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Abstract: Traceability of milk origin in China is conducive to the implementation of the protection of
regional products. In order to distinguish milk from different geographical distances in China, we
traced the milk of eight farms in four neighboring provinces of China (Inner Mongolia autonomous
region, Hebei, Ningxia Hui autonomous and Shaanxi), and multivariate data analysis was applied to
the data including elemental analysis, stable isotope analysis and fatty acid analysis. In addition,
orthogonal partial least squares discriminant analysis (OPLS-DA) is used to determine the optimal
classification model, and it is explored whether the combination of different technologies is better
than a single technical analysis. It was confirmed that in the inter-provincial samples, the combination
of the two techniques was better than the analysis using a single technique (fatty acids: R2 = 0.716,
Q2 = 0.614; fatty acid-binding isotopes: R2 = 0.760, Q2 = 0.635). At the same time, milk produced
by farms with different distances of less than 11 km in each province was discriminated, and the
discriminant distance was successfully reduced to 0.7 km (Ningxia Hui Autonomous Region: the
distance between the two farms was 0.7 km, R2 = 0.771, Q2 = 0.631). For short-distance samples, the
combination multiple technologies are not completely superior to a single technique, and sometimes,
it is easy to cause model over-fitting.

Keywords: milk; fatty acids; isotopes; mineral elements; geographical origin; multivariate statistics

1. Introduction

With the great improvement of people’s living standard, China’s dairy farming indus-
try has also greatly developed, and has now become the third largest producer in the world.
Milk has high nutritional value, and its quality is considered to be related to the geographi-
cal location of pasture, forage, water source and other factors. Therefore, consumers pay
increasingly more attention to the origin of milk, resulting in the economic value of origin
information. Traceability of milk origin in China is conducive to the implementation of the
protection of regional products. It can also effectively prevent the spread of food safety
incidents and recall products. Therefore, the traceability of China is of high importance.
Chemical fingerprinting techniques occupy an important position among all traceability
methods due to its advantages of simple operation, accurate results and so on. Increasingly,
the traceability of milk utilizes fatty acids, stable isotopes and mineral elements to identify
the geographical origins of dairy products.

At present, many studies on the geographical origin of milk have been carried out
by isotope, mineral element and fatty acid techniques. Stable isotopes are commonly
used to characterize geographical origin information and to describe agricultural products’
origin information [1], where δ2H and δ18O can be used to distinguish altitude, δ15N can
be used to determine the type of grazing vegetation and δ13C can determine the type of
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animal feed. Thus, the stable isotope ratios can be used to distinguish milk [2–4] and dairy
products [5–7] of different areas.

Mineral elements have been widely used in the traceability of animal-derived agri-
cultural products such as beef [8], pork [9], lamb [10], poultry meat [11] and honey [12,13].
This technique is also increasingly being used to identify the types and origins of milk and
dairy products. In 2008, Benincasa et al. used 16 mineral elements in milk and buffalo
milk to distinguish two types of milk from the same pasture [14]. In 2015, Osorio et al.
determined the mineral elements in goat milk, Halloumi cheese and grazing plants in three
parts of Cyprus, which can be completely distinguished, and found some mineral elements
(Mn and Sr) with good traceability [15].

There have been a few studies on whether fatty acids can be used as potential chemical
parameters to identify milk and dairy products of different origins. It has been reported
that the proportion of fatty acids in milk produced in pastures at different latitudes varied
significantly. Among them, essential fatty acids (EFA) contents and the ratios of Conjugated
linoleic acid (CLA) and Polyunsaturated fatty acid (PUFA) in milk produced in mountain
areas were higher than those produced in indoor cows [16]. Similar conclusions have
been drawn in the study of fatty acids in milk from lowlands, mountains and highlands
in Switzerland [17]. Moreover, a study of nutrients in milk from four provinces in China
reported that the fatty acid contents were influenced by the geographical location [18].

Further studies showed that a model combining isotopes with mineral elements had a
good differentiation effect in the geographical origin of milk, and the differentiation rate
was above 90% [19–21]. This advantage has also been confirmed in the identification of the
origins of milk, dairy products and other foods, especially in the identification of the origins
of PDO foods [22–25]. In addition, in recent years, there have been studies using other
technologies, such as nuclear magnetic resonance, metabolomics, infrared spectroscopy
and elemental analysis, to analyze food origin. These studies have also shown that when
multiple analytical techniques are combined, the results are better than when using only a
single technical analysis [26–32].

To our knowledge, most of the research on the identification of milk producing areas
has been carried out in countries or regions with far-reaching distances, such as Australia
and New Zealand [1], the United States, Germany, China and France [3,4,33], or northern
and central Italy [23] and northern, northwestern and southwestern China [24]. Only a few
studies have focused on near-field production; in previous studies in our laboratory, Xie
et al. paid attention to the traceability of milk in small-scale districts of Inner Mongolia
Autonomous Region in China. It was found that a model combining all three techniques
could distinguish milk samples from 11 regions in the same province and improve the
accuracy of classification of a small-scale region tracking model [34]. However, in the study,
Xie et al. did not verify the PCA and OPLS-DA models, which may lead to over-fitting.
Although the combination of three techniques improves model accuracy, model reliability
is unknown and has an impact on subsequent traceability applications. Therefore, in this
study, we use permutation test to verify the model to ensure the reliability of the model.

In order to distinguish milk from different geographical distances in China, we traced
the milk of eight farms in four neighboring provinces of China (Inner Mongolia autonomous
region, Hebei, Ningxia Hui autonomous and Shaanxi), of which two farms in four provinces
were not more than 11 km apart. We used isotopes, mineral elements and fatty acids to
characterize milk origin information. Moreover, we used principal component analysis
(PCA) for preliminary clustering, and further used OPLS-DA to classify milk from four
provinces and distinguish milk from two farms in the province.

2. Materials and Methods
2.1. Materials

Milk samples (n = 120) were collected from eight large commercial farms in four
provinces of China (Table 1). Milk samples were divided into three parts. One was pro-
cessed according to the methods reported and used for the determination of fatty acids [18].
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Two were freeze-dried for 24 h and then pulverized. The sample was mixed with a chloro-
form/methanol (2:1, v/v) solution at 1:5, vortexed for 10 min and centrifuged at 5000 rpm
for 5 min, and the supernatant was discarded [35]. Then the previous degreasing step was
repeated twice, the supernatant was discarded, the solid was retained and lyophilized to
obtain a defatted dry matter (DDM) for the determination of stable isotopes and mineral
elements. These samples were stored at −20 °C for subsequent analysis.

Table 1. Information on dairy farms in four regions of China.

Origin Number of
Samples

Number of
Farms

Distance
between

Farms (km)

North
Latitude

East
Longitude Altitude (m) Staple Feed Species

HB 30 2 10.7 38◦ 117◦ 7 Yellow corn silage,
Alfalfa hay, straw

NMG 30 2 4.2 40◦ 111◦ 1030 Corn silage, Alfalfa
hay, Leymus chinensis

SX 30 2 2.9 34◦ 108◦ 468 Corn silage, Alfalfa
hay, straw

NX 30 2 0.7 37◦ 106◦ 1160
Corn silage, Alfalfa

hay, cottonseed,
Leymus chinensis

HB = Hebei Province; NMG = Inner Mongolia Autonomous Region; NX = Ningxia Hui Autonomous; Region; SX = Shaanxi Province.

2.2. Analytical Methods
2.2.1. Analysis of Fatty Acids

The samples were analyzed by an Agilent 7890A gas chromatograph with a flame
ionization detector. The column is an SP-2560 (100 m × 0.25 mm × 0.20 µm; Supelco
Inc., Santa Clara, CA, USA). The initial temperature is 100 ◦C, and raised by 5 ◦C min−1

to 210 ◦C, which was maintained for 25 min, then raised to 230 ◦C, which was held for
two minutes. The injector and detector temperature were maintained at 260 ◦C. In total,
32 fatty acids were measured (C4:0; C6:0; C8:0; C10:0; C11:0; C12:0; C13:0; C14:0; C14:1
cis-9; C15:0; C15:1 cis-10; C16:0; C16:1 cis-9; C17:0; C17:1 cis-10; C18:0; C18:1 trans-9; C18:1
cis-9; C18:2 cis-6; C18:3 cis-6,9,12; C18:3 cis-9,12,15; C20:0; C20:1-trans-11; C20:2-cis11,14;
C20:3-cis8,11,14; C20:3-cis11,14,17; C20:4-cis5,8,11,14; C22:0; C22:1-cis13; C22:2-cis13,16;
C24:1-cis15 and CLA).

2.2.2. Analysis of Stable Isotopes

For the stable isotope analysis of δ13C and δ15N, DDM and other international ref-
erence materials (USGS43, USGS40 and Sorghum Flour) were weighed into tin capsules
(5 × 8 mm), and then introduced into an elemental analyzer (Flash 2000, Thermo, Waltham,
MA, USA), converting the entire material into carbon dioxide and nitrogen gas analyzed by
an isotope ratio mass spectrometer (Delta V Advantage of Thermo, Waltham, MA, USA).
Two-point normalization of international standard materials was used. For the values of
δ13C, USGS40 and Sorghum Flour were used for two-point normalization, and USGS43
was used for QC. For the values of δ15N, USGS43 and USGS40 were used for two-point
normalization, and Sorghum Flour was used for QC. Blanks consisting of an empty tin
capsule were included and corrections were applied to the results.

For the stable isotope ratio analysis of δ2H and δ18O, DDM and international reference
materials (Caribou Hoof, Kudu Horn and EMA P2) were weighed into silver capsules
(4 × 6 mm) along with other international reference materials and introduced into ele-
mental analyzers (Flash 2000, Thermo, Waltham, MA, USA). The reactor packing is a
glassy carbon reactor and silver wool. The element hydrogen and oxygen in samples
were converted into H2 and CO at 1380 ◦C via pyrolysis with glass carbon. The gas was
transferred to an isotope ratio mass spectrometer (Delta V Advantage, Thermo, Waltham,
MA, USA). For the values of δ2H, Caribou Hoof and Kudu Horn were used for two-point
normalization, and EMA P2 was used for QC.
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2.2.3. Analysis of Mineral Elements

The content of the mineral elements in DDM were determined according to published
methods in our lab [36]. DDM underwent microwave digestion in a Microwave-Assisted
Reaction System (MARS) (CEM, Matthews, NC, USA). A total of 0.20 g of each sample was
accurately weighed directly into the PTFE digestion tube (15 mL) in triplicate, followed by
the addition of 10 mL 65% HNO3 (analytical grade) and 1.0 mL 30% H2O2 (analytical grade)
and digested for 40 min. After the sample digestion was complete, the objects in the PTFE
digestion tube were transferred to a 50 mL volumetric flask, diluted with ultra-pure water,
and the volume was constant to 50 mL Next, 12 elements (sodium (Na), magnesium (Mg),
potassium (K), calcium (Ca), titanium (Ti), cadmium (Cr), manganese (Mn), iron (Fe), nickel
(Ni), zinc (Zn), strontium (Sr) and molybdenum (Mo)) were determined by inductively
coupled plasma mass spectrometry (X Series 2, Thermo Fisher, Waltham, MA, USA). Three
analyses were performed for each sample and external standard analysis was performed
for quantification. All results are expressed as the average of three measurements.

2.3. Data Processing

Multivariate statistical analysis (PCA, OPLS-DA and Permutation test) was performed
on all data using SIMCA 14.1.0 software (Umetrics, Umea, Sweden). The raw data were
scaled using unit variance (UV-scale), and analyzed using supervised OPLS-DA, which
was used to obtain the classifying model and synchronously extract the variables with
important contributions to the classification. Permutation tests were used to assess the
reliability of the model.

3. Results and Discuss
3.1. Multivariate Statistical Analysis
3.1.1. Identification of Milk Produced in Four Provinces
PCA Results

PCA is used to reduce the dimension of high dimensional variable space under the
principle of minimum data information loss. These comprehensive indexes are called main
components. The principal component will retain as much information as possible about
the variation of the original index. In the preliminary study, single or multiple chemical
parameter data (fatty acids, stable isotopes and mineral elements) were analyzed by PCA to
study any possible milk clustering based on origin. PCA results (Supplementary Materials
Figure S1A,B) showed that there was no obvious grouping in the score plots for inter-
provincial samples, whether a single chemical parameter or the analysis with a combination
of chemical parameters; however, other PCA models had no obvious classification. Thus,
we consider conducting a supervised OPLS-DA of the data to improve the classification
of samples.

OPLS-DA Results

A slight sign of classification was observed on the PCA score plot. Next, a supervised
discriminant analysis of milk samples between four provinces was carried out using OPLS-
DA. Moreover, we used the measure of fit of the model (R2) and the measure of predictive
ability of the model (Q2) to evaluate the models.

There are three OPLS-DA score plots of mineral elements, isotopes, fatty acids and
a combination of the best and no over-fitting in Figure 1. Four groups of milk data
were analyzed by OPLS-DA. It was found that the results of the isotope and mineral
element chemical parameter analysis showed no signs of classification in the score plot
(Figure 1A,B). However, to our surprise, the fatty acid chemical parameter analysis showed
good classification on the score plot (Figure 1C). As Figure 1C shows, Ningxia and Inner
Mongolia were the most distinguished, followed by Hebei and Inner Mongolia and finally
Ningxia and Shaanxi. This was because the fatty acid content and composition are affected
by dairy cow breeds, feed and environmental factors such as altitude. Larsen et al. investi-
gated the influence of regional climatic conditions on milk composition, especially fatty
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acid composition, and the result shows that the content of short-chain fatty acid (C4-C14),
C18:0 and C18:3 n-3 are higher in central Sweden than in southern Sweden and that this
is most likely because maize growing is limited to southern Sweden [37]. Thus, environ-
mental factors affect the fatty acid content and composition in milk by affecting local plant
types. Staple feed species differences (Table 1) may be the main cause of milk differences in
four provinces, even more important than geographical factors. Moreover, some studies
have shown that lactation also affects the fatty acid composition of milk [18,38]. Among
the single techniques, the fatty acid model had the best predictive ability (Figure 1A–C). To
sum up, each region in this study had a characteristic fatty acid content fingerprint and
that the fatty acid chemical parameter analysis was more effective than the mineral element
and isotope analysis at identifying the milk samples in the four provinces.
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Figure 1. OPLS-DA score plots of inter-provincial samples obtained by a chemical analysis of: (A) Mineral elements;
(B) Isotopes; (C) Fatty acids; (D) Fatty acids combined with isotopes.

As shown in Table 2, the R2 of the isotope analysis, mineral element chemical parame-
ter analysis and the combination of the two was less than 0.03, and the fitting degree of the
model was extremely low, while the corresponding Q2 was negative, which indicates that
the prediction ability of the models is not good [39]. Except these three models (isotopes,
mineral elements, isotopes + mineral elements), the fitting degree of other models was more
than 71.60%, and the prediction ability of other models was more than 56.00%. It meant
that these regression models are good. Among the single techniques, the fatty acid model
had the well predictive ability (R2 = 0.716, Q2 = 0.614). Among the binding technologies,
fatty acid technology is helpful to improve the model prediction ability, and the binding
technologies including fatty acids have better model prediction ability (fatty acid and
mineral element technologies: R2 = 0.717, Q2 = 0.560; fatty acid and isotope technologies:
R2 = 0.760, Q2 = 0.635; three technologies: R2 = 0.754, Q2 = 0.581). This indicated that fatty
acid chemical parameters play a major role in classification, while mineral element and
isotope chemical parameters are less important for classification. The results show that it is
the best that the fit and prediction ability of the model combines the fatty acid with isotope
technologies (R2 = 0.760, Q2 = 0.635) in four provinces, even better than that of the three
technologies (R2 = 0.754, Q2 = 0.581). Similar conclusions have been reported before [40].
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When R2 and Q2 of each model are close to each other, we prefer to choose a combination
of multiple technologies. To sum up, we chose the model combining the fatty acid and
isotope chemical parameters as the best classification model for the milk samples from the
four provinces. The classification between the provinces is consistent with the results of
the K-fold cross validation (Supplementary Materials Table S1).

Table 2. Characteristics and evaluations of the OPLS-DA models for the inter-provincial milk samples.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.716 0.004 0.011 0.015 0.717 0.760 0.754

Q2 0.614 −0.043 −0.109 −0.088 0.560 0.635 0.581

y-intercepts of R2 0.112 0.031 0.061 0.045 0.179 0.143 0.211

y-intercepts of Q2 −0.289 −0.035 −0.614 −0.054 −0.339 −0.348 −0.417

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of the predictive ability
of the model.

3.1.2. Identification of Milk Produced by Two Farms in the Same Province

We observed that milk samples at provincial geographic distances were differentiated
significantly, so we will study the differentiation of milk samples within a smaller range.
We suppose that the above methods can be used to identify the milk produced by two
farms in the same province at a short distance. The analytical method used was the same
as that of milk samples from different provinces.

PCA Analysis

For samples from two farms in Hebei, the PCA model of the isotope chemical pa-
rameter was completely divided into two categories (Supplementary Materials Figure
S1C). However, no matter the other single chemical parameters or the combination of
multiple chemical parameters, the score plots showed some trends of separation, though
it was not completely separated. For two farm samples in Inner Mongolia and Shaanxi
(Supplementary Materials Figure S1D,F), all PCA models showed a separation trend, but
they were not completely separated. For two farm samples in Ningxia (Supplementary
Materials Figure S1E), almost all milk samples in the model overlapped, and there was no
classification trend. The above classification can be explained by the geographical distance
of the two farms in the province (Table 1). The farther the geographical distance in the same
province, the more obvious the classification of the samples; the closer the geographical
distance in the same province, the less obvious the classification of the samples.

OPLS-DA Analysis

By using OPLS-DA, a good distinction between short-distance milk in the province
was obtained. There are three OPLS-DA score plots of mineral elements, isotopes, fatty
acids and a combination of the best and no over-fitting in Figure 2. From OPLS-DA score
plots of Hebei samples, single chemical parameters or a combination of multiple chemical
parameters could be used to separate the samples from the two farms in Hebei. In the
mineral element and fatty acid chemical parameter model, there were some points that were
confused, which affected the classification; however, the models of the isotope chemical
parameter and the combination of isotopes and other chemical parameters were well
classified. Among the single techniques, the isotope model had the well predictive ability
(R2 = 0.907, Q2 = 0.876). Among the binding technologies, isotope technology is helpful to
improve the model prediction ability, and the binding technologies including fatty acids
have better model prediction ability (mineral element and isotope technologies: R2 = 0.857,
Q2 = 0.678; fatty acid and isotope technologies: R2 = 0.920, Q2 = 0.814; three technologies:
R2 = 0.891, Q2 = 0.707). This indicates that isotope chemical parameters play a major role
in classification, while mineral element and fatty acid parameters are less important for
classification. Milk samples from two dairy farms in Hebei were fingerprinted with isotope
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content, which is due to the geographical specificity of the isotopes in the local plants and
water. The value of δ13C in plants are affected by factors such as the type of plants, light,
atmospheric CO2 concentration, temperature, air pollution and soil moisture, salinity and
nutritional status, showing geographical differentiation; the value of δ15N in plants are
influenced by parent material, soil types, topography, land use patterns and fertilization,
showing geographical differentiation; the value of δ2H and δ18O of plants are related to the
latitude, altitude and distance from the sea, showing geographical differentiation; the value
of δ2H and δ18O of water content is affected by climate, season and precipitation, showing
geographical differentiation [41–43]. Geographical differences in isotopes in plants and
water are transferred to animals with breeding, distinguishing milk samples of different
origin by determining the isotopes. As shown in Table 3, the Q2 of the mineral element and
fatty acid chemical parameter analysis and the combination of the two were less than 0.500,
which indicates that the prediction ability of the models is not good. Except these three
models, the fitting degree of the other models was more than 85.70%, and the prediction
ability of other models was more than 67.80%. This model combines fatty acidwith isotope
chemical parameters (R2 = 0.920, Q2 = 0.814), proving to be the best classification model
for milk samples in Hebei. The classification in Hebei is consistent with the results of the
K-fold cross validation (Supplementary Materials Table S1).
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Figure 2. OPLS-DA score plots of Hebei samples obtained by the chemical analysis of: (A) Mineral elements; (B) Isotopes;
(C) Fatty acids; (D) Fatty acids combined with isotopes.

Table 3. Characteristics of OPLS-DA models of milk in Hebei province.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.755 0.907 0.562 0.857 0.768 0.920 0.891

Q2 0.469 0.876 −0.455 0.678 0.394 0.814 0.707

y-intercepts of R2 0.269 −0.020 0.170 0.281 0.374 0.315 0.396

y-intercepts of Q2 −0.884 −0.323 −0.182 −0.723 −0.819 −0.882 −0.826

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of predictive ability of
the model.
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There are three OPLS-DA score plots of mineral elements, isotopes, fatty acids and a
combination of the best and no over-fitting in Figure 3. For two farms samples in Inner
Mongolia, among the single-index models, the fatty acid model was the best at separating
the samples. Compared with the models in Hebei, the mineral element model in Inner
Mongolia confused more points, and there were a few points in the isotope model that were
not distinguished. This is probably because the geographical distance between the two
dairy farms narrowed from 10.7 km to 4.2 km. After combining more methods, the samples
were completely separated. Among them, the model that combines all three chemical
parameters further aggregated the sample points. As shown in Figure 3, each farm had a
characteristic fatty acid content fingerprint and the fatty acid chemical parameter analysis
was more effective than the mineral element and isotope analysis at identifying the milk
samples in Inner Mongolia. For two farms samples in Inner Mongolia (Table 4), the model
that combines all three chemical parameters showed the best fit and prediction ability
(R2 = 0.985, Q2 = 0.910), but its y-intercepts of R2 was more than 0.40, which indicates
that the model shows over-fitting. Thus, the model combining the fatty acid and isotope
chemical parameters (R2 = 0.954, Q2 = 0.879) was determined as the best classification model
for milk samples in Inner Mongolia. The classification in Inner Mongolia is consistent with
the results of the K-fold cross validation (Supplementary Materials Table S1).
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Figure 3. OPLS-DA score plots of Inner Mongolia samples obtained by a chemical analysis of: (A) Mineral elements; (B)
Isotopes; (C) Fatty acids; (D) Fatty acids combined with isotopes.

Table 4. Characteristics of OPLS-DA models of milk in the Inner Mongolia autonomous region.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.919 0.599 0.410 0.763 0.955 0.954 0.985

Q2 0.876 0.530 −0.243 0.432 0.813 0.879 0.910

y-intercepts of R2 0.233 0.057 0.265 0.353 0.559 0.388 0.677

y-intercepts of Q2 −0.680 −0.306 −0.339 −0.718 −1.130 −1.060 −1.560

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of predictive ability of
the model.
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There are three OPLS-DA score plots of mineral elements, isotopes, fatty acids and a
combination of the best and no over-fitting in Figure 4. For two farms samples in Shaanxi,
among the single-index models, the fatty acid model was the best at separating the samples
and the fatty acid and fatty acid-bound isotope models showed excellent separation abilities.
The fitting degree of the fatty acid and fatty acids-binding isotope models of the samples in
Shaanxi (Table 5) was 91.9% and 95.3%, respectively, and the prediction ability was 68.4%
and 70.9%, respectively. However, the y-intercepts of R2 of the fatty acid-binding isotope
model was more than 0.40, which indicates that the model shows over-fitting. For the other
models, there were some easily confused sampling points. As shown in Figure 4, each farm
had a characteristic fatty acid content fingerprint and the fatty acid chemical parameter
analysis was more effective than the mineral element and isotope analysis at identifying
the milk samples in Inner Mongolia. For the two farms samples from Shaanxi (Table 5),
the model of fatty acid chemical parameters was the best classification model (R2 = 0.919,
Q2 = 0.684). The classification in Shaanxi is consistent with the results of the K-fold cross
validation (Supplementary Materials Table S1).
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Figure 4. OPLS-DA score plots of the Shaanxi samples obtained by a chemical analysis of: (A) Mineral elements; (B)
Isotopes; (C) Fatty acids; (D) a combination of three chemical parameters.

Table 5. Characteristics of OPLS-DA models of milk in Shaanxi province.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.919 0.673 0.773 0.725 0.810 0.953 0.839

Q2 0.684 0.548 0.602 0.688 0.685 0.709 0.721

y-intercepts of R2 0.371 0.058 0.134 0.035 0.240 0.417 0.301

y-intercepts of Q2 −0.873 −0.300 −0.321 −0.303 −0.557 −1.020 −0.563

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of predictive ability of
the model.
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As shown in Figure 5, there are a total of four OPLS-DA scores, of which three are
of mineral elements, isotopes and fatty acids parameter models, and the remaining one
is a combined parameter model with the best differentiation and no over-fitting..For two
farm samples in Nngxia, among the single technology models, the fatty acid and mineral
element models had very good predictive ability for milksamples, but their separation
abilities were far less effective than in the other three provinces (Figures 2–4), because the
geographical distance between the two dairy farms in Ningxia narrowed to 0.7 km. For
the isotope model, there were no differentiation trends. For two farms samples in Ningxia
(Table 6), only the models of fatty acid-bound element minerals (R2 = 0.771, Q2 = 0.631)
showed great separation abilities. The classification in Ningxia is consistent with the results
of the K-fold cross validation (Supplementary Materials Table S1).
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Figure 5. OPLS-DA score plots of the Ningxia samples obtained by a chemical analysis of: (A) Mineral elements; (B)
Isotopes; (C) Fatty acids; (D) Fatty acids combined with mineral elements.

Table 6. Characteristics of OPLS-DA models of milk in the Ningxia Hui autonomous region.

Index FA ISO ME ISO/ME FA/ME FA/ISO FA/ISO/ME

R2 0.630 0.310 0.654 0.474 0.771 0.557 0.777

Q2 0.434 −0.601 0.407 0.416 0.631 0.393 0.596

y-intercepts of R2 0.139 0.011 0.176 0.137 0.328 0.232 0.434

y-intercepts of Q2 −0.833 −0.217 −0.393 −0.257 −0.704 −0.453 −0.666

FA = Fatty acid; ISO = Isotope; ME = Mineral elements; R2 = the measure of the fit of the model; Q2 = the measure of predictive ability of
the model.

3.1.3. Validation of the OPLS-DA Model

Generally, when using this type of supervised analysis, there is a risk of over-fitting
the data. Therefore, validation is crucial to verify the reliability of the model. In order to
check whether the model is over-fitting, we performed the permutation test. When using
the permutation test, the order of the y-variable randomly permutes the specified number
200 times, and separate models are fitted to all the permuted y-variables. Then, the original
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y-variable and the permuted y-variable draw a regression line. Interception is a measure of
over-fitting. Desirable values of y-intercepts should be less than 0.40 for R2 intercept and
less than 0.05 for Q2 intercept, respectively [44], indicating that the model is effective and
there is no over-fitting. The model test results are included in each table (Tables 2–6).

We found that the classification models, considered good in the previous section,
showed over-fitting. In the identification of inter-provincial samples, the fatty acid and fatty
acid-binding isotope models (y-intercepts of R2 = 0.143, y-intercepts of Q2 = −0.348) are
applicable. Thus, we still chose the model combining the fatty acid and isotope chemical
parameters as the best classification model for the milk samples from four provinces.
Similarly, in the two farms samples in the same province, we chose the isotope-bound
fatty acid model as the discriminant model for the Hebei and Inner Mongolia samples, the
fatty acid chemical parameter was selected as the discriminant model for Shaanxi and the
model combining fatty acid with mineral element chemical parameters was chosen as the
discriminant model for Ningxia.

4. Conclusions

The above research shows that multivariate statistical analysis combined with chemical
parameter analysis (fatty acids, isotopes and mineral elements) can distinguish milk from
different geographical distances in China. The fatty acid-binding isotope model is the
best for the classification of milk samples between provinces (R2 = 0.760, Q2 = 0.635).
Moreover, the model combining fatty acid with isotope chemical parameters was the best
classification model for milk samples within Hebei (R2 = 0.920, Q2 = 0.814) and Inner
Mongolia (R2 = 0.954, Q2 = 0.879); the models of the fatty acid chemical parameter showed
great separation abilities for milk samples in Shaanxi (R2 = 0.919, Q2 = 0.684); and the
model combining fatty acid with element minerals chemical parameters showed the best
separation abilities for two farms samples in Ningxia (R2 = 0.771, Q2 = 0.631). In this study,
traceability technology reduced the geographical distance of identified milk samples to
0.7 km. Among the five OPLS-DA models of two farms in four provinces and within the
provinces, the fatty acid chemical parameter analysis was more effective than the mineral
element and isotope analysis at identifying the milk samples. In addition, we found that
when the sample origin distance is relatively long, the combination of the two techniques is
better than the analysis using a single technique, but using the three techniques together is
not superior to the combination of two technologies or a single technique, and sometimes
weakens the robustness of the model. When the sample origin distance is relatively close,
the combination of various technologies is not always better than a single technique, and
sometimes, it can easily cause model over-fitting. These findings may be used to improve
the milk traceability in China. In a future study, we will collect unknown milk samples to
verify the OPLS-DA model and judge the effect of its practical application.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10051119/s1, Figure S1: PCA score plots for each technical model: (A, B) Isotope
model and isotope-binding fatty acid model for interprovincial samples; (C–F) Isotope-bound fatty
acid models of provincial samples, Table S1: Accuracy of OPLS-DA models for milk discrimination
between provinces and within the same provinces.

Author Contributions: Conceptualization, Y.Z., G.C., A.C. and S.Y.; formal analysis, R.Z. and M.S.;
resources, Y.Z.; visualization, M.S.; writing—original draft preparation, R.Z. and M.S.; writing—
review and editing, R.Z. and Y.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
32072314).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article or Supplementary Materials.

https://www.mdpi.com/article/10.3390/foods10051119/s1
https://www.mdpi.com/article/10.3390/foods10051119/s1


Foods 2021, 10, 1119 12 of 13

Acknowledgments: The authors are very grateful to the National Natural Science Foundation of
China for funding this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Crittenden, R.G.; Andrew, A.S.; LeFournour, M.; Young, M.D.; Middleton, H.; Stockmann, R. Determining the geographic origin

of milk in Australasia using multi-element stable isotope ratio analysis. Int. Dairy J. 2007, 17, 421–428. [CrossRef]
2. Chesson, L.A.; Valenzuela, L.O.; O’Grady, S.P.; Cerling, T.E.; Ehleringer, J.R. Hydrogen and Oxygen Stable Isotope Ratios of Milk

in the United States. J. Agric. Food Chem. 2010, 58, 2358–2363. [CrossRef] [PubMed]
3. Luo, D.H.; Dong, H.; Luo, H.Y.; Xian, Y.P.; Guo, X.D.; Wu, Y.L. Multi-Element (C, N, H, O) Stable Isotope Ratio Analysis for

Determining the Geographical Origin of Pure Milk from Different Regions. Food Anal. Methods 2015, 9, 437–442. [CrossRef]
4. Dong, H.; Xiao, K.; Luo, D. Stability of carbon and nitrogen isotopic compositions of the protein extracted from milk and their

potential as “fingerprints” of geographical origin. RSC Adv. 2017, 7, 18946–18952. [CrossRef]
5. Brescia, M.A.; Monfreda, M.; Buccolieri, A.; Carrino, C. Characterisation of the geographical origin of buffalo milk and mozzarella

cheese by means of analytical and spectroscopic determinations. Food Chem. 2005, 89, 139–147. [CrossRef]
6. Manca, G.; Franco, M.A.; Versini, G.; Camin, F.; Rossmann, A.; Tola, A. Correlation between multielement stable isotope ratio and

geographical origin in Peretta cows’ milk cheese. J. Dairy Sci. 2006, 89, 831–839. [CrossRef]
7. Bontempo, L.; Lombardi, G.; Paoletti, R.; Ziller, L.; Camin, F. H, C, N and O stable isotope characteristics of alpine forage, milk

and cheese. Int. Dairy J. 2012, 23, 99–104. [CrossRef]
8. Franke, B.M.; Haldimann, M.; Gremaud, G.; Bosset, J.O.; Hadorn, R.; Kreuzer, M. Element signature analysis: Its validation as

a tool for geographic authentication of the origin of dried beef and poultry meat. Eur. Food Res. Technol. 2008, 227, 701–708.
[CrossRef]

9. Kim, J.S.; Hwang, I.M.; Lee, G.H.; Park, Y.M.; Choi, J.Y.; Jamila, N.; Khan, N.; Kim, K.S. Geographical origin authentication of
pork using multi-element and multivariate data analyses. Meat Sci. 2017, 123, 13–20. [CrossRef]

10. Sun, S.M.; Guo, B.L.; Wei, Y.M.; Fang, M.T. Geographical origin traceability of lamb based on mineral element fingerprints. Trans.
Chin. Soc. Agric. Eng. 2012, 28, 237–243.

11. Bai, T.; Cai, H.Y.; Deng, Y.H.; Xu, X.F.; Zhang, G.J.; Zhou, Y.; Sun, Q. Study on origin of HeiShui Phoenix chicken based on trace
element fingerprint. China Meas. Test. 2018, 44, 57–62, 74.

12. Silva, B.; Gonzaga, L.V.; Maltez, H.F.; Samochvalov, K.B.; Fett, R.; Costa, A.C.O. Elemental profiling by ICP-MS as a tool for
geographical discrimination: The case of bracatinga honeydew honey. J. Food Compos. Anal. 2021, 96, 103727. [CrossRef]

13. Bontempo, L.; Camin, F.; Ziller, L.; Perini, M.; Nicolini, G.; Larcher, R. Isotopic and elemental composition of selected types of
Italian honey. Measurement 2017, 98, 283–289. [CrossRef]

14. Benincasa, C.; Lewis, J.; Sindona, G.; Tagarelli, A. The use of multi element profiling to differentiate between cow and buffalo
milk. Food Chem. 2008, 110, 257–262. [CrossRef] [PubMed]

15. Osorio, M.T.; Koidis, A.; Papademas, P. Major and trace elements in milk and Halloumi cheese as markers for authentication of
goat feeding regimes and geographical origin. Int. J. Dairy Technol. 2015, 68, 573–581. [CrossRef]

16. Kraft, J.; Collomb, M.; Mockel, P.; Sieber, R.; Jahreis, G. Differences in CLA isomer distribution of cow’s milk lipids. Lipids 2003,
38, 657–664. [CrossRef]

17. Collomb, M.; Butikofer, U.; Sieber, R.; Jeangros, B.; Bosset, J.O. Correlation between fatty acids in cows’ milk fat produced in the
Lowlands, Mountains and Highlands of Switzerland and botanical composition of the fodder. Int. Dairy J. 2002, 12, 661–666.
[CrossRef]

18. Liang, K.H.; Zhao, Y.; Han, J.; Liu, P.; Qiu, J.; Zhu, D.Z.; Qin, Y.C.; Lu, L.G.; Wang, X.H. Fatty acid composition, vitamin A content
and oxidative stability of milk in China. J. Appl. Anim. Res. 2018, 46, 566–571. [CrossRef]

19. Magdas, D.A.; Dehelean, A.; Feher, I.; Cristea, G.; Puscas, R.; Dan, S.D.; Cordea, D.V. Discrimination markers for the geographical
and species origin of raw milk within Romania. Int. Dairy J. 2016, 61, 135–141. [CrossRef]
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28. Jandrić, Z.; Frew, R.D.; Fernandez-Cedi, L.N.; Cannavan, A. An investigative study on discrimination of honey of various floral
and geographical origins using UPLC-QToF MS and multivariate data analysis. Food Control 2017, 72, 189–197. [CrossRef]

29. Circi, S.; Ingallina, C.; Vista, S.; Capitani, D.; Di Vecchia, A.; Leonardi, G.; D’Achille, G.; Centauri, L.; Camin, F.; Mannina, L. A
Multi-Methodological Protocol to Characterize PDO Olive Oils. Metabolites 2018, 8, 43. [CrossRef] [PubMed]

30. Perini, M.; Nardin, T.; Camin, F.; Malacarne, M.; Larcher, R. Combination of sugar and stable isotopes analyses to detect the use
of nongrape sugars in balsamic vinegar must. J. Mass Spectrom. 2018, 53, 772–780. [CrossRef] [PubMed]

31. Perini, M.; Paolini, M.; Camin, F.; Appendino, G.; Vitulo, F.; De Combarieu, E.; Sardone, N.; Martinelli, E.M.; Pace, R. Combined
use of isotopic fingerprint and metabolomics analysis for the authentication of saw palmetto (Serenoa repens) extracts. Fitoterapia
2018, 127, 15–19. [CrossRef] [PubMed]

32. Yao, S.; Li, J.Q.; Li, T.; Duan, Z.L.; Wang, Y.Z. Geographical traceability of Boletaceae mushrooms using data fusion of FT-IR, UV,
and ICP-AES combined with SVM. Int. J. Food Prop. 2019, 22, 414–426. [CrossRef]

33. Ehtesham, E.; Baisden, W.T.; Keller, E.D.; Hayman, A.R.; Van Hale, R.; Frew, R.D. Correlation between precipitation and
geographical location of the δ2H values of the fatty acids in milk and bulk milk powder. Geochim. Cosmochim. Acta 2013, 111,
105–116. [CrossRef]

34. Xie, L.N.; Zhao, S.S.; Rogers, K.M.; Xia, Y.N.; Zhang, B.; Suo, R.; Zhao, Y. A case of milk traceability in small-scale districts-Inner
Mongolia of China by nutritional and geographical parameters. Food Chem. 2020, 316, 126332. [CrossRef]

35. Zhao, S.S.; Zhang, H.B.; Zhang, B.; Xu, Z.Z.; Chen, A.L.; Zhao, Y. A rapid sample preparation method for the analysis of stable
isotope ratios of beef samples from different countries. Rapid Commun. Mass Spectrom. 2020, 34, e8795. [CrossRef] [PubMed]

36. Zhao, Y.; Zhang, B.; Chen, G.; Chen, A.L.; Yang, S.M.; Ye, Z.H. Tracing the Geographic Origin of Beef in China on the Basis of the
Combination of Stable Isotopes and Multielement Analysis. J. Agric. Food Chem. 2013, 61, 7055–7060. [CrossRef]

37. Larsen, M.K.; Nielsen, J.H.; Butler, G.; Leifert, C.; Slots, T.; Kristiansen, G.H.; Gustafsson, A.H. Milk quality as affected by feeding
regimens in a country with climatic variation. J. Dairy Sci. 2010, 93, 2863–2873. [CrossRef]

38. Kgwatalala, P.M.; Ibeagha-Awemu, E.M.; Mustafa, A.F.; Zhao, X. Influence of stearoyl-coenzyme a desaturase 1 genotype and
stage of lactation on fatty acid composition of Canadian Jersey cows. J. Dairy Sci. 2009, 92, 1220–1228. [CrossRef]

39. Triba, M.N.; Le Moyec, L.; Amathieu, R.; Goossens, C.; Bouchemal, N.; Nahon, P.; Rutledge, D.N.; Savarin, P. PLS/OPLS models
in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. Biosyst.
2015, 11, 13–19. [CrossRef]

40. Jandric, Z.; Haughey, S.A.; Frew, R.D.; McComb, K.; Galvin-King, P.; Elliott, C.T.; Cannavan, A. Discrimination of honey of
different floral origins by a combination of various chemical parameters. Food Chem. 2015, 189, 52–59. [CrossRef]

41. Franke, B.M.; Gremaud, G.; Hadorn, R.; Kreuzer, M. Geographic origin of meat—elements of an analytical approach to its
authentication. Eur. Food Res. Technol. 2005, 221, 493–503. [CrossRef]

42. Monahan, F.J.; Schmidt, O.; Moloney, A.P. Meat provenance: Authentication of geographical origin and dietary background of
meat. Meat Sci. 2018, 144, 2–14. [CrossRef] [PubMed]

43. Zhao, R.T.; Yang, S.M.; Zhao, Y. Research progress in traceability of agricultural products using stable isotope. J. Nucl. Agric. Sci.
2020, 34 (Suppl. S1), 120–128.

44. Belmonte-Sanchez, J.R.; Romero-Gonzalez, R.; Arrebola, F.J.; Vidal, J.L.M.; Garrido Frenich, A. An innovative metabolomic
approach for Golden Rum classification combining ultrahigh-performance liquid chromatography-orbitrap mass spectrometry
and chemometric Strategies. J. Agric. Food Chem. 2019, 67, 1302–1311. [CrossRef] [PubMed]

http://doi.org/10.1016/j.meatsci.2020.108129
http://doi.org/10.1016/j.foodchem.2003.08.021
http://doi.org/10.1016/j.foodchem.2015.08.132
http://doi.org/10.1016/j.foodcont.2015.10.010
http://doi.org/10.3390/metabo8030043
http://www.ncbi.nlm.nih.gov/pubmed/30060576
http://doi.org/10.1002/jms.4211
http://www.ncbi.nlm.nih.gov/pubmed/29906303
http://doi.org/10.1016/j.fitote.2018.04.011
http://www.ncbi.nlm.nih.gov/pubmed/29689331
http://doi.org/10.1080/10942912.2019.1588299
http://doi.org/10.1016/j.gca.2012.10.026
http://doi.org/10.1016/j.foodchem.2020.126332
http://doi.org/10.1002/rcm.8795
http://www.ncbi.nlm.nih.gov/pubmed/32220138
http://doi.org/10.1021/jf400947y
http://doi.org/10.3168/jds.2009-2953
http://doi.org/10.3168/jds.2008-1471
http://doi.org/10.1039/C4MB00414K
http://doi.org/10.1016/j.foodchem.2014.11.165
http://doi.org/10.1007/s00217-005-1158-8
http://doi.org/10.1016/j.meatsci.2018.05.008
http://www.ncbi.nlm.nih.gov/pubmed/29859716
http://doi.org/10.1021/acs.jafc.8b05622
http://www.ncbi.nlm.nih.gov/pubmed/30618256

	Introduction 
	Materials and Methods 
	Materials 
	Analytical Methods 
	Analysis of Fatty Acids 
	Analysis of Stable Isotopes 
	Analysis of Mineral Elements 

	Data Processing 

	Results and Discuss 
	Multivariate Statistical Analysis 
	Identification of Milk Produced in Four Provinces 
	Identification of Milk Produced by Two Farms in the Same Province 
	Validation of the OPLS-DA Model 


	Conclusions 
	References

