wileyonlinelibrary.com]

To better illustrate the effect of age on the overdiagno-
sis reduction, Figure 5 presents the age-specific ratio of
overdiagnosis averted by complying with the optimal policy
instead of the current clinical guidelines. In Figure 5, the hor-
izontal axis represents the age and the vertical axis represents
the percentage of overdiagnosis averted. It shows that up to
20% reduction in overdiagnosis can be achieved when the
optimal diagnostic policies replace the current biopsy thresh-
old of 2%, which aggressively diagnose indolent breast can-
cer types such as the low-grade DCIS in older women, even
though their life span may be lower than the sojourn time
of the disease. Figure 5 emphasizes that the reduction in
overdiagnosis steadily increases with age starting from age
60, which implies that older women, who bear the heaviest
burden of overdiagnosis, benefit the most from the optimal
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F I G U R E 6 Age-specific optimal breast cancer diagnostic decisions
from a conventional model

strategies obtained by the LSM in terms of the quality and
span of life.

6.3 Value of the large-scale MDP model

In this section, we estimate the value of solving a large-scale
MDP model over solving a conventional lower dimensional
optimization model. For this purpose, we compare the perfor-
mance of the optimal policies from the LSM with that from
a conventional MDP model employing a scalar probability
of cancer that is typically used in the literature. We use our
data sets to estimate the parameters of the conventional model
including the transition probabilities, rewards, and disutilities
instead of using the parameters from the literature to allow
a more fair comparison between the large-scale model and
the conventional one. Figure 6 presents the age-based optimal
diagnostic policies obtained by the conventional MDP model
as a function of scalar cancer risk. In Figure 6, the horizon-
tal axis represents the age of the patient and the vertical axis
represents the aggregate probability of cancer. Compared to
Figure 4, Figure 6 shows that combining the risks of different
DCIS grades and invasive cancer can lead to very aggressive
biopsy recommendations, triggering the troubling practice of
overdiagnosing low-risk diseases in the older population.

As an example from our clinical data, consider a 65-year-
old woman with a heterogeneously dense breast and no fam-
ily history of breast cancer having a mammogram that shows
a cluster of amorphous, punctuate, and round calcifications.
For this patient, our computer-aided diagnostic model pre-
dicts the risk vector as [96, 1, 2, 1, 0], and thus the opti-
mal action recommended by the LSM is an annual mammo-
gram. However, since the patient has a 4% probability of can-
cer, both the current clinical practice and the optimal policy
obtained from the conventional model would recommend a
biopsy, potentially leading to an overdiagnosis of highly indo-
lent breast cancer in this aging woman.

To elucidate the effect of using our comprehensive model,
which incorporates the discrepancy between the progression
and death rates of cancer types, on overdiagnosis, Figure 7(a)
provides the estimated age-based ratio of the biopsied popu-

lation that would be overdiagnosed if a conventional model
is used to optimize the diagnostic policies, instead of the
LSM. Figure 7(a) illustrates that the conventional optimiza-
tion approaches in the breast cancer diagnosis problem fail to
address the issue of overdiagnosis, and a more comprehensive
large-scale model such as the LSM that optimizes decisions
by differentiating the risks of low-, intermediate-, high-grade
DCIS, and invasive cancer is required for alleviating over-
diagnosis of indolent diseases.

Figure 7(b) provides the estimated age-specific ratio of
missed malignancies if the optimal policies of the LSM were
used instead of those from a conventional model. When con-
sidered together with Figure 7(a), it demonstrates that up
to 4% of biopsied population can be protected from being
overdiagnosed only at the cost of missing 0–2 malignancies
per 10,000 biopsied women using the large-scale optimiza-
tion model.

We also evaluate the robustness of the LSM by perform-
ing a sensitivity analysis over the model parameters (see
Figures 9 and 10 in Online Appendix D for details). We find
that the biopsy thresholds become lower as the disutility of
biopsy is reduced. Nevertheless, the LSM still outperforms
the current clinical threshold of 2% and the conventional mod-
els in avoiding potentially unnecessary biopsies and concomi-
tantly addressing overdiagnosis of low-risk diseases. Sim-
ilarly, we observed that changing the disutilities of short-
term follow-up and annual mammogram had a negligible
effect on the performance of the LSM. Furthermore, the opti-
mal diagnostic policy does not change significantly when we
vary the DCIS progression rates within their 95% confidence
intervals.

7 CONCLUSION

In this paper, we optimize diagnostic decisions following
a mammography screening based on mammographic find-
ings and demographic factors, while considering the poten-
tial effects of these decisions on breast cancer overdiagnosis.
By differentiating the risk of different breast cancer types, we
develop a novel approach that improves the early diagnosis
of invasive cancer while minimizing unnecessary diagnostic
procedures such as biopsy on indolent findings. We formu-
late this diagnostic decision problem as a large-scale finite-
horizon MDP to maximize the total QALYs of a patient. We
develop efficient algorithms that utilize the structural prop-
erties of the optimal policy to find an exact optimal solu-
tion to the large-scale MDP instead of an approximate and
suboptimal solution. Finally, we provide a dimension reduc-
tion method to formulate two alternative MDP models that
are used to provide tight bounds on the optimal policy of the
large-scale MDP, further improving the performance of our
optimization algorithm.

The advancements in medical imaging technology and bet-
ter prediction of disease types are creating an opportunity to
make more personalized decisions in clinical management.
However, optimization models for personalized diagnostic
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F I G U R E 7 (a) Age-based percentage of the biopsied population who are saved from being overdiagnosed using the large-scale diagnostic decision
model (LSM) as compared to the conventional model. (b) Age-specific percentage of the cancer cases that are missed using the LSM as compared to the
conventional model

decisions are relatively sparse, while models specifying deci-
sions for cancer types are nonexistent, to our knowledge. Our
study constitutes a first step toward determining diagnostic
guidelines specific to patients’ age and cancer type. Our find-
ings demonstrate the applicability of large-scale optimization
models to the design of diagnostic policies aiming to decrease
overdiagnosis. Our results demonstrate the importance of tai-
loring guidelines to patients’ age and disease types. On one
hand, our optimal policy agrees with the standard of care
threshold for the younger population or when findings clearly
indicate invasive cancer. On the other hand, the optimal pol-
icy recommends routine annual mammography for an older
patient, who has a five times higher risk of low-grade DCIS
than the standard of care risk threshold. These disparities
help for the early diagnosis of invasive cancer while averting
overdiagnosis of low-grade DCIS in aging women, for which
the sojourn time of the disease may exceed their expected
life span.

The application of our model to real-life mammography
data from the UW and UCSF hospitals, and the simulation
of our findings over a well-proven microsimulation model
have yielded three main observations. First, our numerical
results suggest that the use of optimal diagnostic guidelines
elaborated by high-dimensional risk vectors in breast cancer
decision making can substantially mitigate overdiagnosis in
clinical practice. The comparative effectiveness analysis con-
firms that the optimal diagnosis of breast cancer based on
disease type provides up to 20% reduction in overdiagnosis
by offering less aggressive interventions for findings indicat-
ing indolent diseases. The optimal diagnosis of breast cancer
is confirmed to be QALY-improving and cost-saving, provid-
ing an overall 11.057 additional QALY and $394, 156 sav-
ings per 100,000 screened women when compared to cur-
rent clinical practice. Second, our comprehensive approach
provides significant benefits compared to lower dimensional
conventional optimization models where a scalar probability

is used to model the risk of cancer. Third, we observe that
our approach has a more pronounced impact on older women
compared to younger women. This further highlights the effi-
ciency of our optimization model in reducing overdiagnosis
as overdiagnosis of breast cancer may be more common and
easier to detect in older women, who often have a limited life
span due to other comorbidities.

Diagnosing indolent diseases, which leads to overdiagno-
sis and overtreatment if not recognized, is a problem whose
scope reaches beyond breast cancer. A low-grade tumor of
the prostate is a disease with probably the greatest risk for
overdiagnosis (Esserman et al., 2014). Although these low-
risk, less aggressive lesions are unlikely to cause symptoms
or affect survival if left undiagnosed and untreated (Hoffman
et al., 2014), most findings indicating low-risk lesions are fol-
lowed with biopsy and 90% of the patients with a diagno-
sis of low-grade prostate cancer receive treatment (Cooper-
berg et al., 2010). Thyroid carcinoma is another example of
how aggressive diagnosis and treatment of indolent lesions
may lead to no health benefits (Cronan, 2008). Between 1975
and 2013, the incidence rate of thyroid cancer increased from
4.85 to 15.07 per 100,000, whereas death rates only slightly
decreased from 0.55 to 0.52 per 100,000 in United States
(Howlader et al., 2016). Overdiagnosis is a common prob-
lem even among cancers that are considered to have the high-
est growth rate and mortality, such as lung cancer (Welch &
Black, 2010). A follow-up study of the Mayo Lung Project
reveals that there is a 51% risk of overdiagnosis resulted from
screen-detected cancers (Marcus et al., 2006). Our model
provides a framework for future work to study various can-
cer diagnosis problems and help in reducing overdiagnosis
by enabling the diagnostic thresholds specific to the disease
types. Another important future research direction is to incor-
porate the optimal treatment plans of the diagnosed indolent
diseases into the diagnostic decision framework to also help
with the overtreatment issue.
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In conclusion, our findings highlight a potential to address
overdiagnosis with the help of a large-scale optimization
model utilizing disease types. This adds a new dimension to
the literature on cancer diagnostic decision making that has
focused primarily on identifying optimal policies based on
the probability of cancer ignoring the significant heterogene-
ity of various cancer types concerning their rate of progres-
sion and potential for leading to cancer death.
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E N D N O T E S
1 We assume that the risk vectors are fully observable by the decision maker.

A partially observable Markov decision process (POMDP) model may
allow for including any observational error resulting from radiologists’
assessment of mammography findings or implementation of computer-
aided diagnostic models. However, any appropriate selection of an obser-
vation set to model postmammography decisions
(i) requires a very large amount of data to estimate the observation prob-

abilities and
(ii) leads to a computationally intractable model that needs to be approxi-

mated by an MDP to be solved.
See Chhatwal et al. (2010) for an illustration of how even a simpler diagnos-
tic POMDP model, which ignores types of cancer and short-term follow-up
action, requires excessive data and computational effort, making the model
unsuitable for the problem of choice.

2 Notice that the probability of being cancer-free, x0 = 100 −
∑4

i=1 xi, is
dropped from the state vector definition in  . Although  and ̄ are equiv-
alent, we use the former in Section 4.1 because it provides a natural com-
parison of states, and the latter in Section 4.2 because it allows an intuitive
projection into lower dimensions.

3 Equivalently, we can say that it projects four-dimensional state space onto
two-dimensional space since all state vectors are probability vectors.
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