
Aberrant maturation and connectivity of prefrontal cortex in 
schizophrenia – contribution of NMDA receptor development 
and hypofunction

Wen-Jun Gao*, Sha-Sha Yang, Nancy R. Mack, Linda A. Chamberlin
Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, 
PA 19129, USA

Abstract

The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its 

genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural 

circuits. Although the precise mechanisms associated with the neuropathophysiology remain 

elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex 

that leads to complex symptoms in various stages of the disease. Here, we focus on how early 

developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and 

hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex 

and its long-range connectivity. More specifically, we will focus on an “all roads lead to Rome” 

hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and 

leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in 

the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding 

questions and hypothetical mechanisms are listed for future investigations of this intriguing 

hypothesis that may lead to a better understanding of the aberrant maturation and connectivity 

associated with the prefrontal cortex.
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I. Introduction

Schizophrenia (SZ) is a neurodevelopmental disorder with both cognitive and social deficits 

that are resistant to current therapies. To improve the treatment of these impairments, 
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it is essential to clarify the pathophysiological processes underlying the progression of 

SZ. A large body of evidence indicates a dysfunctional local circuitry, particularly gamma-

aminobutyric acid (GABA)ergic deficits within the prefrontal cortex (PFC) 1 and its 

connections with other brain regions, especially those related to the limbic systems 2. 

Over the last two decades, numerous neurophysiological (EEG, electroencephalogram) and 

neuroimaging (fMRI, functional magnetic resonance imaging) studies of patients with SZ 

have provided strong evidence for both aberrant local prefrontal network activity and brain-

wide dysconnectivity, i.e., abnormal functional integration of information processes in the 

PFC and the brain 3–10. While the evidence for dysconnectivity in SZ is strong 9, 11–13, its 

etiology is complicated, and its mechanisms and significance for clinical symptoms remain 

subject to debate 9, 14–16. Nevertheless, in the past two decades, the framework of the 

dysconnectivity hypothesis has led to significant progress in the field. This dysconnectivity 

theory hypothesizes that the core neuropathology in SZ is aberrant N-methyl-D-aspartate 

receptor (NMDAR)-mediated synaptic plasticity and abnormal neuromodulation of NMDAR 

expression and function by disrupted neuromodulatory transmitters such as dopamine, 

serotonin, and acetylcholine 9, 14, 17, 18. Undeniably, we agree that NMDAR hypofunction is 

a critical player and a convergence point of the neuropathophysiology of SZ, especially for 

cognitive and social deficits 19.

However, here we argue against the causal role of neuromodulatory transmitters (such as 

dopamine, etc.) in the induction of NMDAR hypofunction. On the contrary, based on recent 

evidence, we hypothesize that NMDAR hypofunction occurs first 20, which in turn causes 

dysfunctional GABAergic circuitry locally within the PFC and disruptions to the incoming 

and outgoing connections with other brain regions, including neuromodulatory systems 21. 

We agree that this claim remains in debate as substantial literature showing that dopamine 

and/or other monoamine systems play essential roles in the prefrontal function and synaptic 

plasticity in both animals and humans 22, 23. However, evidence from clinical 22, 23 and 

pre-clinical 15, 16, 24–28 studies supports that the hypothesis NMDA hypofunction occurs 

earlier during or before juvenile period 19, 29 compared to the dopamine dysfunction a later 

stage of adolescence. This raises questions about the sequential changes or logical causal 

role of NMDAR vs. dopamine hypothesis. More studies on the causal roles of dopamine 

dysfunction in the disconnected network during earlier periods are needed.

The resulting GABA deficiency and subsequent dopamine/serotonin dysfunction lead to 

progressive symptoms, including cognitive and social function impairments and psychosis. 

Indeed, current antipsychotic medications that target the dopaminergic system demonstrate 

minimal therapeutic efficacy in treating cognitive and social deficits in SZ 30. In contrast, 

targeting NMDAR dysfunction during early disease stages appears to be a promising avenue 

for prevention and therapeutic intervention for cognitive and social deficits in various animal 

models, including the NMDAR antagonist MK-801 model, for SZ 31–33.

Mechanistically, how these two major hypotheses, NMDAR hypofunction and local/long-

range dysconnectivity, are initiated and reconciled remains unexplored. A large body of 

evidence from both animal models and human studies implicates dysfunction of NMDARs 

in disease development and symptom manifestation of SZ 34–44. Recent studies, including 

ours, have suggested that NMDAR hypofunction is likely a convergence point that occurs 
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during the early stage of the disease. This may consequentially initiate GABA deficits 
19, 20, 41, 45, leading to aberrant local circuitry and long-range disconnections among 

different brain regions, including dopamine systems 22, 46, thereby accounting for key 

clinical features of SZ.

The PFC must precisely filter essential information from the numerous signals it receives 

from cortical and subcortical brain regions to perform the executive function. Local 

GABAergic interneurons (INs) are critical for gating incoming information to excitatory 

neurons 47. Additionally, long-range inputs drive inhibitory neurons to maintain the E/I 

balance within the prefrontal circuits 48, 49. The currently limited evidence suggests 

that distinct afferents may have unique NMDAR subunit compositions with differential 

functional roles for connectivity during development 50, 51. It is therefore vital to understand 

how PFC pyramidal neurons and different IN subtypes are modulated in unique ways across 

development by distinct afferent inputs from major upstream regulatory centers, including 

the mediodorsal thalamus (MD) and other thalamic nuclei, as well as other inputs from the 

limbic systems such as the ventral hippocampus (vHipp) and basolateral amygdala.

In this review, we focus on recent literature, especially the progress made within the 

past ten years, to present 1) clinical evidence of dysconnectivity; 2) the role of NMDAR 

hypofunction in aberrant local PFC circuitry and long-range dysconnectivity; 3) MD-

PFC dysconnectivity and interneuron subtype specificity in SZ; 4) reconciling NMDAR 

hypofunction with local circuit and global dysconnectivity; and 5) outstanding questions and 

future perspectives.

II. Clinical evidence of brain-wide dysconnectivity

Since the dysconnection hypothesis for SZ was introduced more than 20 years ago 
11, 12, 52, neuroscience has witnessed tremendous advances. The evidence for a systemic 

dysfunctional integration and connectivity is overwhelming, and now it is widely accepted 

that SZ is characterized by large-scale cortical (e.g., thalamocortical and corticocortical) 

dysconnectivity compared with healthy individuals 5, 9, 14. These findings involve the PFC 

and key subcortical and associative cortical regions mostly related to the limbic systems 
3–5, 7, 9, 14, 53–55. Combined with the clinical findings, recent modeling of intrinsic and 

extrinsic connectivity also suggests a specific failure of intrinsic gain regulation within the 

PFC or modulation of synaptic efficacy in hierarchically subordinate structures 4, 7, 56, which 

supports the hypothesis of failures in self-monitoring or homeostatic plasticity proposed by 

Friton and colleagues 9, 14. Based on these clinical measurements and modeling, Yang 

et al. proposed that functional cortical hierarchy between the association and sensory 

regions underlies preferential network connectivity disturbances in associative vs. primary 

sensory (e.g., visual and auditory) cortices 56, and even widespread early-stage prefrontal 

hyperconnectivity 55 in SZ. The neuroimaging correlations of dysconnection appear to 

be stable over time, enabling the differentiation between patients and control subjects 
57. It has even been proposed that these systemic measures of dysconnection may serve 

as neurobiological indices for defining SZ patients 9. However, this raises an intriguing 

question about the underlying biological trait abnormalities that implicate a failure in the 
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modulation of synaptic efficacy relative to the potential compensatory homeostatic state of 

abnormalities that produce symptoms and signs 9.

Measures of functional connectivity with EEG or fMRI have also been linked to a 

genetic basis. A meta-analysis 58 reported that putative SZ risk variants reduced functional 

connectivity, which is supported by recent studies 59, providing more evidence for the 

dysconnection hypothesis 9, 52. Interestingly, dysconnectivity is mostly implicated in the 

PFC and other association areas, raising the question of how such differential impairment 

can be explained if biological abnormalities are common across the neocortex. This question 

has motivated a study of brain dysconnectivity in SZ that combined fMRI with a large-

scale cortical network model of the human cortex 56, 60, and an intriguing hypothesis 

of macroscopic gradients of synaptic excitation and inhibition (E/I) balance across the 

neocortex that warrants further exploration 7.

III. The role of NMDA hypofunction in the aberrant local circuit and long-

range dysconnectivity of the mPFC

Although there is strong evidence for global functional network dysconnectivity revealed 

by neuroimaging and neurophysiology, SZ is also clearly linked to disruption of the local 

prefrontal circuit, particularly imbalanced E/I ratio based on clinical 6, 10, 61, computation 
56, and animal 62, 63 studies. Clinical literature from cross-diagnostic analysis indicates 

a convergent neural mechanism governing E/I balance in patients with SZ 61. There is 

also evidence supporting a link between glutamate-mediated cortical disinhibition, effective-

connectivity deficits, and computational performance in psychosis 10. The question is how 

these two frameworks - global versus localized neural dysfunction – work together to 

display behavioral phenotypes, particularly cognitive and social impairments in SZ, that 

are dependent on proper PFC function. To answer this question, we elucidate the basic 

prefrontal circuitry that functions to execute normal cognition and social behavior, the 

distinct and prolonged developmental trajectory of the PFC, its unique connections with 

other brain regions, how NMDAR development and function are intertwined with the 

development of PFC circuitry, as well as new questions raised and hypothetical mechanisms 

learned from studies in other cortices for further investigations.

NMDAR in the development of prefrontal GABAergic interneurons

The PFC exhibits laminar and neuronal connections within the local circuitry. As shown in 

Figure 1, the excitatory glutamatergic pyramidal cells connect each other to form recurrent 

excitation and innervate GABAergic interneurons to initiate feedback inhibition. The 

pyramidal neurons project to other cortical regions to establish corticocortical connections 

and subcortical regions as descending innervations. Within the PFC local circuitry, a 

diverse array of GABAergic IN subtypes regulates cortical activity 64. The three most 

abundant INs include fast-spiking (FS) parvalbumin (PV)-INs (which target the perisomatic 

region of pyramidal neurons), somatostatin-expressing (SST)-INs (which target pyramidal 

neuron dendrites, gate input-specific information processing, and inhibit PV-INs 65) and 

vasointestinal peptide-expressing (VIP) cells (which inhibit SST-INs to induce disinhibition 

of pyramidal neurons 47, 66, 67. In addition, the local prefrontal circuitry receives both 
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glutamatergic afferents and non-glutamatergic neuromodulatory afferents from the cortical 

and subcortical regions to enable feedforward excitation and inhibition 48, 68, while the 

pyramidal neurons in the PFC project to the limbic systems and other cortical and 

subcortical structures (Figure 1) that are different from other cortical regions such as primary 

sensory, auditory, and visual cortices.

Despite these seemingly clear connections, exactly how they interact to affect PFC-

associated functions remains to be determined, especially those associated with different 

subtypes of GABAergic interneurons, such as VIP and SST, even in the normal brain. 

There are many unknowns among these connections. For example, how does NMDAR 

hypofunction induce an abnormal neurodevelopment in the local circuitry of different PFC 

neuronal subtypes and their long-range connections with other brain regions, including both 

glutamatergic and non-glutamatergic inputs and outputs? Consequently, it remains unclear 

how these changes may induce behavioral deficits associated with SZ symptoms.

SZ is a neurodevelopmental disorder, and most, if not all, of the functional and structural 

changes occur during the early stages of postnatal development, especially during juvenile 

and adolescent periods, as presented in both human 69–71 and animal 63, 72–76 studies. The 

delayed maturation of the PFC and, in particular, the delayed maturation of GABAergic 

INs in this region through adolescence critically contribute to susceptibility to cognitive and 

social deficits 15, 16, 77–85. Therefore, it is essential to elucidate when and how the local 

prefrontal circuitry forms and matures across development and the role of different cell 

types in the PFC in regulating cognitive and behaviors. It is also essential to understand 

how various excitatory afferents from cortical and subcortical regions (e.g., thalamus vs. 

hippocampus vs. amygdala, etc.) regulates the development of synaptic function in PV-, 

SST-, and VIP-INs vs. pyramidal neurons within the PFC, as illustrated in Figure 1.

The activity/experience-dependence of synaptic and circuit formation during development, 

which relies on NMDAR-mediated plasticity, has been extensively studied in somatosensory, 

auditory, and visual cortices 86–88. These studies suggest that GluN2B-containing NMDARs 

are the pillar in the maintenance of critical-period plasticity. In the PFC, the developmental 

GluN2B-to-GluN2A switch occurs later than in other brain regions and marks the transition 

from juvenile to adult neural processing and maturation of associative learning abilities 89. 

This may leave open a long critical period window for plasticity and may underlie the 

delayed maturation of the PFC 90. In addition, existing evidence assists us in speculating that 

the time course of NMDAR maturation is likely cell-type-specific 91, 92.

For example, the NMDAR hypofunction hypothesis has largely focused on NMDAR 

expression and function in PV cells 19, 20, 41, 42, 93. But paradoxically, PV-INs express 

relatively low levels of NMDARs 51, 94–98 (Figure 2), and they are enriched with GluN2A 

subunit 99–101. In contrast, SST- and VIP-INs express relatively more NMDARs and are 

enriched with GluN2B subunits (Figure 3), which have significantly slower decays than 

NMDARs expressing the GluN2A subunit 102–104. Previous studies reported that NMDAR 

subunit composition controls synaptogenesis and synapse stabilization 105. The distinct 

composition of NMDAR subunits endows the three types of interneurons with different 

magnitudes of plasticity in network activity during cognitive performance. All three types 
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of interneurons in the PFC are crucially involved in cognitive function, social behavior, and 

SZ 103, 106–109. The limited current evidence suggests different IN subtypes show distinct 

changes in NMDAR function across neurodevelopment. For example, Koppensteinier et al. 
92 showed that NMDA-mediated ESPC amplitude in SST-IN increases from adolescence 

to adulthood. In contrast, the amplitude of NMDA-mediated ESPCs in PV-INs decreases 

from the juvenile stage to adolescence, consistent with our previous report in rat PFC 

(Wang 2009). However, more research is needed to fully understand NMDAR expression 

and function in the different IN subtypes across neurodevelopment and how these may go 

awry in SZ.

Nevertheless, abundant evidence has shown that NMDAR blocker ketamine 

decreases resting-state functional network connectivity 110 and modulates hippocampal 

neurochemistry and functional connectivity in health subjects 111. These effects have not 

only emphasized the importance of NMDARs in neural connectivity but also neurons in 

other cortical regions (e.g., ventral tegmental area, VTA) and other cell types (e.g., SST-INs 
106 in NMDAR hypofunction for SZ 42. Several recent studies have also provided interesting 

yet inconsistent reports regarding the relationship between NMDAR function and proper 

connectivity in the PFC. For example, Flores-Barrera et al. reported a late adolescent 

expression of GluN2B in the apical (but not basal) dendrites in mPFC layer 5 pyramidal 

neurons, with ventral hippocampal (vHipp) inputs requiring postsynaptic PKA and D1 

signaling for GluN2B maturation 112. In contrast, by deleting GluN2B in PFC pyramidal 

neurons, Miller et al. showed a selective enhancement of mediodorsal thalamus (MD)-PFC 

but not a vHipp-PFC pathway in layer 2/3 pyramidal neurons, and that activation of MD-

PFC pathway induces anti-depressive behaviors in young adult mice 113. This enhanced 

connectivity is consistent with a clinical report of increased connectivity during the early 

stage of the disease 55. It provides causal evidence that NMDAR dysfunction can lead to 

aberrant functional connectivity.

Notably, the mPFC is a convergent target of multiple long-range inputs, including those 

from vHipp and MD 114, 115. Given that these long-range inputs innervate pyramidal neurons 
116 and INs 48, 68, 117 in both layers 2/3 and 5 (Figure 1), these findings raise important 

questions regarding how NMDAR hypofunction affects the excitatory activity from the MD 

and other long-range inputs, which in turn, shape the local inhibitory circuitry formed by 

different subtypes of INs within the PFC, and whether altered MD activity influences the 

inhibitory circuit formation among INs.

Recent studies have suggested an afferent-specific role of NMDARs for the circuit 

integration of INs 118 and input-specific NMDAR-dependent potentiation of dendritic (i.e., 
SST-INs) GABAergic inhibition 119. Tonic GABAergic activity also facilitates dendritic 

calcium signaling and short-term plasticity 120. Dendritic NMDARs in PV-INs even underlie 

supralunar integration of feedback excitation from local pyramidal neurons and thus enable 

strong and stable neuronal assemblies 121. Consequently, NMDAR ablation in corticolimbic 

PV-INs induces hippocampus-PFC functional hypoconnectivity after adolescence in a mouse 

model for SZ 63. Therefore, we expect an input- and cell type-specific, as well as age-

dependent, modulation, as we and others have reported that cortical INs are differentially 
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modulated by their inputs, including glutamatergic and monoaminergic fibers 21, 50, 122–126 

(see Figure 1).

IV. MD-mPFC dysconnectivity and interneuron subtype specificity in SZ

The MD is a major upstream regulatory center to the PFC 127–130. Excitatory afferents from 

the MD reach PFC cortical layers far earlier during development than the maturation of 

GABAergic INs and synapses 117 (Figure 4). Additionally, the MD and PFC share extensive 

reciprocal connections 114, 131 with SZ patients demonstrating reduced connectivity between 

these two brain regions 5, which is associated with cognitive and social deficits 49. Recent 

studies indicate that the MD plays distinct roles in sophisticated cognitive processes 
116, 130, 132–134 and social dominance 135. In particular, MD inhibition in mice disrupts 

thalamofrontal connectivity and working memory 49, 131, 136, and goal-directed behavior 
129, 137. In adulthood, we recently reported that acute chemogenetic inhibition of MD 

activity results in a significant reduction in GABAergic signaling and increased E/I balance 

within the mPFC, as well as abnormalities in cognitive and social behaviors. Furthermore, 

by selectively activating PV-INs in the mPFC with a chemogenetic tool, E/I balance was 

restored, and working memory and social deficits were ameliorated. These findings highlight 

the importance of thalamocortical activation of PV-INs in PFC-dependent behaviors 68.

Thus far, our study, as well as work from others, has mainly focused on PV cells in normal 

adult animals 42, leaving the role of SST and VIP cells in MD-mediated PFC function 

untested. In fact, we do not even know how MD inputs directly regulate SST and VIP-INs 

despite the dense distribution of both SST and VIP cells 138–141, as well as MD fibers 
114, 142, 143 in superficial layers of the PFC. SST and VIP mRNA and peptide levels are 

both decreased in the PFC of patients with SZ 107, 144. Additionally, both cell types are 

critically involved in cognition 67, 145–147. It is thus essential to understand how MD and 

other inputs’ activity regulates different PFC INs during development and to determine 

whether MD inputs are essential for the reduction of SST and VIP in animal models for SZ. 

It is conceivable that the MD, as a major source of glutamatergic inputs, plays a critical role 

in the development of NMDARs in both pyramidal neurons and different subtypes of INs in 

the PFC (Figure 4).

V. Reconciling NMDAR hypofunction with local and global dysconnectivity

A basic question that has haunted the field is what causes GABA deficits and abnormal 

connectivity in neurodevelopmental disorders such as SZ? It is known that in response 

to normal and abnormal stimulation, synapses mediating local and long-range connections 

between different cell types exhibit sequential alterations through different mechanisms 

during development. More importantly, during adolescent development, GABAergic cell 

function becomes dominant compared to pyramidal neurons because they are receiving 

more glutamatergic innervations 78. For example, PV cells are enriched with excitatory 

inputs during adolescent development through regulation of excitatory synapse pruning on 

PV cells via ErbB4 splicing 148–151. This effect is both activity- and NMDAR-dependent, 

and disruption of any of these processes produces SZ-like cognitive and social deficits 
20, 78, 149, 152, 153.
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NMDARs significantly contribute to information transfer and integration at synapses during 

repetitive activity and to the generation of persistent activity of neural assemblies for 

working memory function 90, 154–156. The mechanisms for changes in NMDAR function, 

number, and subunit composition at a given synapse and cell type, as well as the identity and 

function of auxiliary subunits of NMDARs in the developing rodent PFC 51, 95, 96, 155, 157, 

remain understudied compared to other cortical regions 158–160.

NMDAR hypofunction and dendritic spine plasticity

Given the unique biophysical properties and development of NMDARs in the PFC, 

especially the high level of GluN2B 7, 90, the plasticity of NMDAR-mediated synaptic 

transmission is crucial to the circuit formation and maturation of the PFC. A growing body 

of evidence suggests the existence of synaptic pathology in SZ 15. NMDAR hypofunction 

in pyramidal neurons appears to be responsible for spine density alteration of cortical 

pyramidal cells as SZ-related spine density reduction is induced by GluN1 knockdown in 

the pyramidal neurons 20, 161, 162. Pharmacologically, subchronic PCP treatment decreases 

the number of dendritic synapses in the rat PFC 163, 164, but the underlying mechanisms 

remain to be determined. However, it has been demonstrated that mTOR-dependent synapse 

formation underlies the rapid antidepressant effects of NMDA antagonist ketamine 165. A 

remarkable recent rodent study provides additional support with in vivo dendritic spine 

monitoring in mPFC 166. Specifically, prolonged exposure to chronic unpredictable stress 

increases “depressive-like behaviors” in the mice and causes a retraction of dendritic 

spines in the mPFC. Interestingly, these changes are effectively normalized by systemic 

administration of ketamine 166, highlighting the importance of NMDAR in regulating 

dendritic spine plasticity in the PFC.

PFC dysconnectivity and NMDAR hypofunction in non-human primate and human studies

Prior neural recording studies in monkey PFC also characterized how blocking NMDAR 

alters physiological signals in prefrontal neurons related to working memory and executive 

control. Specifically, blocking NMDAR weakens delay period activity associated with 

working memory 154, reduces the strength and task selectivity of neural signals reflecting 

executive control in rule-based tasks 167, 168, and modifies prefrontal oscillations reflecting 

trial outcome 169. In particular, blockade of GluN2B in the dlPFC markedly reduces the 

persistent firing of the delay cells needed for neuronal representations of visual space 
154, 170. However, studies probing how NMDAR hypofunction affects prefrontal function 

in non-human primates remain limited 171. Two different NMDAR antagonists, PCP and 

MK-801, have been often used in rodent behavioral studies, while ketamine has been often 

used in non-human primates to induce cognitive disturbances 171–176. Moreover, non-human 

studies tend to use acute and bolus injection of NMDAR antagonists equivalent to those 

achieved in human subjects, in which ketamine produced resting brain hyperconnectivity 

and SZ-like cognitive deficits 177, 178. Systemic administration of ketamine also reduces the 

persistent firing of delay cells in primates. This effect may explain why this drug can mimic 

or worsen SZ’s cognitive symptoms 170.

In a recent study, Zick et al. further reported that blocking NMDAR-mediated synaptic 

transmission by PCP in primate disrupts spike timing in prefrontal circuits that lead to 
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activity-dependent synaptic disconnection of these circuits over time, potentially linking 

synchrony and connectivity deficits in SZ 179. Administration of ketamine also yields 

a circuit-level mechanism that links NMDAR hypofunction to synaptic connections to 

behaviors, including decision-making biases 180. Based on these observations, although 

the causal biology underlying SZ remains not well understood, it is predicted to involve a 

malfunction in how neurons adjust synaptic connections in response to patterns of activity in 

networks 181.

Interestingly, a recent study reported that the effects of NMDAR antagonists on prefrontal 

cortical connectivity model in early rather than chronic SZ 4 [also see 110, 111, 182, 183], 

emphasizing their critical roles in neurodevelopment. However, despite the progress, 

compared with rodent studies, how NMDA hypofunction affects the development of 

prefrontal circuitry and synaptic connectivity in non-human primates remains to be 

determined. In the primate dlPFC, the density of excitatory synapses decreases by 40–

50% during adolescence 184, but whether this significant change is associated with 

NMDAR-mediated transmission is unknown. Gonzalez-Burgos et al. reported that during 

early postnatal development (3-month-old monkey), excitatory inputs to layer 3 pyramidal 

neurons exhibited immature properties, including higher release probability, lower AMPA/

NMDA ratio, and higher expression of GrinN2B subunits compared to preadolescent 

(15 months old) and adult (42 or 84 months old) monkeys. These findings indicate 

that functionally immature synapses’ contribution to prefrontal cortical development 

significantly decreases before adolescence begins, at least for monkey PFC layer 3 

pyramidal neurons 184. These findings are slightly different from those reported in the rodent 

mPFC, as shown in Figure 3 90, 95, 155, 185. Whether there exists a laminar difference of 

NMDAR subunit development in non-human primate PFC remains to be determined.

NMDAR hypofunction, prefrontal E/I balance, and global dysconnectivity

Despite extensive information regarding the regulation of NMDAR function and trafficking 

in cultured neurons and expression systems 186, 187, much remains to be explored about the 

molecular basis of activity-dependent NMDAR plasticity in vivo, especially during different 

stages of development 188. A significant challenge is determining the precise contribution 

of NMDAR in a cell-type- and afferent/pathway-specific manner, as recently reported in the 

prefrontal neurons 151, 189. The new technologies described in the future directions would 

be vital in addressing the challenge and the outstanding questions enlisted below. A recent 

review study has provided strong evidence of cell-type actions for NMDAR hypofunction 
42. Specifically, NMDAR hypofunction can produce SZ-related effects through action on 

various circuits and cell types, including not only prefrontal pyramidal neurons and PV-INs, 

but also VTA dopamine neurons and other brain regions 42, as illustrated in Figure 1.

Still, all of these assumptions depend on how NMDAR hypofunction leads to global 

E/I imbalance, local circuit dysfunction, and regional dysconnectivity that underlie SZ 6. 

Postmortem work indicates IN dysfunction involves the altered interplay of GABA and 

glutamate across the brain 190. NMDARs on GABAergic INs, especially PV-INs, form the 

cornerstone of the NMDA hypofunction model of SZ 10, 19, 42, 191, and are critical for the 

regulation of E/I balance in neural microcircuits 192.
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An important recent discovery is the macroscopic gradients of synaptic E/I in the neocortex 
7. Areas of the neocortex differ not only due to their input-output patterns but also their 

physiological properties. Specifically, when cortical regions were plotted by rank order 

of SST cell to PV cell ratio values, the ratio of SST- to PV-INs is surprisingly low in 

primary sensory and motor areas and high in association areas, including frontal areas, 

revealing a macroscopic gradient of synaptic inhibition in the mouse cortex. Notably, PV 

cells are twice as abundant as SST cells in V1, but SST cells are 4-fold more numerous 

than PV cells in frontal areas per this ratio calculation 7. Importantly, there is an increasing 

gradient of synaptic excitation along the cortical hierarchy, including the expression level 

of GluN2B that plays a crucial role in the NMDAR dependent recurrent excitation that 

supports cognition 90, 154–156. However, a gradient of NMDAR-dependent excitation in a 

multiregional cortex, especially those in SST cells, remains elucidated in future research 7. 

The notion of macroscopic gradients has begun to be applied to studies of mental disorders. 

For instance, SZ is characterized by large-scale cortical dysconnectivity 14.

Interestingly, dysconnectivity is primarily implicated in the PFC and other association areas, 

raising the question of how such differential impairment can be explained if biological 

trait abnormalities are common across the neocortex 56. Still, the relationship between 

macroscopic gradients and NMDAR hypofunction leading to global E/I balance and local 

circuit dysfunction remains to be determined. Given the selective role of GABAergic 

interneurons in NMDAR hypofunction hypothesis 19, 192, and the gradient GluN2B ratio 
193 and regional difference of NMDAR-mediated currents between PFC and V1 155, we 

predict that an NMDAR hypofunction condition will likely produce a regional difference in 

E/I balance, contributing to the various symptoms of SZ. Indeed, recent theoretical accounts 

have proposed E/I imbalance as a possible mechanistic, network-level hypothesis underlying 

neural and behavioral dysfunction across neurodevelopmental disorders, particularly SZ 61.

Investigation of the link between NMDAR homeostatic plasticity and the molecular 

mechanisms governing NMDAR trafficking 194, 195 may serve to bridge the gap in our 

understanding of how these processes integrate activity over multiple timescales to support 

cognitive functions. While emerging evidence suggests that activity-dependent regulation of 

NMDARs plays an essential role in behaviors, further studies are needed to test the role 

of NMDAR plasticity in neuropsychiatric conditions, such as the NMDAR dysregulation 

implicated in SZ 186.

Box 1.

How NMDAR hypofunction may contribute to the abnormal inhibition, 
disrupted synaptic plasticity, and dysconnection - Lessons learned from 

the studies in other brain regions and the hypothetical mechanisms (Figure 
5).

Despite the progress reviewed above, the mechanisms underlying how NMDAR 

hypofunction may contribute to abnormal inhibition, disrupted plasticity, disconnection, 

and eventual behavioral deficits remains elusive. However, significant progress has been 

made in other cortices, and we propose to test these hypothetical mechanisms in the 

PFC circuitry, as illustrated in Figure 5. Beyond their well-established role as Hebbian 
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signals for long-term potentiation and depression (LTP and LTD) of fast synaptic 

transmission 158, 159, 196–201, NMDARs themselves are also dynamically regulated by 

an activity-dependent LTP 188, 202. Specifically, the unique functional properties of the 

NMDAR, including high Ca2+ permeability, negative slope conductance that enables 

signal amplification, and slow NMDAR-EPSP kinetics, make NMDAR plasticity a 

powerful mechanism for the fine-tuning of information encoding and storage 7, 156. Since 

Ca2+ is a secondary messenger, NMDAR plasticity has far-reaching implications beyond 

amplitude changes of NMDAR-mediated synaptic responses 188.

The immediate responses to risk factors involve both translational and posttranslational 

modifications such as receptor trafficking related to epigenetic regulation (e.g., epigenetic 

histone acetylation, methylation, phosphorylation via activator or repressor) (Figure 5A–

C) 88, 203. These changes will likely result in similar synaptic scaling of both AMPA- and 

NMDA-EPSCs in prefrontal neurons, as previously reported in visual cortical neurons 
204, 205. Importantly, activity-dependent NMDAR plasticity appears to be a universal 

mechanism; it occurs in not only excitatory but also inhibitory synapses, including 

effects on NMDA/AMPA ratio and E/I balance in different cell types and connections 
206, 207 (Figure 5B, D). Further, NMDAR-dependent effect is also observed on behavioral 

representation, as pioneered in the study of primary visual cortex 160, 208–210.

While most studies support the postsynaptic locus of NMDARs, the existence and 

functional role of NMDARs localized to the presynaptic site has received significant 

attention in both PFC 211 and other cortical regions 212–215. There is evidence from 

different brain regions that presynaptic NMDARs act as coincidence-detectors and play 

an essential role in some forms of spike-timing-dependent plasticity 212, 216–218. The 

subunit composition of presynaptic NMDARs can also be developmentally regulated, 

thereby modulating the inducibility of spike-timing-dependent plasticity 219. A recent 

study illustrated the distinct roles for pre- and post-synaptic NMDARs in visual circuit 

development and revealed extensive transsynaptic regulation of form and function 220. 

Our research indicated that, in response to NMDAR blockade during adolescence, 

these presynaptic receptors themselves underwent plastic changes differentially in the 

fast-spiking INs vs. pyramidal cells in the PFC 221. Still, it remains unclear whether 

presynaptic NMDARs from distinct long-range afferents or cell types within the PFC 

have different identities and functions.

Although we have focused primarily on the mechanisms and implications of rapid, 

synapse-specific NMDAR plasticity, mounting evidence mainly from the sensory cortices 

indicates that NMDARs can participate in homeostatic plasticity 202, This process 

acts over relatively longer timescales and can underlie metaplasticity 197, 208, 222–226, 

as illustrated hypothetically in the PFC in Figure 5. Specifically, visual experience-

dependent homeostatic plasticity of excitatory synapses observed in superficial layers of 

the visual cortex is dependent on NMDAR function. Interestingly, both strengthening 

of synapses induced by visual deprivation and weakening by the reinstatement 

of visual experience were blocked in the absence of functional NMDARs. This 

finging suggests that sensory experience-dependent homeostatic adaptation depends 

on NMDARs, supporting the sliding threshold model of plasticity and input-specific 

homeostatic control observed in vivo 208. Especially during adolescent development, 
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NMDAR subunit-dependent homeostatic plasticity in inhibitory neurons occurs in cell-

type and input-specific manner through a sliding threshold mechanism 197, 198, such as 

differential LTP induction in SST vs. LTD in PV cells, respectively (Figure 5D, E). 

Similarly, homeostatic plasticity of GABAergic neurons and their synaptic connections 

with excitatory neurons also occur, although the molecular mechanisms remain to be 

determined 119, 227, 228. NMDAR hypofunction would weaken or disrupt both normal 

Hebbian plasticity between prefrontal interneurons and long-range afferents, meanwhile, 

reshape the homeostatic plasticity in the mPFC and its connections with downstream 

targets. These homeostatic changes in plasticity, in turn, induce threshold shift and/or 

disconnectivity, resulting in a reduced metaplasticity 222, 229 (Figure 5F). Consequently, 

an aberrant local circuit and dysfunctional connections are formed, a new set point with 

a narrower dynamic range for information is adopted, and abnormal behavioral changes 

follow under an aberrant connectivity condition 230, 231 (Figure 5G).

Box 1_Figure 5. 
A summary illustration of the perspective mechanisms associated with dysconnectivity 

and behavioral deficits – from abnormal synaptic function and plasticity to failures of 

self-monitoring. A, Timeline of synaptic- and circuit-specific alterations and behavioral 

changes during developmental dysconnectivity. B-G, In response to normal and abnormal 

stimulation, synapses mediating local and long-range connections between different cell 

types exhibit sequential alterations through different mechanisms during development. 

B & C, The immediate responses (within 24 hours) to risk factors (RFs) are associated 

with both translational and posttranslational modifications such as receptor trafficking 

(B) related to epigenetic regulation (e.g., epigenetic histone acetylation, methylation, 

phosphorylation via activator or repressor) (C) 88, 203, resulting in changes in excitatory 

synaptic strength/synaptic scaling of both AMPA- & NMDA-EPSCs 204, 205 in prefrontal 
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neurons which consequently disrupts E/I balance in the local prefrontal circuit. D & 

E, Later on, especially during adolescent development, NMDAR subunit-dependent 

homeostatic plasticity in inhibitory neurons occurs in cell-type and input-specific manner 

through a sliding threshold mechanism 197, 198, such as differential LTP induction in 

SST vs. LTD PV cells, respectively. NMDAR hypofunction would weaken or disrupt 

both normal Hebbian plasticity between prefrontal interneurons and long-range afferents, 

meanwhile reshape the homeostatic plasticity in the mPFC and its connections with 

downstream targets. F, These homeostatic changes in plasticity (as described in D & E), 

in turn, induce threshold shift and/or disconnectivity, resulting in a reduced metaplasticity 
222, 229. G, Consequently, an aberrant local circuit and dysfunctional connections are 

formed, a new set point with a narrower dynamic range for information is adopted, and 

abnormal behavioral changes follow under an aberrant connectivity condition 230, 231. 

IN: interneuron; PN: pyramidal neuron; PPF: paired-pulse facilitation; PPD: paired-pulse 

depression; RFs: regulatory factors; TFs: transcription factors.

In summary, mechanistically, pyramidal cells and IN subtypes can be regulated in response 

to activity levels via various mechanisms (Figure 5). Therefore, the maturation of different 

inputs to the PFC during juvenile and adolescent development can stimulate the neurons 

and neuronal network, leading to distinct changes in protein expression levels depending on 

the identity of the postsynaptic cell. One such family of proteins is the NMDAR subunits, 

which are known to vary among IN subtypes and pyramidal neurons. NMDAR subunit 

composition is important for plasticity and regulation of cortical development during critical 

juvenile and adolescent periods. Therefore, alteration of input and output activity during 

development is expected to disrupt GABAergic circuitry and neuronal connectivity with 

other brain regions, with cell-type- and input/output-specific effects on synaptic plasticity 

and underlying molecular changes. Eventually, these homeostatic changes could lead to a 

shift of threshold for plasticity, i.e., metaplasticity, and consequently, a set-point adaption.

VI. Conclusion and future directions

Aberrant neural network connectivity has been widely recognized as constituting major 

functional and structural changes in the neuropathophysiology of SZ. However, what an 

aberrant circuitry actually looks like remains an enigma. Brain cells are highly plastic, 

allowing an organism to learn and adapt to its environment, including response to mutant 

genes and risk factors. This ongoing plasticity is essentially unstable during development, 

leading to aberrant circuit activity. Homeostatic plasticity provides a compensatory 

mechanism in controlling neuronal network activity and stability. Many of these homeostatic 

modifications may occur not only within the subcellular neuronal compartments but also 

in different levels of connections from synaptic inputs at both excitatory and inhibitory 

cells to modulation of neuronal outputs, as proposed in a recent review 232. Here we have 

summarized the current progress, and we outline the outstanding questions in Box 2 and 

future directions.
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Outstanding questions

• When and how is local prefrontal circuitry formed and matured during 

development, especially during juvenile and adolescent periods? What are 

the roles of different subtypes of INs in the regulation of cognitive and social 

functions during adolescent development? What are the roles of NMDARs in 

the development of local prefrontal circuitry among the different subtypes of 

INs?

• Past studies focused on the roles of DA, GABA, NMDARs in genetic 

and neurodevelopmental models for SZ. Many aspects of the circuit- and 

cell-type-specific connections, as well as input/output specificity, remain 

unclear or unexplored, especially those related to homeostatic plasticity 

and metaplasticity. For example, the pre- and post-synaptic NMDARs in 

different subtypes of INs, particularly SST and VIP cells, and their roles in 

development, remain untested.

• For the PFC, given the most important factor is prolonged and delayed 

maturation during adolescence, all findings reported in other brain regions, 

especially those from the sensory, auditory, and visual cortices, usually do not 

completely apply to the PFC. Therefore, the key question is to elucidate the 

unique properties among each brain region, given the potential macroscopic 

gradient differences.

• One critical issue is the monoamine systems in the mPFC, which 

exhibit prominent delayed maturation, and macroscopic gradient distribution 

compared with other regions. How these neuromodulatory systems are 

affected by NMDAR hypofunction during development is barely explored. 

Are the NMDAR hypofunction and neuromodulation mutually dependent on 

each other or mutually exclusive in the dysfunctional status? We propose 

that during the early (e.g., juvenile and adolescent) stages of development, 

NMDAR hypofunction dominates the process of dysfunction, which in 

turn results in differential impairments in a system-specific manner, and in 

adulthood, both NMDAR hypofunction and DA dysfunction co-exist and 

impact each other.

• Given the large number of genetic mutations associated with symptoms of 

SZ, it is unlikely that a single locus for pathology exists at the cellular 

or synaptic level. How a complex substrate induces a distinct behavioral 

phenotype that represents a genuinely ‘brain-wide’ aberrant function and 

disconnection, deserves to be explored.

New technologies for SZ studies

Technology has opened new frontiers in the study of the pathophysiology of mental 

disorders, including SZ. Specifically, recent technical advances have enabled us to map 

not only local synaptic connections among different cell subtypes 233, but also their up- 
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and down-stream connectivity 234, 235, as well as their molecular phenotypes and neuronal 

activity in animal models. These techniques include the transcriptomic approach RNAseq 
236 for molecular phenotype, neurological tracing methods such as Tracing the Relationship 

of Inputs and Outputs (TRIO) and cell-type-specific tracing of the relationship between 

input and outputs (cTRIO) 237, 238, iTango for neuromodulatory circuits 239, optogenetics 240 

and chemogenetics 241, as well as calcium imaging and various fluorescent sensors 242, 243. 

These technologies will provide novel insights into the understanding of what an aberrant 

circuit and dysfunctional connection look like under different etiological conditions and 

whether the alterations due to different etiology share similar or different mechanisms in 

a global scale of input-output level connectivity and macroscopic gradient of whole brain 

activity.

However, although these cutting-edge tools are useful in model organisms, primarily 

rodents, and even non-human primates, critical advances in human brain disorders are 

seriously hindered by our lack of ability to monitor and manipulate circuitry in safe 

and minimally invasive ways. Clinical intervention with novel cell- and circuit-specific 

tools are required to focus on research designed to elucidate the aberrant circuit and 

connectivity of PFC in patients with SZ 10. The ambitious ‘Research Domain Criteria’ 

(RDoC) project initiated by The National Institutes of Mental Health aims to develop 

new tools in assessing behavior and neurobiological measurements encompassing positive 

and negative valence systems, cognitive systems, social systems, and arousal/regulatory 

systems. These comprehensive analyses of these systems at the cellular, brain network, 

physiological, and behavioral levels will likely yield the direct information associated with 

the aberrant connectivity of SZ 244. Other clinical tools such as proton magnetic resonance 

spectroscopy (1H-MRS for tissue glutamate and GABA), PET/SPECT, Mismatch negativity/

P300/gamma-band oscillations 245, 246, post-mortem neurochemical/biochemical findings 

remain useful in elucidating the pathological alterations in neural circuit and connectivity 
44. All these measures offer noninvasive endophenotypes or biomarkers that may find a 

powerful application in SZ research 247.

Concluding remarks

It is increasingly clear that synaptic plasticity can occur at various levels of connections 

during both learning and homeostatic adaptation, including different cell types in the PFC 

and their input and output connectivity. It is clear that excitatory and inhibitory neurons 

undergo complementary forms of functional and structural plasticity in order to maintain 

an optimal E/I balance and ultimately regulate network stability. Yet, many outstanding 

questions remain unanswered. It is essential to understand whether excitatory and inhibitory 

neurons display different forms of homeostatic plasticity by using different sensors and 

effectors of neuronal or network activity, and how different forms of homeostatic plasticity, 

at either the pre- or post-synaptic sites, are merged to form a newly adapted set-point for 

behavioral performance. It is likely that each cell type will alter its input-output relation 

within the network in a different way, and thus the type of stimulus or the level of network 

activity will be altered towards specific forms of functional and structural homeostasis and 

meta-plasticity, especially during the development. We conclude that the aberrant prefrontal 

cortical circuitry and dysconnection in SZ are attributed to the “all roads lead to Rome” 
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NMDAR-mediated plastic changes during development, ranging from abnormal synaptic 

plasticity to an adapted set point with dysfunctional self-monitoring. Targeting this process 

during the early stages is likely more effective in preventing or treating the disease.
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Abbreviations:

AMPAR α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

BC basket cell

ChC chandelier cell

EEG electroencephalogram

E/I excitation/inhibition

fMRI functional magnetic resonance imaging

FS fast spiking

INs interneurons

LTD long term depression

LTP long term potentiation

MC Martinotti cell

MD mediodorsal thalamus

mPFC medial prefrontal cortex

NMDAR N-methyl-D-aspartate receptor

PN pyramidal neuron

PPD paired-pulse depression

PPF paired-pulse facilitation

PV parvalbumin

sEPSC spontaneous excitatory postsynaptic current

SST somatostatin

SZ Schizophrenia

TRIO tracing the relationship between input and output

vHipp ventral hippocampus
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VIP vasoactive intestinal peptide
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Figure 1. 
Illustration showing the simplified local prefrontal circuitry and long-range input/output 

connectivity. The excitatory glutamatergic pyramidal cells connect to each other to 

form recurrent excitation (a) and innervate GABAergic interneurons to form feedback 

inhibition (b). The pyramidal neurons project to other cortical and subcortical regions 

to form corticocortical connections and subcortical regions as descending innervations 

(c). In turn, local prefrontal circuitry, including both pyramidal neurons and GABAergic 

cells are also innervated by cortical and subcortical excitatory glutamatergic inputs 

(green) to form forward excitation (d) and feedforward inhibition (e). Both pyramidal 

neurons and GABAergic interneurons are also regulated by subcortical non-glutamatergic 

neuromodulatory afferents (red) from the dopamine (DA), norepinephrine (NE), serotonin 

(5-HT), and acetylcholine (Ach) cells. Despite these seemingly clear connections, exactly 

how they interact to affect PFC-associated functions remains to be determined. There 

are also many unknowns among these connections, and their roles in behavioral deficits 

associated with SZ symptoms.
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Figure 2. 
Prefrontal local circuit. Glutamatergic afferents innervate both excitatory pyramidal neurons 

(PN) and inhibitory GABAergic IN subtypes 248. These inputs are capable to generate 

diverse feedforward control on the prefrontal local network through PV-, SST, or VIP-INs. 

PV-INs express relatively low levels of NMDARs 51, 94–98, and they are enriched with 

GluN2A subunit 99–101. In contrast, SST- and VIP-INs express relatively more NMDARs 

and are enriched with GluN2B subunits 102–104.
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Figure 3. 
Schematic model showing the development of NMDAR subunits in different types of PFC 

neurons. Layer II/III pyramidal neurons (PN) exhibit equal amount of GluN2A and GluN2B 

subunits, whereas layer V pyramidal neurons expresses more GluN2B subunits during 

the juvenile to adulthood development. In contrast, in the GABAergic interneurons (non-

pyramidal neurons (NP), fast-spiking (FS) interneurons exhibits clear GluN2B-to-GluN2A 

subunit switch whereas regular spiking (RS) and low-threshold spiking (LTS) interneurons 

exhibit similar NMDAR subunit expression to the layer II/III pyramidal neurons. In 

summary, except a subset of FS-NPs, which show a sharp increase of GluN2A and 

decrease of GluN2B, all other cells exhibit no GluN2B-to-GluN2A switch during postnatal 

development, differing from other brain regions 95, 155, 185, 249.
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Figure 4. 
Developmental trajectory of cortical GABAergic interneurons and maturation of MD and 

PFC. Upper panel: Distinct developmental trajectories of GABAergic inhibitory synapses 

and PV+ cells in the PFC (red and black lines) vs other brain regions (dashed line) 
75, 250, 251. Lower panel: MD afferent density (dashed line) and volume of the PFC (solid 

line). Dashed lines represent the different developmental window between MD activity and 

PFC function. Lower panel is modified from 117, and copyright is permitted for reuse of the 

figure.

Gao et al. Page 33

Mol Psychiatry. Author manuscript; available in PMC 2022 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Clinical evidence of brain-wide dysconnectivity
	The role of NMDA hypofunction in the aberrant local circuit and long-range dysconnectivity of the mPFC
	NMDAR in the development of prefrontal GABAergic interneurons

	MD-mPFC dysconnectivity and interneuron subtype specificity in SZ
	Reconciling NMDAR hypofunction with local and global dysconnectivity
	NMDAR hypofunction and dendritic spine plasticity
	PFC dysconnectivity and NMDAR hypofunction in non-human primate and human studies
	NMDAR hypofunction, prefrontal E/I balance, and global dysconnectivity

	Box 1_Figure 5.
	Conclusion and future directions
	New technologies for SZ studies
	Concluding remarks

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

