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Abstract: Effective vaccine coverage is urgently needed to tackle the COVID-19 pandemic. In-
activated vaccines have been introduced in many countries for emergency usage, but have only
provided limited protection. Heterologous vaccination is a promising strategy to maximise vaccine
immunogenicity. Here, we conducted a phase I, randomised control trial to observe the safety and
immunogenicity after an intradermal boost, using a fractional dosage (1:5) of BNT162b2 mRNA
vaccine in healthy participants in Songkhla, Thailand. In total, 91 volunteers who had been ad-
ministered with two doses of inactivated SARS-CoV-2 (CoronaVac) were recruited into the study,
and then randomised (1:1:1) to received different regimens of the third dose. An intramuscular
booster with a full dose of BNT162b2 was included as a conventional control, and a half dose group
was included as reciprocal comparator. Both, immediate and delayed adverse events following
immunisation (AEFI) were monitored. Humoral and cellular immune responses were examined
to observe the booster effects. The intradermal booster provided significantly fewer systemic side
effects, from 70% down to 19.4% (p < 0.001); however, they were comparable to local reactions with
the conventional intramuscular booster. In the intradermal group after receiving only one fifth of the
conventional dosage, serum Anti-RBD IgG was halved compared to the full dose of an intramuscular
injection. However, the neutralising function against the Delta strain remained intact. T cell responses
were also less effective in the intradermal group compared to the intramuscular booster. Together,
the intradermal booster, using a fractional dose of BNT162b2, can reduce systemic reactions and
provides a good level and function of antibody responses compared to the conventional booster. This
favourable intradermal boosting strategy provides a suitable alternative for vaccines and effective
vaccine management to increase the coverage during the vaccine shortage.

Keywords: intradermal; mRNA vaccine; inactivated SARS-CoV-2; COVID-19; immunogenicity

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in COVID-19.
Since the end of October 2021, this serious illness has infected more than 242 million patients
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and has been the cause of over 5 million deaths worldwide. Additionally, this pandemic has
consumed vast medical resources and has greatly affected the global economy. Adequate
vaccine coverage seems to be the only solution in stopping this pandemic [1]. However,
true, mass immunisation has proven to be a real challenge for vaccine developers, policy
makers/regulators and principle investigators [2]. Emergency use of various vaccines has
been granted on the balance of safety and efficacy of vaccines and vaccine regimens [3].

Recent viral mutations have caused many variants of concern (VOCs) and this has
become problematic; for example, the new emerging B.1.617.2 (Delta) strain is now one of
the main variants found globally, including in Thailand [4]. A significant mutation at the
receptor-binding protein (RBD) increases the viral capacity for replication and transmis-
sion [5]. Additionally, the reports of COVID-19 infections among vaccinated individuals,
including health care workers, are on the rise [6]. Host immunological responses and the
vaccines effectiveness against this variant are limited, which makes it difficult to achieve
satisfactory vaccine management during this breakthrough.

Recent studies have shown the efficacy of an mRNA-based vaccine (BNT162b2), and
a replication-deficient simian adenovirus vector (ChAdOx1 nCoV-19) against the Delta
variant of SARS-CoV-2. The effectiveness of completed ChAdOx1 nCoV-19 vaccination
was 74.5%, while the BNT162b2 vaccination was 93.7% [7]. Interestingly, the predicted
neutralisation of BNT162b2 against the Delta variant was reduced by 5.8 times compared to
the original strain [8]. On the other hand, the neutralising activity in vaccinated individuals
with two dosages of CoronaVac (Sinovac) was lower compared to convalescent people [9].
However, the efficacy data of an inactivated SARS-CoV-2 vaccine (CoronaVac) against the
Delta strain is still insufficient.

Several reports have shown that the longevity of vaccine inducted immune responses
has continued to decline [10–12]. Therefore, the existing immunity provided by previous,
conventional vaccinations was not as effective against potentially emerging variants of
concern [11,13,14]. Recently, heterologous vaccination strategies have been introduced
to improve the vaccine immunogenicity and efficacy during a shortage of supply [15].
Vaccine prioritisation and mass administration have been proven to be unsuccessful in
the countries with limited vaccine supplies, and have constricted vaccine platforms [15].
Therefore, this current study focused on boosting immunity in addition to the existing
inactivated SARS-CoV-2 (CoronaVac) vaccine regimen.

Based on insufficient data on a boosting dosage, the lower volume of vaccine dosages
was preferred, so as to minimise dose-dependent adverse reactions. Intradermal adminis-
tration was then suggested as an appropriate route for introducing reciprocal doses. The
immunogenicity and efficacy of fractional intradermal vaccination in comparison with
full dose immunisation has been examined in many pathogens, such as influenza virus,
rabies virus, poliovirus (PV), hepatitis B virus (HBV) and hepatitis A virus (HAV) [16,17].
In TB vaccines, a prime with an attenuated pathogen, followed by an intradermal boost
using a viral vector vaccine, provided superior protection and inducted strong cellular and
humoral immune responses [18,19]. Intradermal vaccination of Chimpanzee adenoviral
(ChAd) vectored vaccines has also been performed. Intradermal vaccination with a viral
vector Malarial vaccine, AdCh63 ME-TRAP, induced comparable immune responses with
intramuscular full dose vaccination [20]. Recent studies have suggested that intrader-
mal vaccination with reciprocal doses (1:5 and 1:10) of mRNA-1273 (Moderna) provided
similar antibody responses compared to a full dose of conventional intramuscular injec-
tions [21]. Therefore, an mRNA-based vaccine, BNT162b2, a lipid nanoparticle–formulated,
membrane-anchored SARS-CoV-2 full-length spike protein, was selected to be examined as
a booster dose in our study.

Herein, we conducted the safety and immunogenicity study in healthy adults who
had received a conventional two dosage of inactivated SARS-CoV-2 vaccine (CoronaVac)
with an intradermal booster, using a reciprocal dosage of BNT162b2.
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2. Results
2.1. Study Participants

This study was conducted at the Clinical Research Center, Faculty of Medicine, Prince
of Songkla University, Songkhla, Thailand. Demographics of the study participants are
shown in Table 1.

Table 1. Baseline characteristic of the intramuscular (IM) and intradermal (ID) BNT162b2 (PZ) mRNA vaccine booster in
general population.

Baseline Characteristics Total PZ IM Full PZ IM Half PZ ID p Value

n = 91 (%) n = 30 (%) n = 30 (%) n = 31 (%)

Gender
Female 51 (56.0) 22 (73.3) 13 (43.3) 16 (51.6) 0.054
Male 40 (44.0) 8 (26.7) 17 (56.7) 15 (48.4)

Mean age, y (SD) 39.9 40.8 (9.2) 40.6 (8.1) 38.4 (9) 0.7
Vaccine duration, days (IQR) 21 21 (21,21.8) 21 (21,21.8) 21 (21,22.5) 0.751
Time to booster, days (IQR) 73 73 (69.8,76) 73 (68,74) 73 (69,74) 0.888

Healthy adults, aged 18–60 years (n = 91), having received a two dosage-regimen
of inactivated SARS-CoV-2 vaccine of more than 8 weeks were recruited into this study.
The median of participant age was 39.9 years old, with no differences between the treated
groups. The interval between first and second dose of the inactivated vaccine was 21 days,
and median time to the booster dose (third dose) was 73 days. The CONSORT diagram
is shown in Figure 1. In total, 91 participants were randomised to receive either 0.3 mL
of BNT162b2 intramuscularly (group 1, n = 30) or a half dosage (0.15 mL) of the mRNA
vaccine intramuscularly (group 2, n = 30). For the intradermal group, 31 participants
received one fifth of the mRNA vaccine intradermally (group 3, n = 31). Blood samples
were collected on the day of vaccination, and then 14 and 28 days after vaccination for
immunological analysis.

Vaccines 2021, 9, x FOR PEER REVIEW 3 of 14 
 

 

Herein, we conducted the safety and immunogenicity study in healthy adults who 
had received a conventional two dosage of inactivated SARS-CoV-2 vaccine (CoronaVac) 
with an intradermal booster, using a reciprocal dosage of BNT162b2. 

2. Results 
2.1. Study Participants 

This study was conducted at the Clinical Research Center, Faculty of Medicine, 
Prince of Songkla University, Songkhla, Thailand. Demographics of the study participants 
are shown in Table 1. 

Healthy adults, aged 18–60 years (n = 91), having received a two dosage-regimen of 
inactivated SARS-CoV-2 vaccine of more than 8 weeks were recruited into this study. The 
median of participant age was 39.9 years old, with no differences between the treated 
groups. The interval between first and second dose of the inactivated vaccine was 21 days, 
and median time to the booster dose (third dose) was 73 days. The CONSORT diagram is 
shown in Figure 1. In total, 91 participants were randomised to receive either 0.3 mL of 
BNT162b2 intramuscularly (group 1, n = 30) or a half dosage (0.15 mL) of the mRNA vac-
cine intramuscularly (group 2, n = 30). For the intradermal group, 31 participants received 
one fifth of the mRNA vaccine intradermally (group 3, n = 31). Blood samples were col-
lected on the day of vaccination, and then 14 and 28 days after vaccination for immuno-
logical analysis. 

Table 1. Baseline characteristic of the intramuscular (IM) and intradermal (ID) BNT162b2 (PZ) 
mRNA vaccine booster in general population. 

Baseline Characteristics Total  PZ IM Full PZ IM Half PZ ID p Value 
 n = 91 (%) n = 30 (%) n = 30 (%) n = 31 (%)  

Gender      

Female 51 (56.0) 22 (73.3) 13 (43.3) 16 (51.6) 0.054 
Male 40 (44.0) 8 (26.7) 17 (56.7) 15 (48.4)  

Mean age, y (SD) 39.9 40.8 (9.2) 40.6 (8.1) 38.4 (9) 0.7 
Vaccine duration, days (IQR) 21 21 (21,21.8) 21 (21,21.8) 21 (21,22.5) 0.751 
Time to booster, days (IQR) 73 73 (69.8,76) 73 (68,74) 73 (69,74) 0.888 

 
Figure 1. CONSORT chart. Abbreviations: intradermal (ID); intramuscular (IM). Figure 1. CONSORT chart. Abbreviations: intradermal (ID); intramuscular (IM).

2.2. Immediate and Delay Adverse Events

The adverse event analysis is illustrated in Table 2. There was only one patient in
the intradermal group that developed an immediate adverse event, defined as a local
reaction. Regarding delayed, local reactions, 83.5% had at least one reaction, which was
non-significant between groups (Figure 2A). The reported pain was common in the intra-
muscular groups, while the prevalence of swelling, erythema and palpable nodules were
significantly increased in the intradermal group (51.6%, 87.1%, and 51.6%%, respectively)
(Figure 2B). Regarding delayed systemic reactions, nearly half of the patients had at least
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one systemic reaction. Interestingly, we observed a significantly lower rate of systemic
reactions in the intradermal group (19.4%) compared with 40–70% in the intramuscular
groups (p < 0.001) (Figure 3A). Fever, headache and myalgia were significantly common
in the intramuscular groups (Figure 3B). The treatment data showed most patients in
the intradermal group were in grade 1, while the patients in the intramuscular groups
needed supportive treatment (Figure 3B). However, the medication needed was not sig-
nificant different between groups. At 4 weeks post booster, no serious adverse effects
were observed.

Table 2. Adverse events of the intramuscular (IM) and intradermal (ID) boosting, with BNT162b2 (PZ) in the healthy,
general population.

Total PZ IM Full PZ IM Half PZ ID p Value

Characters n = 91 (%) n = 30 (%) n = 30 (%) n = 31 (%)

Immediate
reaction 1 (1.1) 0 (0) 0 (0) 1 (3.2) 1

Delay reaction
Local reactions 76 (83.5) 27 (90) 21 (70) 28 (90.3) 0.078

Pain 49 (53.8) 23 (76.7) 17 (56.7) 9 (29) <0.001
Swelling 25 (27.5) 7 (23.3) 2 (6.7) 16 (51.6) <0.001
Erythema 33 (36.3) 2 (6.7) 4 (13.3) 27 (87.1) <0.001
Nodule 26 (28.6) 6 (20) 4 (13.3) 16 (51.6) 0.002

Systemic reactions 39 (42.9) 21 (70) 12 (40) 6 (19.4) <0.001
Fever 6 (6.6) 5 (16.7) 0 (0) 1 (3.2) 0.029
Chill 8 (8.8) 5 (16.7) 2 (6.7) 1 (3.2) 0.165

Fatigue 12 (13.2) 3 (10) 4 (13.3) 5 (16.1) 0.925
Headache 17 (18.7) 10 (33.3) 5 (16.7) 2 (6.5) 0.025
Myalgia 24 (26.4) 15 (50) 7 (23.3) 2 (6.5) <0.001

Treatment (n = 39) 0.253
Grade 1 21(53.8) 9 (42.9) 7 (58.3) 5 (83.3)
Grade 2 18 (46.2) 12 (57.1) 5 (41.7) 1 (16.7)
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Figure 2. Solicited local adverse reactions at 30 min and 7 days after boosting. Full dose (blue) and half dose (orange)
of intramuscular mRNA booster, after completed vaccination with two doses of inactivated SARS-CoV-2. Some of the
previously vaccinated individuals were boosted with a fractional dose of intradermal mRNA vaccine (yellow). (A) The
immediate and delayed local reactions were observed after injection. (B) Seven days after boosting, local adverse events
were recorded for comparing between booster groups.
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Figure 3. Solicited systemic adverse reactions at 7 days after boosting. Full dose and half dose of
the mRNA vaccine were given intramuscularly after two doses of inactivated SARS-CoV-2 vaccines
(PZ IM, full dose and half dose). One-fifth of the standard mRNA vaccine dose was delivered
intradermally (PZ ID, 1:5 dose). (A) The systemic adverse events were graded, as per medical
needs, and presented in percentage. The self-limited systemic reactions were grade 1 (green). The
reactions requiring medications were grade 2 (orange), in need of medical attention were grade 3 (red).
(B) Systemic reactions were presented separately to compare between the three vaccinated groups.

2.3. SARS-CoV-2 Anti-RBD Antibody Responses Induced by Intradermal and Intramuscular
BNT162b2 Booster

Anti-RBD IgG levels have been purposed as an immune correlate of protection against
SARS-CoV-2 infection [22]. For antibody analysis, blood was drawn and processed. Serum
samples were analysed to examine the antibody responses before and after the booster.
The level of anti-RBD IgG was measured before boosting in participants who had com-
pleted two doses of the inactivated vaccine. After 14 days of receiving the intramus-
cular booster, the antibody responses were significantly increased in sera of volunteers
boosted with a full dose of the mRNA vaccines compared to the non-boosted group
(median = 3884 and 52 BAU/mL, respectively, p < 0.0001) (Figure 4A). The reciprocal
dose of the intramuscular mRNA booster slightly enhanced fewer antibody responses
(median = 2837 BAU/mL) compared to the conventional booster (p = 0.0505) (Figure 4A).
The intradermal booster using one fifth of the standard dosage enhanced half of the IgG
responses (median = 1962 BAU/mL) obtained from conventional boosting. After 28 days
of receiving the booster, the antigen-specific IgG remained significant in all the boosted
groups and was higher compared to the baseline responses (p < 0.0001) (Figure 4A). The
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levels of the antibody responses 4 weeks after boosting were slightly decreased compared
to the earlier timepoint, but the differences were not statistically significant (Figure 4A).
The antibody responses on day 28 followed the same pattern with day 14. The standard
dose boosted group remained superior in enhancing IgG responses compared to the half
dose group (median = 2622 and 1952 BAU/mL, respectively), but the difference was ap-
proaching significance (p = 0.0616) (Figure 4A). Again, the fractional intradermal booster
enhanced significantly fewer antibody responses (median = 1205 BAU/mL) compared to
the conventional intramuscular boosted group (p < 0.0001) (Figure 4A).
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Figure 4. Antibody responses and neutralising function after boosting. Participants who had received two doses of
inactivated SARS-CoV-2 vaccines were recruited in this study (SV SV). Conventional (full dose) and fractional dose (half
dose) of the mRNA vaccine were administered intramuscularly (SV SV PZ IM). The fractional dose (1:5 dose) of the mRNA
boost was delivered intradermally (SV SV PZ ID). Blood was collected pre (D0) and post boosting 14, 28 days (D14, D28).
(A) Serum samples were analysed using CMIA to measure anti-RBD IgG. (B) Neutralising antibodies against the Delta
variant was tested using PRNT. Convalescent sera were included as controls. Each symbol represents one participant,
and the number is the median of each group (n = 30–31 volunteers). Statistical significance was determined using the
Kruskal–Wallis test, with Dunn’s multiple comparisons test. *** p ≤ 0.001; **** p ≤ 0.0001.

2.4. Neutralising Antibody against the Delta Variant after Being Boosted with BNT162b2;
Intradermally and Intramuscularly

Neutralising antibodies have been showed to correlate with the protectivity of vaccines
against the SARS-CoV-2 variants of concern [8,9]. The serum samples were serially diluted
before being tested with the live virus. The ability to reduce the infectivity of the virus
by 50 percent was presented in this study. More than 8 weeks after two doses of the
inactivated vaccines, the neutralising of antibodies against the Delta strain was observed
(Figure 4B). Reciprocal antibody titres of the SV SV baseline were less than the titre obtained
from convalescent sera from previously infected individuals with Delta strains and other
2020 strains (Figure 4B). After 14 days of receiving the booster with the mRNA vaccine,
the neutralising antibody activity was significantly improved in all the boosted groups
compared to the baseline (p < 0.0001) (Figure 4B). Conventional intramuscular boosters
provided significantly higher neutralisation against the Delta variant compared to the
fractional intramuscular booster (p = 0.0058) (Figure 4B). The neutralising titres in the
intradermal group were not significantly different compared to the intramuscular controls.
However, there was a trend for lower neutralising activity when boosted intradermally with
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a one fifth dose of the mRNA vaccine compared to the full dose boosted intramuscularly
(p = 0.1272) (Figure 4B).

2.5. T Cell Responses Induced by Intradermal and Intramuscular BNT162b2 Boosters

While antibody responses provide neutralising functions against the virus entering the
body and host cells, cellular responses, especially T cells, play a crucial role in eliminating
the virally infected cells [23]. Herein, we analysed PBMCs collected before and after the
mRNA vaccine booster. The cells were stimulated ex vivo with S1 peptide pools. The
IFN-γ producing cells were then stained and counted to be measured. T cell responses
were observed in volunteers previously immunised with inactivated SARS-CoV-2 vac-
cines (Figure 5). After 14 days of boosting, the IFN-γ secreting T cells were significantly
increased after intramuscular boost with both conventional and fractional doses of the
mRNA vaccine compared to the baseline (p = 0.0139 and 0.0282, respectively) (Figure 5).
Reducing the dose by half did not affect T cell responses when boosted intramuscularly
(Figure 5). The fractional intradermal boost failed to enhance the T cell responses, show-
ing no difference between pre and post boosting. Significant differences were observed
between the booster routes. The intramuscular boost with a full dose or half dose of the
mRNA vaccine provided superior levels of IFN-γ SFCs compared to the intradermal route
(p = 0.0305 and 0.0589) (Figure 5).
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Figure 5. T cell responses after boosting. All volunteers were previously vaccinated with two doses
of inactivated SARS-CoV-2 vaccines (SV SV). The fractional dose (1/5 dose) of the mRNA vaccine
was injected intradermally, as a booster dose (SV SV PZ ID). Full doses and half doses of the mRNA
vaccine were immunised intramuscularly as a standard route of injection (SV SV PZ IM). Blood was
drawn before (D0) and after the booster dose for 14 days (D14). The blood samples were processed to
obtain PBMCs. The fresh PBMCs were stimulated with S1 peptide pools, before measuring IFN-γ
secreted cells, using ELISpot. Each symbol represents one participant, and the number is the median
of each group (n = 30–31 volunteers). Statistical significance was determined using the Kruskal–Wallis
test, with Dunn’s multiple comparisons test. *, p ≤ 0.05; ns = non significance.
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3. Methods
3.1. Study Procedures

This study was registered in the Thai Clinical Trials Registry (TCTR20211004001).
Before enrolment, all participants provided written informed consent. The approval was
obtained from the Human Research Ethics Committee (REC. 64–368–4–1). The trial was
conducted according to the principles of Good Clinical Practice.

3.2. Immediate and Delayed Adverse Events

Immediate local and systemic adverse events were monitored for 30 min after injection.
Local reactions were measured as millimeter of wheal and flare, and systemic reactions
were observed by vital signs recorded after finishing the 30-minute observation. The
delayed adverse events were monitored at seven days and 4-weeks after the booster. The
participants were retrieved from telephone-based interviews, by experienced research
nurses at seven days, and they completed a questionnaire regarding adverse events at 4
weeks after the booster. Delayed adverse events were categorised into either: local and
systemic reactions. The severity of the reaction was graded into 3 levels. No medication
required was grade 1, medication required was grade 2 and a doctors’ attention required
was grade 3. The rates of each adverse reaction are reported in this study.

3.3. Sample Processing

Blood samples were collected on the day of vaccination and then 14 and 28 days after
the 3rd dose. Blood samples were obtained and divided between a clotted blood tube
and a heparinised tube. Samples were processed within 4–6 h of the blood draw. The
clotted blood samples were processed for serum collection. The tubes were centrifuged at
1800 r.p.m. for 10 min, and the serum was harvested for storage at −80 ◦C until required.
The heparinised blood tubes were processed for the collection of PBMCs and plasma,
by density gradient centrifugation. Blood from the same participant was pooled into a
50 mL conical centrifuge tube and spun to separate blood plasma. The plasma was then
collected and stored at −80 ◦C. The remaining blood samples were diluted with RPMI
(Gibco) and laid into SepMATE tube containing Lymphoprep (STEMCELL Technologies).
The samples were then centrifuged at 1200× g for 10 min with the brake on. The top
layer was poured into a fresh 50 mL tube and topped up with RPMI, then spun 300 g for
8 min. The cell pellet was washed again with RPMI. After the last wash, the cell pellet was
resuspended in 3 mL of R10 media (RPMI-1640 containing 1% penicillin–streptomycin,
2 mM L-glutamine and 10% fetal calf serum (FCS, Labtech) for counting. Cells were
diluted in Trypan blue, and counted using a counting chamber for use in fresh assays or for
cryopreservation. All remaining cells were centrifuged (300× g for 8 min) and adjusted into
a concentration of 3 × 106 PBMCs per mL in freezing media (FCS containing 10% DMSO).
The cell suspensions were aliquoted and transferred to CoolCells (Corning) for freezing at
−80 ◦C overnight. Tubes were then transferred into liquid nitrogen storage until required.

3.4. Quantification of SARS-CoV-2 Anti-S RBD Antibodies

The level of immunoglobulin G (IgG) to the receptor binding domain (RBD) of S1
subunit spike protein of SARS-CoV-2 were measured and quantified in serum samples by
using ARCHITECT i System (Abbott, Abbott Park, IL, USA) chemiluminescent microparti-
cle immunoassay (CMIA) (SARS-CoV-2 IgG II Quant, Abbott Ireland, Sligo, Ireland), with a
measuring reportable range from 6.8 Abbott Arbitrary Unit (AU/mL) to 80,000.0 AU/mL.
Values higher than 50 AU/mL were considered positive. Regarding the unit, WHO sug-
gests the WHO binding antibody unit (WHO BAU/mL) to be used with the SARS-CoV-2
IgG II Quant assay. The correlation between relationships of the AU/mL unit to the WHO
BAU/mL unit is at 0.142 × AU/mL, with a 0.999 correlation coefficient.
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3.5. Plaque Reduction Neutralisation Test (PRNT)

In this study, PRNT was performed by the Institute of Biological Products’; a WHO-
contracted laboratory at the Department of Medical Sciences. Vero cells were seeded at
2 × 105 cells/well/3 mL and placed in a 37 ◦C, 5% CO2 incubator for 1 day. Test sera
were initially diluted at 1:10, 1:40, 1:160 and 1:640, respectively. SARS-CoV-2 virus was
diluted in culture medium to yield 40–120 plaques/well in the virus control wells. Cell
control wells, convalescent patient serum samples were also included as assay controls. The
neutralisation was performed by mixing the equal volume of diluted serum and the optimal
plaque numbers of SARS CoV-2 virus at 37 ◦C in water bath for 1 h. After removing the
culture medium from Vero cell culture plates, 200 ul of the virus-serum antibody mixture
were inoculated into monolayer cells and then rocked with the culture plates every 15 min
for 1 h. Three mL of overlay semisolid medium (containing 1% of carboxymethylcellulose,
Sigma Aldrich, St. Louis, MO, USA, with 1% of 10,000 units/mL Penicilin-10,000 ug/mL
Streptomycin (Sigma, Tucson, AZ, USA) and 10% FBS) were replaced after removing
excessive viruses. All plates were incubated at 37 ◦C, 5% CO2 for 7 days. Cells were fixed
with 10% (v/v) formaldehyde, then stained with 0.5% crystal violet in PBS. The number of
plaques formed was counted in triplicate wells, and the percentage of plaque reduction at
50% (PRNT50) was calculated. The PRNT50 titre of test samples is defined as the reciprocal
of the highest test serum dilution for which the virus infectivity is reduced by 50% when
compared with the average plaque counts of the virus control. This was calculated by
using a four-point linear regression method.

3.6. Ex vivo IFN-γ ELISpot Assays

ELISpot assays were performed on freshly isolated PBMCs before and after the booster
dose. The MultiScreen-IP Filter plates (Millipore, Burlington, MA, USA) were coated with
10 µg/mL of human anti-IFN-γ coating antibodies (clone 1-D1K, Mabtech, Sweden) in
a carbonate buffer (Sigma-Aldrich, Burlington, MA, USA), and stored at 4 ◦C overnight.
The coated plates were washed three times with PBS and blocked with R10 media for at
least 1 h at 37 ◦C. After the blocking, 2.5 × 105 PBMCs were added into assigned wells
along with the S1 SARS-CoV-2 peptide pool. A total of 134 peptides were made, as 15-mers
overlapping by 10 amino acids (ProImmune, Oxford, UK) and used at a final concentration
of 2 µg/mL. Each assay was performed in duplicate and incubated for 16–18 h at 37 ◦C
with 5% CO2. Plates were developed by washing six times with PBS/T, followed by the
addition of 1 µg/mL of anti-IFN-γ detector antibody (7-B6-1-Biotin, Mabtech) to each well.
After a 2-h incubation, plates were washed again, and 1:1000 SA-ALP was added for 1 h
at RT. After a final wash step, plates were developed using BCIP NBT-plus chromogenic
substrate (Mabtech). ELISpot plates were counted using an Immunospot Microanalyzer

(Cellular Technology Limited). Responses were averaged across duplicate wells, and
the mean response of the unstimulated (negative control) wells were subtracted. Results
are shown as SFCs/106PBMCs.

3.7. Statistical Analysis

Statistical analyses were completed using GraphPad Prism 9 software (GraphPad
Software Inc., San Diego, CA, USA). To define the statistical significance, the Mann–Whitney
test was used to compare two groups, while the Kruskal–Wallis followed by Dunn’s
multiple comparisons test, were tested when analysing multiple groups. Values of a
p ≤ 0.05 were considered as statistically significant. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001,
**** p ≤ 0.0001, ns = non significance.

4. Discussion

This study highlights the differences in humoral and cellular immune responses
between heterologous vaccination with a conventional intramuscular booster and fractional
intradermal booster of the mRNA vaccine (BNT162b2) from healthy volunteers having been
administered with two doses of the inactivated SARS-CoV-2 vaccine. Additionally, systemic
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adverse reactions among those receiving an intradermal fractional dose of BNT162b2 were
significantly decreased compared to those receiving an intramuscular conventional dose
of BNT162b2. Unfavorable local reactions were not commonly observed among those
receiving both routes of the BNT162b2 booster.

Intradermal injection impressively minimized the systemic adverse reactions, which
have been indicated in previous studies, including ours [20,21]. The self-limited local
reactions have been observed in the vaccination route, and shown to be dose dependent.
In this study, even though the fractional dose using one fifth of BNT162b2 mRNA vaccine
provided fewer antibody responses compared to the conventional dose and route, minimal
favourable local and systemic side effects were seen. This suggests that there is a possibility
for dose escalation, titrating the dosage to reach expected immunity levels within acceptable
adverse reactions. Moreover, the results of this study may provide an alternative vaccine
administration route in people who develop systemic reactions from prior injections,
leading to the situation of vaccine reluctance.

This study showed the decrease of antibody responses after 8 weeks post vaccination
among people who had received two doses of an inactivated SARS-CoV-2 vaccine compared
to previous studies [24,25]. The immunological responses of the participants were markedly
low in both antibody and T cell responses. Without a booster dose, these participants
were at risk for SARS-CoV-2 infection, and severe clinical outcomes [26]. The decline of
vaccine efficacy to prevent infection along with severity indicated an urgent need of the
heterologous boosting concepts, following the conventional two doses of the inactivated
SARS-CoV-2 vaccine. In many countries, including Thailand, most people were vaccinated
with two doses of an inactivated SARS-CoV-2 vaccine (CoronaVac). The recent outbreak
could be explained by the waning immunity after an inadequate vaccination program [27].
Our findings provide alternative vaccine management to increase vaccine coverage and
boosted host immunity against new, emerging viral strains.

The shortage of COVID-19 vaccine has been reported in several countries [28]. To
increase vaccine distribution and to achieve heard immunity, most of the vaccines have
been prioritised to unvaccinated people, which makes it difficult to obtain vaccines for
boosting [29]. Our findings purposed a reasonable solution by using less vaccine volume,
combined with an intradermal injection. The immunogenicity in this study was consistent
with previous reports on intradermal coronavirus vaccines in various platforms. Interest-
ingly, a fractional dose of mRNA-1273 (Moderna) provided comparable antibody responses
with that of a conventional dose and route of vaccination [21,30,31]. However, our results
suggest that antibody levels obtained from the BNT162b2 booster appeared to be dose
dependent. This could be explained by the actual dose contained in each vaccine type.
The mRNA-1273 vaccine contain higher doses (100 µg) compared to the BNT162b2 mRNA
vaccine (30 µg), or the mRNA-1273, which is just simply more immunogenic compared to
another mRNA vaccine [32,33].

Humoral and cellular responses after receiving a fractional dose of the intradermal
boost were inconsistent with several vaccine studies on other viral infections, using dif-
ferent vaccine platforms [34,35]. Intradermal vaccination provided comparable responses
compared to intramuscular injection in adeno viral vector vaccines against COVID-19
and malaria (Pinpathomrat et al. unpublished data) [20]. Interestingly, we found that
BNT162b2 enhanced strong immune responses when it was delivered intramuscularly
but the responses were halved when injected intradermally. A possible explanation is the
abundance of dendritic cells that could be infected by viral vectors, and work as an antigen
presenting cell at the lymph nodes, so as to augment T helper 2 axis, which activate B
cells to produce antigen-specific antibodies [36]. However, when the mRNA vaccine was
injected intradermally, dendritic cells could not effectively uptake the vaccine materials,
resulting in less immune reactions/responses when compared to intramuscular injection,
which enhanced T helper 1 responses. However, local dendritic cells at the injection site
can cause a local reaction among those receiving a fractional intradermal vaccine [20,21].
The explanation for the less systemic reaction among those receiving an intradermal vac-
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cine is unclear, while the proposed explanation is for dose-dependent associated systemic
reactions [20,21]. However, no study has evaluated the immunogenicity and reactogenicity
of intradermal BNT162b2 (Pfizer) as a first dose.

Antigen-specific antibodies and neutralising antibody levels have been purposed
as immune correlations of protection against SARS-CoV-2. Higher levels of antibod-
ies have been observed in highly protective vaccines, such as mRNA and viral vector
vaccines [22,26]. Therefore, anti-RBD-IgG were used for measuring the primary outcome
of this study, which has shown no differences between the conventional intramuscular
booster and afractional intradermal booster. The neutralising assays performed in pre-
clinical and phase I studies of the current vaccines were tested against the wild-type
strains [37–40]. However, the vaccine efficacy has been reported to be decreased during the
breakthrough of the recently mutated virus [7]. Neutralising activity against new variants
of live viruses is the closest method to predict a vaccines performance [9,26]. In the sera
of vaccinated participants, the antibody neutralising function against the Delta strain was
significantly improved after both intradermal and intramuscular boosting. Without boost-
ing, the neutralising function was poor, which is consistent with previous reports showing
low neutralising activity after completion of two doses of the inactivated vaccine [9]. The
protective efficacy of the intradermal booster is still being evaluated in a larger population.

T cell responses are crucial to evaluate immunogenicity of the vaccines, especially
in pre-clinical studies and phase I trials [37–42]. The T cell analyses are usually differ-
ent in each study, but IFN-γ producing T cells were favourable to observe for cellular
responses in vaccine trails [37,38,43]. This study observed a higher response of IFN-γ
secreted T cells after boosting with the intramuscular mRNA vaccine booster compared
to intradermal injection. This is consistent with previous studies on T cell responses after
being vaccinated with two doses of intramuscular BNT162b2 [44]; however, no study has
shown T cell responses after intradermal vaccination with this mRNA vaccine. Compara-
ble T cell responses between intradermal and intramuscular injection were observed after
immunisation with ChAd63 viral vector vaccine expressing malarial antigens as well as
in our unpublished data on intradermal ChAdOx1 nCoV-19 [20]. Comprehensive T cell
studies are still needed concerning immune correlates of protection, and to understand the
difference between intramuscular and intradermal vaccination.

Several limitations should be acknowledged. First, our study provides reassurance
of BNT162b2 (Pfizer) vaccine tolerability and safety, wherein most reactions were mild
and transient. However, the specific, serious adverse events, such as myocarditis or
intradermal adverse reactions, as in skin necrosis, were not reported due to the small
number of participants.

Due to the relatively short duration of the study, protectivity against the infection and
disease severity was not possible to access. The study focused on a previously vaccinated
population, with inactivated SARS-CoV-2 (Sinovac); therefore, it is limited in applying
the findings to other vaccine platforms. BNT162b2 (Pfizer) was the only booster vaccine
examined in this study. Hence, applications of other mRNA vaccines or other vaccine
strategies remain unclear. The interval of more than 8 weeks between the completed
vaccination and the booster was enrolled in this study, which means its application is
limited for the shorter intervals.

Further data supporting the ongoing evaluation of the intradermal booster of the
BNT162b2 vaccine, in a larger population, so as to observe rare reactogenicity and evaluate
the booster efficacy is required.

5. Conclusions

A phase I clinical trial of an intradermal BNT162b2 mRNA booster, in healthy volun-
teers who completed two dosages of an inactivated SARS-CoV-2 vaccine was conducted
in Songklanagarind hospital, Thailand. Local and systemic reactions as well as antibody
and T cell responses of this heterogenous vaccination were evaluated. It was found that a
fractional dose (one fifth) of the BNT162b2 mRNA vaccine, administered intradermally,
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can greatly reduce systemic reactions compared to a full dose of an intramuscular booster.
Interestingly, immune responses obtained from the reciprocal boosting were high, but less
than the conventional booster with a full dose vaccine. Even though the antibody levels
after intramuscular injection of the mRNA vaccine were superior compared to the fractional
intradermal boosting, the neutralising function against the Delta variant of SARS-CoV-2
seemed to be comparable between these two routes of vaccination. T cell responses were
also observed following the same trend with the serology data.

Our results have potential for significant impact during the breakthrough of the
Delta strain in Thailand, and in many other countries. The inactivated SARS-CoV-2
vaccines were initially introduced, which now require a booster. While the vaccine coverage
is still not effective enough to generate herd immunity; reciprocal boosting using the
intradermal route is a crucial tool to enhance immunity with fewer vaccine amounts, and
more importantly, fewer side effects.
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