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Abstract

Computational protein design (CPD) is a powerful technique to engineer existing proteins or

to design novel ones that display desired properties. Rosetta is a software suite including

algorithms for computational modeling and analysis of protein structures and offers many

elaborate protocols created to solve highly specific tasks of protein engineering. Most of

Rosetta’s protocols optimize sequences based on a single conformation (i. e. design state).

However, challenging CPD objectives like multi-specificity design or the concurrent consid-

eration of positive and negative design goals demand the simultaneous assessment of mul-

tiple states. This is why we have developed the multi-state framework MSF that facilitates

the implementation of Rosetta’s single-state protocols in a multi-state environment and

made available two frequently used protocols. Utilizing MSF, we demonstrated for one of

these protocols that multi-state design yields a 15% higher performance than single-state

design on a ligand-binding benchmark consisting of structural conformations. With this pro-

tocol, we designed de novo nine retro-aldolases on a conformational ensemble deduced

from a (βα)8-barrel protein. All variants displayed measurable catalytic activity, testifying to a

high success rate for this concept of multi-state enzyme design.

Author summary

Protein engineering, i. e. the targeted modification or design of proteins has tremendous

potential for medical and industrial applications. One generally applicable strategy for

protein engineering is rational protein design: based on detailed knowledge of structure

and function, computer programs like Rosetta propose the sequence of a protein possess-

ing the desired properties. So far, most computer protocols have used rigid structures for

design, which is a simplification because a protein’s structure is more accurately specified

by a conformational ensemble. We have now implemented a framework for computational

protein design that allows certain design protocols of Rosetta to make use of multiple

design states like structural ensembles. An in silico assessment simulating ligand-binding

design showed that this new approach generates more reliably native-like sequences than a

single-state approach. As a proof-of-concept, we introduced de novo retro-aldolase activity
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into a scaffold protein and characterized nine variants experimentally, all of which were

catalytically active.

Introduction

Since the 1990s, computational protein design (CPD) has been a powerful tool of protein engi-

neering. For example, CPD has been successfully utilized to increase thermostability of pro-

teins [1–3] and to design new or altered binding specificities for metals [4], DNA [5] or other

ligands [6, 7]. Additionally, CPD was applied to even more challenging tasks like the design of

novel protein-protein interfaces [8, 9], de novo enzymes [10] or artificial folds not found in

nature [11, 12]. Classical CPD methods, referred to as single-state design (SSD), optimize the

amino acid sequence for the residue positions of a single backbone by means of an objective

function [13]. A substantial contribution to the enormous success reached by SSD is due to

refinements of the corresponding knowledge-based or statistical energy terms and the incor-

poration of backbone flexibility [14]. However, SSD is always a simplification because proteins

populate conformational ensembles [15]. Moreover, certain design objectives such as negative

design [16–18], multi-specificity design [19], the design of specific protein interfaces [20, 21]

or the mimicking of backbone flexibility [22] require the concurrent assessment of several con-

formational or chemical states. This is why multi-state design (MSD) methodology is an

emerging field in CPD [23] that extends the application spectrum and promises high success

rates. Even the design of stable proteins profits from using backbone ensembles [24].

Typically, the optimization strategy of MSD consists of an “outer routine” that suggests pos-

sible amino acids sequences and an “inner routine” that assesses the fitness of a given sequence

by performing rotamer optimization on each of the considered states and combines the indi-

vidual scores [25]. This combined score enables a sequence selection driven by the energetic

contribution of multiple conformational and/or chemical states. For example, in order to

increase specificity of protein-protein interactions, one can utilize negative design and penalize

those sequences that favor undesired interactions [16].

One of the first applications of MSD was the design of topologically specific coiled-coil

structures consisting of 11-fold amino acid repeats whose stability was assessed by using terms

of a standard molecular-mechanics potential energy function [26]. Later on, the binding

pocket of a ribose-binding protein was successfully redesigned by means of MSD based on a

standard force-field [27]. Meanwhile, many of the common optimization algorithms used in

SSD have been adapted for MSD, including Monte Carlo (MC) with simulated annealing [28],

genetic algorithms [29], the FASTER approach [25], dead-end-elimination [30], and cluster

expansion [31]. Rosetta [32] is currently the most flexible and most widely used CPD software

suite and offers several multi-state applications; noteworthy are MPI_MSD [33] and RECON
[34]. MPI_MSD provides a generic multi-state design implementation based on a genetic algo-

rithm that optimizes a single sequence on multiple states given a fitness function. RECON starts

by individually optimizing one sequence for each state; subsequently the computation of a

consensus sequence is promoted by incrementally increasing convergence restraints. However,

the current implementations of both methods are limited to certain design tasks and cannot

make use of fine-tuned protocols like those required for enzyme design [35] or anchored

design of protein-protein interfaces [36].

In order to overcome this limitation, we have developed MSF and our integration of this

modular framework into Rosetta facilitates the transfer of already proven single-state protocols

to an MSD environment. Here, by using MSF, we first corroborate the superiority of MSD for

MSF: A modular framework for multi-state design
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enzyme design based on two in silico benchmarks for ligand binding. Applying the same pro-

tocol, we then designed nine experimentally active retro-aldolases.

Results and discussion

Architecture of MSF
MSF is a programming framework that allows the user to develop and execute Rosetta proto-

cols in an MSD environment. The modular software architecture of MSF significantly reduces

the development efforts involved; see Fig 1.

MSF requires as input a set of states s1, . . ., sn, e. g. structural conformations, and a popula-

tion of sequences seq1, . . ., seqm, which will be subsequently altered by the sequence optimizer.
The evaluator determines n state-specific scores for each seqi according to the chosen Rosetta
protocol. These n ×m scores are the input of a user-defined fitness function, which combines

the scores to determine the fitness of each sequence and communicates these values to the

sequence optimizer. The task management is as follows for all protocols: one process controls

the sequence optimizer and a user-defined number of evaluator-processes execute the protocol

Fig 1. Software architecture of MSF. This framework consists of two strictly separated modules, the

sequence optimizer and the evaluator. The evaluator executes the chosen Rosetta protocol for each

combination of a state sj and a sequence seqi. The resulting scores are processed by the fitness function and

transferred to the sequence optimizer. Initially, the user has to specify a number of states s1, . . ., sn and a set

of initial sequences seq1,. . ., seqm. MSF uses a GA to optimize the sequences according to their fitness. To

utilize a SSD protocol in an MSD environment, the user has to adapt the protocol to the evaluator and specify

a fitness function.

https://doi.org/10.1371/journal.pcbi.1005600.g001
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in parallel, which guarantees high scalability. Technical details and availability are described in

S1 Text; MSFwill be part of an upcoming weekly release of Rosetta.

As has been shown, a genetic algorithm (GA) successfully samples sequence space in MSD

calculations [16, 27, 33]. Therefore, we have implemented the sequence optimizer based on the

well-proven GA of Rosetta. Briefly, a GA imitates the process of natural selection by maintain-

ing a population of design sequences that are evolving for a number of generations, while the

selection pressure of the fitness function eliminates less optimal solutions. The final output of

MSF is a population of optimized sequences. By contrast, a standard SSD implementation that

utilizes MC optimization generates one sequence.

Extending Rosetta protocols by MSD capability

Both MSF and MPI_MSD rely on the Rosetta GA. However, MPI_MSD does not support the

integration of existing SSD protocols such as enzyme design that requires the additional opti-

mization of catalytic constraints. Thus, our aim was to offer a framework that minimizes the

development effort of supplying SSD protocols with MSD capability. The architecture of MSF
strictly separates the tasks of optimization and the application-specific assessment of states.

The resulting modularity allows an informed Rosetta user to implement MSD for existing pro-

tocols in a straightforward manner. Most importantly, the functionality of the protocols is

unchanged and all options remain available. In addition to protocol porting, the user has to set

up an application-specific fitness function, which defines the design goal.

If it is the goal to alter conformational, binding, or catalytic specificity, the fitness function
often has to consider positive and negative design. For the assessment of one positive state s+
and one negative state s-, the following function has been proposed [25]:

fitnessþ;� ðseqiÞ ¼ DscoreþðseqiÞ � w Dscore� ðseqiÞ ð1Þ

Here, Δscorel (seqi) is the difference of scores calculated for seqi and seq0; seq0 is the optimal

sequence determined in an SSD for the states sl 2 {s+,s−} and w is a weighting factor. Similar

approaches, which were based on the computed transfer free energy from the target state to

the ensemble of competing states [16] or on differences of Rosetta energies [33] guided the

MSD of protein interfaces. Equally to MPI_MSD, our framework MSF supports the specifica-

tion of a broad range of fitness functions.

For the initial implementation of MSF, we have integrated enzdes and AnchoredDe-
sign, two widely used Rosetta protocols. enzdes provides ligand binding and enzyme

design functionality by repacking and redesigning residues around the binding/active site and

by optimizing catalytic contacts. AnchoredDesign creates a protein-interface by transfer-

ring a key interaction identified in a natural binding partner of the target protein to a surface

loop of the scaffold protein. Afterwards, the surface of the scaffold is redesigned with backbone

flexibility to generate a novel binding partner of the target [36].

To validate AnchoredDesign in the MSF context, we redesigned the interface of the fac-

tor B serine protease domain fromHomo sapiens (PDB ID 1dle). For this single example, the

MSD approach performed better that the corresponding SSD protocol; see S2 Text for details.

In order to demonstrate the potential of MSF for a large number of cases, we focused on

enzdes by performing in silico and in vitro experiments. For the in silico assessment, the fit-

ness of the sequences was computed according to Eq 2 based on the Rosetta total score (ts)
averaged over all states. In the following, we designate software protocols as program:-
protocol. For example, Rosetta:enzdes (or for the sake of brevity enzdes) and

Rosetta:MSF:GA:enzdes(MSF:GA:enzdes) are the names of the SSD and MSD

implementations of enzdes.

MSF: A modular framework for multi-state design
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MSD outperforms SSD in recapitulating a ligand binding site of an NMR

ensemble

The most obvious usage of MSD is its application to an ensemble representing the native con-

formations of a protein. In solution, a protein’s structure is dynamic and nuclear magnetic

resonance (NMR) offers an experimentally determined estimation of protein dynamics. Inter-

estingly, in previous analyses SSD protocols performed better on crystal structures than on

NMR templates [22, 37]. We speculated that this performance loss can be compensated, if

MSD is applied to a whole ensemble and we decided to assess a ligand-binding design.

Thus, for a first performance comparison of the SSD algorithm enzdes, and the MSD

algorithm MSF:GA:enzdes, we chose an NMR ensemble of the human intestinal fatty acid

binding protein (hIFABP) with bound ketorolac (PDB ID 2mji). This ensemble consisting

of ten conformations was prepared for ligand-binding design (see Materials and Methods)

and the design shell contained 21 residue positions in the vicinity of the ligand. Our protocol

allowed Rosetta to find a low energy sequence by arbitrarily choosing residues for these

positions.

For each of the individual conformations conf(l), 1000 randomly seeded runsl (i) of

enzdes (SSD) were started. Design quality was monitored by computing for each number of

runs i the score ts hIFABPSSD ðiÞ. This is the mean total score deduced from corresponding confor-

mations (Eq 6) given in Rosetta Energy Units (REU). MSF:GA:enzdes (MSD) was applied

to the full ensemble and the GA was started. Analogously to the SSD experiment, the mean

total score ts hIFABPMSD ðjÞ was computed for each generation j (Eq 7). As a second measure of

design quality, we determined the native sequence similarity recovery (nssr). Commonly, the

performance of design algorithms is assessed by means of the native sequence recovery (nsr)
[38–40], which is the fraction of identical residues at corresponding positions of the native and

Fig 2. Performance of SSD and MSD on the NMR ensemble hIFABP. enzdes (blue lines) was executed

for 1000 runs i for each of the ten conformations in the ensemble. For each number of runs i, the ts hIFABPSSD ðiÞ
value (dotted line) is the mean of the ten lowest-energy sequences (Eq 6). The corresponding nssr hIFABPSSD ðiÞ
value (solid line) is the mean recovery value deduced from the same sequences (Eq 5). MSF:GA:enzdes
(orange lines) was carried out for 800 generations j on the whole ensemble using a population of 210

sequences. For each generation j, the ts hIFABPMSD ðjÞ value (dotted line) is the mean of the ten lowest-energy

sequences of the corresponding population (Eq 7). The corresponding nssr hIFABPMSD ðjÞ value (solid line) is the

mean recovery value deduced from the same sequences (Eq 5).

https://doi.org/10.1371/journal.pcbi.1005600.g002
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the designed sequence. The concept of nsr is blind for a more specific comparison of residues

beyond identity, which may impede a detailed assessment. In contrast, for the computation of

nssr, all residue pairs reaching a BLOSUM62 score> 0 are considered similar and contribute

to the nssr value (Eqs 4 and 5).

The plots shown in Fig 2 indicate that the SSD and the MSD algorithm converged after

1000 runs or 800 generations, respectively, both with respect to sequence recovery and ts val-

ues of the chosen sequences. The mean nsr values of enzdes and of MSF:GA:enzdeswere

20.00% and 27.14%, and the mean nssr values were 41.90% and 46.66%. Only two of the ten

enzdes designs reached an nssr value (47.62% and 61.90%, respectively) that was higher than

the mean nssr of MSF:GA:enzdes. In summary, MSF:GA:enzdesperformed better than

enzdes suggesting the usage of MSD if sequences have to be designed for an ensemble.

Altogether, the energies of models generated in SSD were on average 7.11 REU lower than

those in MSD. However, a comparison of ts scores is no ideal means to compare SSD and

MSD performance. In MSD, a sequence is a compromise that has to satisfy the constraints

associated with all conformations in an acceptable manner. In contrast, SSD customizes a low

energy sequence for each conformation. Thus, it is no surprise that the mean ts values of SSD

sequences are superior to those of the MSD results. On the other hand, due to these specific

adaptations based on single, less-native conformations, the SSD sequences are receding from

the native ones, which are considered as close to optimal [41]. This undesired effect is less pro-

nounced for MSD sequences computed on the whole native ensemble. We conclude that nsr
and nssr are more suitable than ts values for a comparative benchmarking of SSD and MSD

approaches.

A novel benchmark dataset for ligand-binding based on conformational

sampling

A standard dataset for the assessment of ligand-binding and enzyme design is the enzdes scien-
tific sequence recovery benchmark. It consists of 51 representative proteins in which the ligand

is bound with an affinity of 10 μM or lower [42]. During benchmarking, a given CPD algo-

rithm redesigns residues of the design shell enclosing each ligand and the algorithm’s ability to

recapitulate the native sequence (nsr and nssr values) is measured. However, for an assessment

of de novo design algorithms, this approach may be misleading, because the required remodel-

ing of a chosen protein is more demanding than the recapitulation of its native binding

pocket.

We created a more realistic benchmark that is devoid of a perfect backbone/rotamer preor-

ganization and is more suitable for the assessment of de novo design algorithms. For feasibility

reasons, we randomly selected 16 proteins prot(k) of the above 51 benchmark proteins. The

corresponding ligands were removed and for each of the 16 apoproteins, an ensemble of 20

conformations was created using the Backrub server [43], which generates near-native confor-

mational ensembles [44, 45]. Next, by superposition of each conformation with the corre-

sponding crystal structure, the ligands were transferred to the binding pockets. Thus, the

resulting dataset BR_EnzBench featured for each of the 16 prot(k) 20 backbone conformations

that are near to native but lack the implicit pre-organization induced by a bound ligand in a

crystal structure.

MSD outperforms SSD on a benchmark dataset mimicking de novo

design applications

We used BR_EnzBench to compare the performance of SSD and MSD for de novo ligand-bind-

ing design. All design shell residues were initially mutated to alanine and the conformations

MSF: A modular framework for multi-state design
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were energy-minimized to further increase the difficulty for CPD algorithms to recover the

native sequence. To prevent a hydrophobic collapse of the alanine-only design shells, minimi-

zation was performed with backbone constraints. Thus, the CPD problem to be solved within

the scope of this benchmark was to design a binding pocket by sequence optimization of the

all-alanine design shells.

For SSD with enzdes, all conformations of each protein were considered independently

and for each conformation, 1000 randomly seeded designs were performed. Design quality

was assessed by means of the three parameters nsr, nssr, and ts. The respective values were

averaged for each of the 16 prot(k) (Eqs 10 and 11) and are listed in Table 1. Additionally, the

convergence of the design process was followed by monitoring the mean performance for each

number i of design runs (Eqs 8 and 9); these values are plotted in Fig 3.

To conduct multi-state design by means of MSF:GA:enzdes, for each prot(k), the 20 con-

formations were divided into four ensembles enskm each containing five conformations. Note

that the conformations that are combined in each of the ensembles enskm are unrelated, due to

the stochastic approach of the Backrub algorithm. The GA was started on a population consist-

ing of 210 sequences and stopped after 600 generations, because convergence was reached.

Analogously, nsr, nssr, and ts values (Eqs 14 and 15) were determined for each MSD run and

averaged for each of the 16 proteins. These results were added to Table 1. As above, the conver-

gence of the GA was followed be monitoring the mean performance for each generation j (Eqs

12 and 13); these values are also plotted in Fig 3.

The protein-wise comparison (Table 1) indicates that in 10 out of the 16 cases, the nsr
and in 13 out of all 16 cases, the nssr values of MSF:GA:enzdesdesigns are superior to the

corresponding values of enzdes designs. MSF:GA:enzdes recovers on average a higher

percentage of native residues (Δ nsr = 2.65%) and a higher percentage of similar residues

Table 1. Performance of SSD and MSD for individual proteins from BR_EnzBench.

PDB ID nsr (%) nssr (%) ts (REU)

enzdes MSF:GA:
enzdes

enzdes MSF:GA:
enzdes

enzdes MSF:GA:
enzdes

1fzq 53.25 37.75 58.25 48.75 -325.16 -328.55

1hsl 34.74 33.95 60.00 59.47 -448.58 -447.39

1j6z 29.81 34.81 41.11 51.30 -771.96 -774.62

1n4h 28.80 28.80 53.00 59.40 -484.49 -488.89

1nq7 30.89 32.32 51.79 57.68 -506.56 -511.51

1opb 24.77 35.68 45.00 52.27 -307.57 -307.50

1pot 12.11 17.89 41.84 43.68 -613.10 -613.72

1urg 16.05 32.63 26.05 42.63 -796.85 -799.61

2b3b 24.41 41.47 32.35 50.59 -831.19 -831.17

2dri 21.58 25.79 42.89 55.26 -611.75 -613.74

2ifb 24.77 30.23 41.82 49.09 -305.08 -305.86

2q2y 38.70 39.13 48.48 56.52 -609.27 -611.17

2qo4 45.91 40.68 56.82 62.27 -271.47 -277.49

2rct 27.27 20.45 49.32 47.27 -317.51 -320.33

2rde 14.50 19.00 25.50 37.75 -463.52 -471.90

2uyi 38.26 37.61 47.17 56.09 -640.19 -641.01

Average: 29.11 31.76 45.09 51.88 -519.02 -521.53

nsr, nssr, and ts values were determined for each of the 16 proteins from BR_EnzBench after convergence of enzdes and MSF:GA:enzdes. For details,

see Materials and Methods.

https://doi.org/10.1371/journal.pcbi.1005600.t001
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(Δ nssr = 6.79%). Thus, with respect to the more adequate similarity measure nssr, MSD per-

forms 15% better than SSD for this benchmark (p = 0.004, Wilcoxon signed rank test).

In addition, multi-state designs have slightly better energies (Δ ts = 2.51 REU), which is in

contrast to the hIFABP results and is most likely due to the smaller ensemble size. Fig 3 reflects

the differences in convergence speed of both algorithms and indicates that the better perfor-

mance has its price: the MC optimization utilized by enzdes leads to acceptable design solu-

tions even after a low number of runs. In contrast, the GA of MSF:GA:enzdes is slower and

more than hundred generations are required to surpass the performance of the SSD algorithm.

For this set of parameters, MSF:GA:enzdes required approximately five times the number

of core hours needed by enzdes; further details of computational costs are given in S2 Text.

The MSD concept is crucial for performance on BR_EnzBench

The sequence recovery reached for the hIFABP ensemble and for BR_EnzBench strongly sug-

gests that MSF:GA:enzdes is superior to enzdes in more complex design applications.

However, it was unclear to us, whether the different concepts (single-state versus multi-state)

or the different optimizers (MC versus GA) contributed most to performance. Choosing an

MSD approach increases computational cost, which has to be substantiated by making plausi-

ble that the choice of the optimizer is less important.

The performance of MSF:GA:enzdeson BR_EnzBench was assessed ensemble-wise

by determining the values nssrMSDðenskmÞ, which were averaged (Eq 12). As these ensembles

contain not more than five unrelated conformations each, the nssrMSDðenskmÞ values (Eq 16)

vary due to the small sample size and one can sort for each prot(k) the four enskm on their

nssrMSDðenskmÞ value. The result is a ranking enskrank¼u (1� u� 4) of the four ensembles and we

created the set ES1 that contained the 16 ensembles (one for each prot(k)) with the lowest

Fig 3. Convergence of SSD and MSD algorithms on the benchmark set BR_EnzBench enzdes (blue

lines) was executed for 1000 runs i on all 20 conformations of each prot(k) from BR_EnzBench. For

each number of runs i, the ts BR EBSSD ðiÞ value (dotted line) is the mean of the twenty lowest-energy sequences

(Eq 9). The corresponding nssr BR EBSSD ðiÞ value (solid line) is the mean recovery value deduced from the same

sequences (Eq 8). MSF:GA:enzdes (orange lines) was carried out for 600 generations j on all ensembles

using a sequence population of 210. For each generation j, the ts BR EBMSD ðjÞ value (dotted line) is the mean of the

five lowest-energy sequences of each of the four protein-specific ensembles (Eq 13). The corresponding

nssr BR EBMSD ðjÞ value (solid line) is the mean recovery value deduced from the same sequences (Eq 12).

https://doi.org/10.1371/journal.pcbi.1005600.g003
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nssrMSDðenskmÞ value. Analogously, we compiled the sets ES2—ES4; consequently, ES4 consisted

of those 16 ensembles that had the highest nssrMSDðenskmÞ value; for details see Materials and

Methods. For these four sets ESi, we determined boxplots of the corresponding nssrSSD and

nssrMSD values; see Fig 4.

The boxplots characterizing the SSD results are nearly identical; this finding indicates that

the conformations allocated to the four sets ES1—ES4 give rise to a similar SSD performance.

Moreover, the boxplots representing the nssrSSD (ES1) and nssrMSD (ES1) values are nearly iden-

tical (median values 47.60% and 47.76%), which indicates that the optimizer GA is not gener-

ally superior to MC. Additionally the continuous increase observed for the nssrMSD (ES1) -

nssrMSD (ES4) - but not for the nssrSSD (ES1) – nssrSSD (ES4) values - supports the notion that it

is the combination of conformations that strongly affects MSD performance. We thus con-

clude that the MSD approach - and not the optimizer - contributes most to the performance of

MSF:GA:enzdes.

The residue preferences of enzdes and MSF:GA:enzdesdiffer

Because Rosetta has a certain bias in recapitulating native residues [46], we assessed and com-

pared the bias introduced by enzdes and MSF:GA:enzdes. For the assessment of the

enzdes outcome, we selected the 13440 sequences representing the best designs on BR_Enz-
Bench and determined nssrSSD (aaj) values. This distribution represents for all amino acids aaj
the fraction of similar residues recovered at all design shell positions. Analogously, the distri-

bution nssrMSD (aaj) was computed that indicates the fraction of similar residues recovered by

MSF:GA:enzdes; for details see Materials and Methods.

The two distributions, which are plotted in Fig 5, indicate similar recovery rates that are

below the optimal value of 100% for all residues. Generally, sequence recovery for large polar

or charged residues (D, E, H, K, N, R, S) is low, which contributes to Rosetta’s weakness in

Fig 4. Performance of enzdes and MSF:GA:enzdeson a distinct grouping of conformations. Each of

the sets ES1—ES4 contains a quarter of the conformations from BR_EnzBench, which were grouped

according to their nssrMSD values (Eq 16). ES1 contains all ensembles with the lowest and ES4 those with the

largest recovery values. For each set ESi, the corresponding nssrSSD (ESi) and nssrMSD (ESi) values are

represented by two boxplots. Left: performance of enzdes (blue boxplots), right: performance of MSF:GA:
enzdes (orange boxplots). Whiskers indicate the lowest and the highest datum still within the 1.5 interquartile

range.

https://doi.org/10.1371/journal.pcbi.1005600.g004
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accurately designing hydrogen bonds and electrostatics [47]. Interestingly, enzdes is slightly

better in recovering polar and charged residues, whereas MSF:GA:enzdes clearly recovers a

higher fraction of hydrophobic residues (A, F, I, L, P, V, W, Y). This general trend is most evi-

dent in the two benchmark proteins with the most extreme differences in their individual

nssrSSD and nssrMSD values: ARL3-GDP (PDB ID 1fzq) is a distinct GTP binding protein [48]

fromMus musculus and both the ligand and the native binding pocket are considerably polar.

Fig 6A shows that enzdes correctly recovers the residues interacting with the guanine group

(colored in teal) of GDP, while MSF:GA:enzdes is less successful. On the other hand, in the

glucose binding protein (PDB ID 2b3b) from Thermus thermophilus, four tryptophan residues

provide tight binding to glucose by shape complementarity. Fig 6B shows that MSF:GA:
enzdes recovers three critical tryptophan residues (colored in teal) in most designs, whereas

enzdes prefers small polar residues that do not provide tight packing.

We conclude that the representation of a protein by means of an ensemble improves hydro-

phobic packing but not the formation of polar interaction networks. Their design is consider-

ably more difficult than hydrophobic packing due to the partially covalent nature of a

hydrogen bond and the geometric requirements for orientations and distances [47, 49].

Molecular dynamics simulations are well suited to create conformational

ensembles

Molecular dynamics (MD) simulation is a well-established and reliable method for modeling

conformational changes linked to the function of proteins [50]. Thus, MD provides an alterna-

tive to the Backrub approach for the generation of ensembles to be utilized in MSD. We were

interested in assessing the designability of conformations resulting from unconstrained MD

simulations of length 10 ns. In analogy to BR_EnzBench, we compiled the datasetMD_Enz-
Bench consisting of 1000 conformations generated for each of the 16 benchmark apoproteins

by means of YASARA [51]. Again, all design shell residues were replaced with alanine prior to

design; see Materials and Methods.

Fig 5. Recovery of design shell residues from BR_EnzBench by means of enzdes and MSF:GA:
enzdes. The distributions nssrSSD (aaj) (blue bars) and nssrMSD (aaj) (orange bars) represent for each amino

acid aaj the nssr value (Eq 3) deduced from 13440 design sequences. These were created by enzdes or

MSF:GA:enzdes for the benchmark proteins BR_EnzBench, respectively. nssr takes into account the

recovery of all residues which are similar to the native aaj.

https://doi.org/10.1371/journal.pcbi.1005600.g005

MSF: A modular framework for multi-state design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005600 June 12, 2017 10 / 24

https://doi.org/10.1371/journal.pcbi.1005600.g005
https://doi.org/10.1371/journal.pcbi.1005600


To assess the structural variability ofMD_EnzBench conformations, Cα-RMSD values of

design shell residues were determined in a protein-specific all-against-all comparison and then

averaged. Analogously, the structural variability of BR_EnzBench conformations was deter-

mined. Interestingly, the variety of the binding pockets generated by the MD simulations is

much larger than that generated by Backrub: the mean RMSD ofMD_EnzBench is 0.62 Å and

that of BR_EnzBench is 0.17 Å, which indicates that a 10 ns MD simulation generates an

ensemble with higher structural diversity than the Backrub server.

As a control of design performance, the 16 × 20 nssrBR EBSSD ði ¼ 1Þ values of single enzdes
designs generated for 20 protein-specific conformations from BR_EnzBench were summarized

in a boxplot, which had a mean value of 43.88%. To assess the designability of theMD_Enz-
Bench conformations, for each of the 1000 protein-specific conformations, one sequence was

Fig 6. Recovery of two striking binding pockets by means of enzdes and MSF:GA:enzdes. (a) The 3D structure of the binding pocket of

ARL3-GDP is shown on the right, the ligand GDP is colored light blue. The residues of the corresponding design positions are shown on the left

(labeled “Native”). The sequence logos labeled enzdes and MSF:GA:enzdes represent for each design position the distribution of residues as

generated by the corresponding protocols. Residues that are similar to the native ones are colored in green. In the native sequence, residues are

colored in teal, if the outcome of the two protocols differs drastically. (b) The 3D structure of the binding pocket of the glucose binding protein is shown

on the right; the bound glucose is colored light blue. Native residues and sequence logos are shown on the left and were prepared and colored as

described for panel (a).

https://doi.org/10.1371/journal.pcbi.1005600.g006
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designed by means of enzdes and the resulting nssr values were averaged protein-wise. Fig 7

shows 100 boxplots each representing 16 × 10 nssr values resulting from ten conformations

generated by the MD simulation in a 100 ps interval for each of the 16 prot(k). The mean of

these nssr values is 42.53%, which testifies to a satisfying design performance, given that only

one sequence was designed for each MD conformation. Moreover, the boxplots indicate that

performance did not decrease for conformations generated at later phases of the MD simula-

tion: the median nssr, and the first and third quartile of the most left and the most right box-

plots are 42.10% [35.40%, 45.89%] and 42.24% [34.78%, 50.00%], respectively. In summary,

these findings suggest that ensembles generated by MD feature higher conformational flexibil-

ity and appropriate de novo designability.

A multi-state de novo design of retro-aldolases

The most convincing proof of concept for any CPD algorithm is the design of functionally

active proteins. A non-natural reaction that is frequently chosen for enzyme design is the

amine-catalyzed retro-aldole cleavage of 4-hydroxy-4-(6-methoxy-2-naphtyl)-2-butanone

(methodol) into 6-methoxy-2-naphthaldehyde and acetone [52]. This multi-state reaction com-

prises the attack of an active site lysine side chain on the carbonyl group of the substrate to form

a carbinolamine intermediate that is subsequently dehydrated to a protonated Schiff base. The

latter is then converted to the reaction products by acid/base chemistry [53, 54]. The most active

de novo retro-aldolase designs have been established on a jelly roll and several (βα)8-barrel pro-

teins [55–57]. For comparison purposes, we selected the indole-3-glycerolphosphate synthase

from Sulfolobus solfataricus (ssIGPS), a previously used thermostable (βα)8-barrel scaffold.

The native ligand was removed and the apoprotein was subjected to conformational sam-

pling. Using the protocol validated withMD_EnzBench, three individual MD simulations were

performed for 10 ns. A clustering of MD snapshots based on RMSD values helps to choose

near-native conformations [58]. Thus, we used Durandal [59] to cluster the snapshots (con-

formations) generated with each MD run and picked four conformations from the largest clus-

ter. These 3 × 4 conformations and the crystal structure of the apoprotein constituted the

structural ensemble for the subsequent enzyme design.

Enzyme design generally starts with the assembly of a theozyme, which is a model for the

proposed active site that is based upon the geometric constraints dictated by the expected tran-

sition state(s). To design retro-aldolase catalysis, we used a previously designed theozyme con-

taining the carbinolamine reaction intermediate as transition state surrogate covalently bound

to the catalytic lysine [56]. In addition, this theozyme contained an aspartate or a glutamate

residue to function as general acid/base as well as a serine or a threonine residue to provide

additional hydrogen-bonding interactions. Rosetta:matchwas applied to all conforma-

tions and created several thousand matched transition states (mTS) with catalytic triads Ki-[D,

E]j-[S,T]k located at markedly different residue positions. A critical step of MSD is the compi-

lation of the ensembles that are concurrently used as states. For enzyme design, ensembles

ensmTS ofmTS are needed and we compiled them the following way: first,mTS judged as bind-

ing the transition state only weakly were discarded. Second,mTS derived from different con-

formations were added to the same ensmTS, if identical catalytic triads were located at matching

residue positions. Thus, each ensmTS contained a certain number of conformations accommo-

dating the same catalytic triad. Third, the consistency of each ensmTS was assessed by superpos-

ing the transition states and by comparing the corresponding conformations.

We chose 23 ensmTS consisting of 4 to 13 conformations (states) and their design and repack

shells were defined by merging the output created by enzdes:autodetect for all confor-

mations. MSF:GA:enzdeswas executed with each ensemble until energetic convergence;
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see S3 Text for details of the protocol. In brief, to assess the designs we compared active-site

geometry as well as total and interaction energies and the best 100 variants were subjected to

MD simulations of 10 ns length. For each variant, we analyzed in detail catalytic site geome-

tries of 100 snapshots (see Materials and Methods) and nine variants named RA_MSD1 to

RA_MSD9 were chosen for biochemical characterization; see S3 Text.

Because the catalytic efficiency and the conformational stability of initial designs are gener-

ally poor [60], further optimization is commonly performed by using either Foldit or other

software tools to revert unnecessary mutations back to the native sequence of the scaffold [56],

or by means of directed evolution [57]. However, we did not introduce subsequent stabilizing

mutations into the sequences of RA_MSD1 to RA_MSD9 prior to a first experimental charac-

terization. In doing so, we wanted to demonstrate the potential and also the limitations of

multi-state designs.

For a comparison of these novel designs with previous ones, we compiled a list of 42 retro-

aldolases RA� from the literature (see S3 Text) that were also created in the ssIGPS scaffold by

means of Rosetta. These RA� sequences differ on average at 15 positions from the native ssIGPS

sequence; in contrast, our nine RA_MSD� sequences contain on average 21 amino acid substitu-

tions. Moreover, RA� sequences deviate on average from RA_MSD� sequences at 24 positions,

and 18 substitutions distinguish the most similar pairs of variants (RA41 versus RA_MSD9 and

RA90 versus RA_MSD8). Even a previous (RA114) and a new design (RA_MSD1), which share

the same catalytic residues K210 and S110, differ at 25 positions. Thus, although we utilized the

same TS and the same scaffold that was used for the design of RA114—RA120 [56], our MSD

approach has generated a set of entirely novel catalytic sites located in the same shell as used for

previous designs; see Fig 8.

All initial MSD designs possess retro-aldolase activity but need further

processing to improve solubility

The genes for RA_MSD1—RA_MSD9 were synthesized and expressed in Escherichia coli as

fusion constructs with the gene for the maltose binding protein (MBP). The fusion proteins

Fig 7. Single-state designability of MD_EnzBench conformations. Each of the 100 boxplots on the right

represents 16 × 10 nssr values resulting from ten conformations generated by the MD simulation in a 100 ps

interval for each of the 16 prot(k). As a control, the 16 × 20 nssr BR EBSSD values of (single) enzdes designs

generated for 20 protein-specific conformations from BR_EnzBench were summarized in a boxplot shown on

the left (label Backrub). Whiskers indicate the lowest and the highest values of the 1.5 interquartile.

https://doi.org/10.1371/journal.pcbi.1005600.g007
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were purified with metal chelate affinity chromatography via their N-terminal hexa-histidine

tags, resulting in high yields (50–150 mg protein/l expression culture). RA_MSD5 could be

produced in soluble form also without MBP, whereas the other designs precipitated in the

absence of the solubility enhancer. All designs showed modest catalytic activity with low sub-

strate affinity, leading to conversion rates in the presence of 500 μM S-methodol ranging from

3 × 10−7 to 1.7 × 10−5 s-1 (Table 2). For the best designs, namely RA_MSD5 and RA_MSD7,

the linear part of the substrate saturation curve was used to determine kcat/KM values of

3.47 × 10−2 and 1.41 × 10−2 M-1s-1 (S1 Fig; Table 2), which are similar to the values obtained

for RA114 - RA120 [46]. Moreover, the RA_MSD5 designs with and without MBP displayed

virtually the same kcat/KM values, excluding an influence of the solubility enhancer on activity.

Fig 8. Mutations introduced into the IGPS scaffold to design retro-aldolase activity. (a) An overview of

all mutations introduced in 42 previous designs subsumed in the set RA* which are listed in S3 Text. Blue

spheres indicate residue positions and sphere diameters are proportional to the frequency of the mutations in

comparison to the native IGPS sequence. (b) Ditto, for nine RA_MSD* designs, mutations are visualized by

means of orange spheres.

https://doi.org/10.1371/journal.pcbi.1005600.g008

Table 2. MSD proteins and their retro-aldolase activity.

Name Catalytic triad Number of mutations compared to ssIGPS Conversion rate

(s-1)

kcat/KM (M-1s-1)

RA_MSD1 K210 D131 S110 21 8.08 × 10−7 ND

RA_MSD2 K210 D131 S110 22 3.14 × 10−7 ND

RA_MSD2.4 K210 D131 S110 26 1.23 × 10−6 ND

RA_MSD2.5 K210 D131 S110 29 1.49 × 10−6 ND

RA_MSD3 K210 D131 S110 22 2.60 × 10−6 ND

RA_MSD4 K51 E53 S83 20 3.03 × 10−6 ND

RA_MSD5 K51 E53 S83 21 1.69 × 10−5 3.47 × 10−2

RA_MSD6 K231 E53 S83 25 2.82 × 10−6 ND

RA_MSD7 K231 E131 T159 18 8.33 × 10−6 1.41 × 10−2

RA_MSD8 K231 E131 T159 18 5.61 × 10−6 ND

RA_MSD9 K231 E53 T83 19 7.55 × 10−7 ND

The catalytic triad designed for nine proteins (RA_MSD1—RA_MSD9) is specified in the second column. The third column gives the number of residue

exchanges compared to the native sequence of ssIGPS. The fourth column lists the conversion rates (rate of product formation divided by the enzyme

concentration) in the presence of 500 μM S-methodol. The last column gives the catalytic efficiency kcat/KM as determined for RA_MSD5 and RS_MSD7

from the linear part of substrate saturation curves; see S1 Fig. ND: not determined.

https://doi.org/10.1371/journal.pcbi.1005600.t002
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Due to the intentionally omitted step of secondary protein stabilization following the initial

design process, eight of our nine designs were insoluble without MBP. We wanted to test

whether protein stabilization would result in higher activity. Accordingly, we attempted to

improve the stability of RA_MSD2, which has the lowest activity of all designs (Table 2), by

using the fully automated in silicomethod offered by the PROSS webserver [61]. The six con-

formations of RA_MSD2 were individually submitted to PROSS and the corresponding output

sets that contained 6 to 21 stabilizing mutations were merged to five consensus sequences; see

S3 Text, Table B1. Variants RA_MSD2.4 and RA_MSD2.5 that contained the highest number

of stabilizing mutations, could be produced in soluble form without MBP and were purified

with high yield (about 25 mg protein/l expression culture). Activity measurements showed,

however, that the additional stabilizing exchanges did not drastically improve the conversion

rate of RA_MSD2; see Table 2.

In summary, our results show that MSD (based on a structural ensemble) is comparably

successful as SSD (based on a single structure) for establishing retro-aldolase activity on a ther-

mostable (βα)8-barrel scaffold, indicating that this particular reaction requires only a limited

degree of conformational flexibility. However, catalysis is often linked to conformational tran-

sitions which can only be captured by MSD approaches. Moreover, in contrast to SSD, MSD

offers a broader functionality and is for example also suited for more challenging tasks like

negative design.

Materials and methods

Benchmark datasets BR_EnzBench and MD_EnzBench

Two subsets of the scientific sequence recovery benchmark of Rosetta [42] were generated that

contain 20 specifically prepared conformations of 16 proteins prot(k) with bound ligand. In

order to exclude an erroneous conformational sampling, missing residues were reconstructed

by using YASARA:loop_modeling[62] and the respective native sequences. Additionally,

all ligands were removed prior to the conformational sampling of the resulting apoproteins.

The dataset BR_EnzBench was created by using the BackrubEnsemblemethod of the

Backrub server [43] to compute a conformational ensemble of 20 structures for each apopro-

tein. The second benchmark datasetMD_EnzBench was deduced from MD simulations of

length 10 ns generated with YASARA (version 14.7.17) and the YAMBER3 force field, which

has been parameterized to produce crystal structure-like protein coordinates [51]. For each of

the 16 apoproteins, 1000 conformations were sampled at an interval of 10 ps. After sampling,

the native ligands were re-introduced in all conformations of both subsets by means of

PyMOL:superpose [63] and the respective apoproteins.

For the corresponding holoproteins of BR_EnzBench andMD_EnzBench, the same design

and repack shells were utilized. These were determined protein-wise for each of the BR_Enz-
Bench conformations by means of Rosetta:enzdes:autodetect and merged. In all

conformations, design shell residues were replaced with alanine and prior to design, all confor-

mations were energy-minimized by means of Rosetta:fastrelaxwith backbone con-

straints. Parameters of MD simulations, Rosetta:fastrelax, and the composition of

design and repack shells are listed in S2 Text.

Genetic algorithm and fitness function

The first generation of the 210 sequences consisted of the given seed sequence and 209 mutants

each with a randomly introduced single point mutation. During each generation cycle, half of

the population was replaced with sequences seqi generated by means of single point mutations

and recombination. The replaced sequences were those with worst fitness values fitness(seqi),
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which were computed for MSF:GA:enzdes according to:

fitnessðseqiÞ ¼
1

n

Xn

l¼1

tslðseqiÞ ð2Þ

Here, n is the number of states (e. g. conformations s1, . . ., sn of a given prot(k)) and tsl is the

Rosetta total score for a sequence given a state l. In all equations, ts values are given in REU.

Computing the native sequence similarity recovery

For a given pair of residues aa1, aa2 the nssr value was deduced from the scores of the BLO-

SUM62-matrix [64] as follows:

nssrðaa1; aa2Þ ¼

�
1 if BLOSUM62ðaa1; aa2Þ > 0

0 else
ð3Þ

For a given pair of sequences seq1, seq2 of length n, the nssr value was determined as the

mean value deduced for residue pairs seq1[i], seq2[i]:

nssrðseq1; seq2Þ ¼
1

n

Xn

i¼1

nssrðseq1½i�; seq2½i�Þ ð4Þ

For a given set of design solutions ds = {seq1,. . .,seqm} and a native sequence seqnat, the value

nssr(ds,seqnat) was computed according to:

nssrðds; seqnatÞ ¼
1

m

Xm

i¼1

nssrðseqi; seqnatÞ ð5Þ

Assessing design performance on hIFABP

The data set with PDB ID 2mji contains ten conformers of hIFABP and the bound ligand

ketorolac; this ensemble has been deduced by means of solution NMR [65]. The set was down-

loaded from PDB and the ligand was parameterized using Rosetta:molfile-to-
params [66]. Next, each of the ten conformations was energy-minimized via Rosetta:
fastrelaxwith constraints. To obtain consistent design and repack shells, the shells deter-

mined by Rosetta:enzdes:autodetect for each conformation were merged.

For SSD, enzdeswas applied to each of the ten initial conformations conf(l) (1� l� 10).

Using the default MC optimization and the parameter set ps_enzdes, sequences seql (i) were

generated by means of 1000 randomly seeded runsl (i) (1� i� 1000). In order to control the

convergence of the design process and for performance comparison, the seq�l ðiÞ with the best

total score (ts) were chosen from seql (1,. . .,i) for each l and each i. Finally, the mean of the ten

ts values was determined as a measure of design quality ts hIFABPSSD ðiÞ reached in i SSD runs:

tshIFABPSSD ðiÞ ¼
1

10

X10

l¼1

tsðseq�l ðiÞÞ ð6Þ

For MSD, all ten conformations conf(l) were considered as states and MSF:GA:enzdes
was executed for 800 generations (i. e. design cycles) on a population consisting of 210

sequences with parameters ps_msf_enzdes. The initial population was seeded with the native

sequence. The sequences representing a generation j were ranked with respect to ts values and

the ten top scoring sequences seqtlðjÞ (1� t� 10) were stored in order to allow for the subse-

quent performance comparison. Finally, the mean of the 10 × 10 ts values was determined as a
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measure of design quality ts hIFABPMSD ðjÞ reached in jMSD generations:

tshIFABPMSD ðjÞ ¼
1

100

X10

l¼1

X10

t¼1

tsðseqtlðjÞÞ ð7Þ

Further details of the analysis can be found in S2 Text; it lists parameters of Rosetta:
fastrelax and the design protocol, and the composition of the design and repack shell.

Assessing design performance on BR_EnzBench

For SSD, enzdeswas applied to each of the 20 initial conformations conf(l) (1� l� 20) of

each prot(k) (1� k� 16) from BR_EnzBench. Using default MC optimization and the parame-

ter set ps_enzdes (see S2 Text), sequences seqk,l (i) were generated by means of 1000 randomly

seeded runsk,l (i) (1� i� 1000). In order to control the convergence of the design process and

for performance comparison, those seq�k;lðiÞ having the best ts value were chosen from seqk,l
(1,. . .,i) for each k, l, and i. Finally, mean performance reached in i SSD runs was measured by

means of the score 2 {nsr,nssr}, where nsr is the native sequence recovery and nssr is the native

sequence similarity recovery:

score BR EBSSD ðiÞ ¼
1

320

X16

k¼1

X20

l¼1

scoreðseq�k;lðiÞ; seq
k
natÞ ð8Þ

tsBR EBSSD ðiÞ ¼
1

320

X16

k¼1

X20

l¼1

tsðseq�k;lðiÞÞ ð9Þ

Here, seqknat is the native sequence of prot(k), and ts is the total score. To score SSD perfor-

mance reached for one prot(k), the final score values were averaged over all conformations:

score BR EBSSD ðkÞ ¼
1

20

X20

l¼1

scoreðseq�k;lð1000Þ; seqknatÞ ð10Þ

ts BR EBSSD ðkÞ ¼
1

20

X20

l¼1

tsðseq�k;lð1000ÞÞ ð11Þ

To assess the performance of MSD, each of the 20 conformations of a prot(k) was assigned

to an ensemble enskm (1�m� 4) consisting of five conformations each. These five conforma-

tions were considered as states and MSF:GA:enzdeswas executed for 600 generations on a

population consisting of 210 sequences with parameter set ps_msf_enzdes (see S2 Text). The

initial population was seeded with an all-alanine sequence. The sequences representing a gen-

eration j were ranked with respect to ts values and the five top scoring sequences seqtk;mðjÞ [1�

t� 5] were stored in order to allow for the subsequent performance comparison. Finally,

mean performance values reached in jMSD generations were determined according to:

score BR EBMSD ðjÞ ¼
1

320

X16

k¼1

X4

m¼1

X5

t¼1

scoreðseqtk;mðjÞ; seq
k
natÞ ð12Þ
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ts BR EBMSD ðjÞ ¼
1

320

X16

k¼1

X4

m¼1

X5

t¼1

fitnessðseqtk;mðjÞÞ ð13Þ

Here, seqknat is the native sequence of prot(k), score 2 {nsr,nssr} is a sequence recovery, and

fitnessðseqtk;mðjÞÞ is the mean ts score (Eq 2, n = 5) of a given sequence over the five conforma-

tions belonging to ensemble enskm. To score MSD performance reached for one prot(k) after

600 generations, the final score values were averaged over all ensembles:

score BR EBMSD ðkÞ ¼
1

20

X4

m¼1

X5

t¼1

scoreðseqtk;mð600ÞÞ ð14Þ

ts BR EBMSD ðkÞ ¼
1

20

X4

m¼1

X5

t¼1

fitnessðseqtk;mð600ÞÞ ð15Þ

Grouping ensembles by MSD performance

The 20 conformations of a given protein prot(k) from BR_EnzBench belong to one of four

ensembles ensk
1

- ensk
4
. The performance values nssrMSDðenskmÞ were determined for each prot(k)

and each enskm according to:

nssrMSDðens
k
mÞ ¼

1

5

X5

t¼1

nssrðseqtk;mð600Þ; seqknatÞ ð16Þ

Here, seqknat is the native sequence of prot(k). The values nssrMSDðenskmÞ were used for a rank-

ing enskrank¼u (1� u� 4) of the four ensembles such that enskrank¼1
is the one with the lowest

nssrMSDðenskmÞ value and enskrank¼4
that with the largest one. Having ranked the ensembles of all

prot(k), sets of ensembles were created such that the set ES1 ¼ [
16

k¼1
enskrank¼1

contained those

ensembles that performed worst and ES4 ¼ [
16

k¼1
enskrank¼4

those that performed best and the

intermediates with rank = 2 and rank = 3 performed accordingly. For these four sets ESi, box-

plots of the corresponding nssrSSD and nssrMSD values were determined.

Choosing sequences for the analysis of the sequence differences

In order to assess the amino acid composition of the enzdes outcome, the 42 seqk,l (1,. . .,

1000) with optimal ts values were identified for each of the 20 conformations l of all prot(k) 2
BR_EnzBench. For these 16 × 840 sequences seqkSSD, the values nssrðseqkSSD½i�; seq

k
nat ½i�Þ were

determined (Eq 3) by comparing design shell and native (nat) residues i. The distribution

nssrSSD (aaj) represents for all amino acids aaj their recovered similarity at all design shell

positions.

To assess the amino acid composition for the MSF:GA:enzdesoutcome, the 16 × 4 × 210

sequences seqkMSD of the final populations (i. e. all seqk,m (600)) generated for the four ensemble

groups of each prot(k) 2 BR_EnzBenchwere used to determine the values nssrðseqkMSD½i�; seq
k
nat½i�Þ.

The distribution nssrMSD (aaj) represents for all amino acids aaj their recovered similarity at all

design shell positions.
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Multi-state design of retro-aldolases

The scaffold protein indole-3-glycerol phosphate synthase from S. solfataricus (ssIGPS, PDB

ID 1a53), was downloaded from PDB and the ligand IGP was removed. To generate a struc-

tural ensemble, three MD simulations were performed with the apoprotein for 10 ns by means

of YASARA and the YAMBER3 force field. Using Durandal:smart-mode:semi-auto
[0.03..0.20], the snapshots of each trajectory were clustered individually and four con-

formations were chosen from the largest cluster. These 12 conformations and the crystal struc-

ture of 1a53 were used for matching the transition state (TS) and grafting the theozyme of the

retroaldol reaction [56] by means of Rosetta:match. Each of the resulting matched transi-

tion states (mTS) consisted of a catalytic triad Ki-[D,E]j-[S,T]k at three residue positions i, j, k
that occured in one of the 13 conformations.

Ensembles ensmTS ofmTS used as input for MSF:GA:enzdeswere generated as follows:

first,mTS were discarded that were classified as weak TS binders or TS destabilizers. For exam-

ple, matches with catalytic residues near the protein surface were eliminated. Second,mTS
were grouped according to the composition and localization of the catalytic triad and those

ensembles were selected that were compatible with most of the 13 conformations. Third,

ensmTS were assessed with respect to the structural similarity of the superposed theozymes. In

total, 23 ensembles ensmTS containing 4 up to 13 conformations were chosen. For each ensmTS,
the design and repack shells were defined by merging the outcome of Rosetta:enzdes:
autodetect for all corresponding conformations and MSF:GA:enzdeswas executed on

a population of 210 sequences that were seeded with the native sequence of ssIGPS. At con-

vergence, the design process was stopped, which was the case after 97 to 710 generations. S3

Text lists more details of the design procedure like parameters of MD simulations and of

Rosetta:match, and the specification of the TS.

Evaluation of multi-state design solutions

After MSD of retro-aldolases, the designs were filtered by ts values and active-site geometry.

The best 100 designs were selected for 10 ns MD simulations in water and for one conforma-

tion of each design ensemble, 100 snapshots were generated. Two simulations were performed;

the first one was based on the enzyme/TS complex. As a control, the second MD simulation

was based on the enzyme/substrate complex and the substrate methodol was created by delet-

ing the lysine-substrate bond of the TS. For each trajectory, catalytic distances, angles and tor-

sion angles were plotted as boxplots and used to assess the designs; see S3 Text.

PROSS stabilization

Variant RA_MSD2 was chosen for solubilization experiments and all six conformations conf(l) of

the corresponding ensemble were submitted to the PROSS server [61], which was used with de-

fault settings allowing for mutations at all positions. For each input conf(l), PROSS provided seven

mutated sequencesmut_seql(i) (1� i� 7) containing an increasing number of putatively stabiliz-

ing mutations. For each i (degree of stabilization), an MSA that contained all sequencesmut_seql(i)
computed for all conf(l) was generated and weblogo [67] was used to determine a sequence logo.

Finally, consensus residues deduced from the sequence logos were accepted as mutations at sites

that did not interfere with the catalytic center. All sequence logos are shown in S3 Text.

Cloning, gene expression, and protein purification

The genes encoding the designed retro-aldolases were optimized for E. coli codon usage and

ordered as synthetic gene strings from Life Technologies. Cloning was performed via BsaI
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restriction sites into pET28a (Stratagene) and pMalC5T (New England Biolabs) plasmids spe-

cifically modified for this method of cloning. Both vectors fuse an N-terminal his6-tag to the

target proteins, pMalC5T additionally adds MBP. The cloning method is derived from golden

gate cloning [68]. Details of plasmid construction and cloning procedure will be published

elsewhere. E. coli BL21 Gold cells were transformed with the resulting plasmids. The cells were

grown in Luria broth with 50 μg/ml kanamycin or 150 μg/ml ampicillin for pET28 constructs

and pMAL constructs, respectively. At a cell density of OD600 = 0.5 protein production was

induced by addition of 0.5 mM isopropyl-β-thiogalactopyranoside. After growth over night at

20˚C the cells were harvested by centrifugation (Avanti J-26 XP, JLA 8.1000, 15 min, 4,000

rpm, 4˚C). Cell pellets were resuspended in 50 mM Tris/HCl buffer (pH 7.5) with 300 mM

NaCl. Cells were lysed by sonication (Branson Sonifier W-250D, amplitude 65%, 3 min, 2 s

pulse/2 s pause). Cell debris was removed by centrifugation (Avanti J-26 XP, JA 25.50, 30 min,

14,000 rpm, 4˚C) and soluble proteins were purified by nickel chelate affinity chromatography

(GE Healthcare, HisTrap FF crude). The proteins were eluted with 50 mM Tris/HCl (pH 7.5)

containing 300 mM NaCl using a gradient of 10–500 mM imidazole. Fractions containing suf-

ficiently pure protein were pooled and excess imidazole was removed by dialysis against 50

mM Tris/HCl (pH 7.5) buffer containing 100 mM NaCl. Protein concentrations were deter-

mined by absorbance spectroscopy (NanoDrop One, Thermo Fisher) using extinction coeffi-

cients determined by the Expasy:ProtParamwebtool.

Activity assay

Retro-aldolase activity of the designs (30–50 μM) was measured at 25˚C in 50 mM Tris/HCl

(pH 7.5), 100 mM NaCl and 5% (v/v) dimethyl sulfoxide (for substrate solubility) by following

the formation of the fluorescent product 6-methoxy-2-naphthaldehyde from non-fluorescent

S-methodol (70% ee). The substrate was synthesized as described in S3 Text. Fluorescence was

measured in a Mithras LB 940 plate reader (λex = 355 nm, λem = 460 nm) using black 96 well

micro plates. The concentrations of product were determined with the help of a calibration

curve. For the determination of conversion rates, each measurement was repeated four times,

for kcat/KM determinations all points were measured as triplicates. The wild-type scaffold pro-

tein ssIGPS and the solubility tag MBP served as negative controls and did not show any

detectable activity. Further control measurements showed that conversion rates in the pres-

ence of 5% (v/v) dimethyl sulfoxide were identical to those in 3% acetonitrile, which has been

used for the characterization of other retro-aldolase designs [46].
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determined. The slopes yielded catalytic efficiencies (kcat/KM) of 3.47 × 10−2 and 1.41 × 10−2

M-1s-1 for RA_MSD5 and RA_MSD7, respectively.
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