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Abstract

In Vietnam, a great number of toxic substances, including carcinogens and procarcinogens,

from industrial and agricultural activities, food production, and healthcare services are daily

released into the environment. In the present study, we report the development of novel

yeast-based biosensor systems to determine both genotoxic carcinogens and procarcino-

gens by cotransformation with two plasmids. One plasmid is carrying human CPR and CYP

(CYP3A4, CYP2B6, or CYP2D6) genes, while the other contains the RAD54-GFP reporter

construct. The three resulting coexpression systems bearing both CPR-CYP and RAD54-

GFP expression cassettes were designated as CYP3A4/CYP2B6/CYP2D6 + RAD54 sys-

tems, respectively and used to detect and evaluate the genotoxic potential of carcinogens

and procarcinogens by selective activation and induction of both CPR-CYP and RAD54-

GFP expression cassettes in response to DNA damage. Procarcinogens were shown to be

predominantly, moderately or not bioactivated by one of the CYP enzymes and thus selec-

tively detected by the specific coexpression system. Aflatoxin B1 and benzo(a)pyrene were

predominantly detected by the CYP3A4 + RAD54 system, while N-nitrosodimethylamine

only moderately activated the CYP2B6 + RAD54 reporter system and none of them was

identified by the CYP2D6 + RAD54 system. In contrast, the genotoxic carcinogen, methyl

methanesulfonate, was detected by all systems.

Our yeast-reporter system can be performed in 384-well microplates to provide efficient

genotoxicity testing to identify various carcinogenic compounds and reduce chemical con-

sumption to about 53% as compared with existing 96-well genotoxicity bioassays. In associa-

tion with a liquid handling robot, this platform enables rapid, cost-effective, and high-throughput
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screening of numerous analytes in a fully automated and continuous manner without the need

for user interaction.

Introduction

Carcinogens are either genotoxic or nongenotoxic [1]. Genotoxins, such as alkylating agents,

can bind to DNA forming DNA adducts and cause damage to the DNA or mutations, which

may lead to cancer, while nongenotoxins do not directly cause DNA damage but promote

growth or alter the expression or repression of genes by different cellular processes [2, 3]. Con-

versely, procarcinogens, such as polycyclic aromatic hydrocarbon (PAHs), mycotoxins, etc.,

become carcinogenic only after they are transformed in metabolic processes including bioacti-

vation by cytochrome P450 monooxygenases (CYPs) [4–6]. These chemicals are found every-

where in the environment, including water, air, soil and food. In Vietnam, a great number of

toxic substances, including carcinogens and procarcinogens, e.g. pesticides [7], cadmium,

arsenic [8, 9], aflatoxins [10, 11], PAHs [12–14], etc., from industrial and agricultural activities,

food production, and healthcare services have been released into the environment in recent

years. In 2014, 194 food poisoning outbreaks were reported to the Vietnam Food Administra-

tion (VFA), affecting over 5000 people [15]. Thus, development of biosensors for detection of

both carcinogens and procarcinogens is of specific interest in Vietnam. Among possible ana-

lytical approaches, biosensors offer various advantages over other current analytical methods

in particular the possibility of identifying not further specified chemicals. Furthermore, bio-

sensors provide functional information on biological effects, such as cytotoxic and genotoxic

effects [16]. In contrast, traditional physicochemical methods, like HPLC or GC-MS, mainly

provide analytical information like absolute concentrations of known chemicals [17, 18].

Thus, when substances are new, unknown or not yet deposited in the databases, they cannot

be identified by these approaches. Biosensors will not compete but rather complement official

physicochemical methods, with specific benefits in environmental monitoring, food safety and

quality control, drug testing and other uses where genotoxicity tests are needed to determine

potential genotoxic and mutagenic hazards.

Our previous study reported that yeast-based biosensors carrying a green fluorescent pro-

tein (GFP)-encoding gene under the control of DNA damage-inducible promoters, DIN7,

PLM2, RNR2, or RAD54, could be used to identify genotoxic or carcinogenic compounds [19],

but were not able to detect procarcinogens, e.g., aflatoxins. This observation can be attributed

to the fact that procarcinogenic compounds require biotransformation into carcinogens by

cytochrome P450 monooxygenases (CYPs) and NADPH-cytochrome P450 reductase (CPR).

Human CYPs belong to the superfamily of membrane-bound proteins that are responsible for

the oxidative and reductive metabolism of foreign compounds (xenobiotics) including drugs,

steroid hormones, and fatty acids. The detoxification of xenobiotics takes place in two phases.

In phase I (functionalisation), the CYPs are responsible for the addition of functional groups

to xenobiotics by hydroxylation, dealkylation, deamination, etc.; in phase II (conjugation),

transferases use those groups to couple charged molecules making the modified compounds

more water soluble so that they can be excreted in the urine [20]. Moreover, for catalytic activ-

ity, CYP reactions require the cofactor NADPH as the source of electrons and CPR as the elec-

tron transfer partner [21, 22]. In addition to their detoxification function, many CYPs

(CYP2B6, CYP2C9, CYP2D6, CYP2E1, CYP3A4, etc.) are also known for bioactivation of

harmless chemicals or procarcinogens, e.g. PAHs, nitrosamines, aflatoxins, into their

RAD54 Cytochrome P450 Biosensor
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carcinogenic metabolites or carcinogens [23, 24]. It is also documented that many other chemi-

cal carcinogens, such as aromatic amines, vinyl and ethyl carbamates, sterigmatocystin, are not

active in themselves, however after bioactivation by CYPs the resulting electrophiles can bind

covalently to DNA and lead to DNA damage or mutations [25–27]. For example, CYP3A4

enzymatically catalyzes conversion of aflatoxin B1 and PAHs, producing their carcinogenic iso-

forms, CYP2B6 is involved in bioactivation of aflatoxin B1 and 4-(methylnitrosamino)-1-

(3-pyridyl)-1-butanone (NNK) through hydroxylation reactions, and CYP2E1 contributes to

conversion of N-nitrosodimethylamine and NNK to mutagenic stereoisomers [20, 26, 27]. Of

many such potential carcinogens, the hazardous substances that can arise from untreated indus-

trial wastewater and contaminated food products, such as PAHs, N-nitrosodimethylamine, ster-

igmatocystin, aflatoxin B1, have attracted greater public concern in Vietnam. This also led to

more regulatory attention. From the beginning of 2015, the Vietnam Food Administration

(VFA), Vietnam Ministry of Health warned the population about emerging outbreaks of food

poisoning, foodborne and waterborne diseases.

Yeast cells share the same basic cellular components and fundamental biochemical path-

ways and possess endogenous CYP enzymes for metabolising xenobiotics like mammalian

cells. DNA repair mechanisms between yeast and mammalian cells are functionally inter-

changeable. To determine whether human CYP genes could be used to develop yeast-based

biosensors for detection of procarcinogens, we improved our previously developed yeast-

based biosensor, that could only detect genotoxic carcinogens [19], by transformation with

two plasmids: a newly developed plasmid bearing both human CPR and CYP (3A4, 2B6, or

2D6) genes, and the already previously used plasmid containing the RAD54-GFP reporter con-

struct [16, 19, 28]. In cells transformed with both plasmids and exposed to procarcinogens,

CYP enzymes would be responsible for converting a specific substrate into the carcinogenic

metabolite able to induce the activity of the DNA damage-inducible RAD54 promoter trigger-

ing expression of GFP. In consequence, the novel yeast-based biosensor presented here would

be able to detect both carcinogens and procarcinogens. A set of R packages and Excel macros

developed and applied in our earlier studies [19, 29] were used to execute all steps, including

liquid handling and pipetting, measurements, data processing and analyzing, of experiments

in a fully automated and continuous manner without the need for user interactions.

Results

Cytochrome P450 monooxygenases (CYPs) have been central to the study of toxicology, since

they are involved in metabolism of endogenous molecules, detoxification and biotransforma-

tion of xenobiotics, drug-drug and drug-food interactions, and bioactivation of potential car-

cinogens and other pollutants. Unlike bacterial CYPs, mammalian CYPs require an electron

source, the electron transfer partner, such as NADPH-cytochrome P450 reductase (CPR), to

show their catalytic activity. Thus, in order to use CYP enzymes as a component of yeast-based

biosensors, the activity of CPR and CYPs was first determined.

Activity of CPR and CYPs

The activity of NADPH-cytochrome P450 reductase (CPR) was detected by reduction of cyto-

chrome c in all microsomes of clones bearing the CPR gene regardless of the vector type, either

coexpressing both CPR and CYP genes (3A4+, 2B6+, or 2D6+) or expressing only the CPR
gene (CPR–). The microsomes of clones transformed with the control pESC-URA plasmid

(without heterologous CPR gene) did not show any reductase activity (NC; Fig 1A), although

S. cerevisiae possesses its own endogenous oxidoreductase.

RAD54 Cytochrome P450 Biosensor
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For CYP activity, only microsomes containing properly folded CYPs that were confirmed

by reduced CO-difference spectra with a peak at 450 nm were introduced to the activity assay.

The microsomes of coexpression clones (3A4+, 2B6+, and 2D6+) were probed for activity as

they catalyzed the deethylation of the substrate, 7-ethoxycoumarin-3-carbonitrile, to form the

fluorescence product, 7-hydroxycoumarin. The formation of this fluorescence product was

not observed in single expression clones (3A4–, 2B6–, 2D6–, CPR–, NC; Fig 1B). Since micro-

somes harboring only one gene CYP3A4,CYP2B6, or CYP2D6 (3A4–, 2B6–, 2D6–) or CPR
(CPR–) did not yield CYP activity, the results confirmed that coexpressed CPR acted as the

electron transfer system or redox partner.

Furthermore, the amount of the fluorescence product generated from metabolism of the

substrate varied between recombinant CYP enzymes of coexpression clones. The fluorescence

signal measured from the 2D6+ clone was apparently higher than that measured from 2B6+

and 3A4+ clones (Fig 1B). The values of kinetic parameters, Km, Vmax and Vmax/Km, deter-

mined by nonlinear regression analysis (R function nls) for the 3A4+, 2B6+, and 2D6+ clones

were 3.5, 3.7, and 2.1 μM (Km); 3.2, 2.7, and 4.7 pmol/pmol CYP/min (Vmax); 0.9, 0.7, and

2.2 μL/pmol CYP/min (Vmax/Km), respectively. The values were independently confirmed by

Lineweaver–Burk plot. The 2D6+ clone represented a lower Km and a higher Vmax value, i.e.

higher affinity and higher maximum velocity, as compared with the 3A4+ and 2B6+ clones.

These findings not only demonstated the CYP activity of coexpression clones but also showed

that CYP2D6 has a higher specificity for this substrate than the other two recombinant CYP

enzymes, 2B6+ and 3A4+ (Fig 1B).

Fluorescence induction of the systems carrying different gene constructs

In a first effort, the yeast strains bearing different gene constructs were treated with serial dilu-

tions of aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), N-nitrosodimethylamine (NDMA), and

methyl methanesulfonate (MMS) to identify and investigate their genotoxic potential. Fig 2

represents the fluorescence production of three systems: a coexpression system (CYP3A4 +

RAD54) harboring both CPR-CYP3A4 and RAD54-GFP constructs in two separate vectors, a

single expression systems (RAD54) carrying only the RAD54-GFP construct in one vector, and

the non-expression system (NCs) bearing two control vectors.

Fig 1. Activity test of recombinant human CPR (A) and recombinant human CYP3A4, CYP2B6, and CYP2D6 (B). 3A4+, 2B6+, and 2D6

+ are microsomes of clones coexpressing both CPR and CYP genes; 3A4–, 2B6–, and 2D6– or CPR–are microsomes of clones expressing only

one gene, the CYPs or CPR, respectively; NC (negative control) are microsomes of clones bearing the control pESC-URA plasmid. The standard

deviation values of the measurements of fluorescence microplate assay (B) were all less than 5% of the calculated values and are thus not

presented here.

doi:10.1371/journal.pone.0168721.g001
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In the present study, the fluorescence intensity of GFP expressed as GFP fold induction

[19] was taken from the linear range of the detected signal and should be directly proportional

to increasing concentrations of investigated analytes (Fig 2). Similar to the findings from our

earlier studies [19, 28], the measured fluorescence signal was dependent on the systems bear-

ing different gene constructs, and on the chemical properties and concentrations of test com-

pounds. The CYP3A4 + RAD54 system produced a signal above the genotoxicity threshold,

which was also directly proportional to increasing concentrations of AFB1, BaP, and MMS

(Fig 2A, 2B and 2D, respectively) but not to those of NDMA (Fig 2C). For the RAD54 system,

the fluorescence signal was only directly proportional to increasing concentrations of MMS

(Fig 2D) but not to those of AFB1, BaP, and NDMA, with no significant GFP fold induction

below the genotoxicity threshold (� 1.3) at all concentrations (Fig 2A, 2B and 2C, respec-

tively). Furthermore, the system harboring only two control vectors (negative control, NCs)

produced no signal at any tested concentration of the substances (Fig 2). Thus, the cotrans-

formed CYP3A4 + RAD54 system was able to induce fluorescence when treated with either

procarcinogens (AFB1 and BaP) or genotoxic carcinogen (MMS), while the single transformed

RAD54 system only produced a fluorescence signal when treated with the genotoxic carcino-

gen (MMS). The fluorescence induction in response to these investigated compounds was also

Fig 2. Fluorescence induction in yeast cells transformed with different gene constructs in response to DNA damage. Yeast-based

biosensors were either nontreated (NT, control) or exposed to increasing concentrations of AFB1 (A), BaP (B), NDMA (C), and MMS (positive

genotoxin, D). CYP3A4 + RAD54: strain transformed with both CPR-CYP3A4 and RAD54-GFP constructs; RAD54: strain transformed with only

the RAD54-GFP construct; NCs (negative control) system: strain transformed with two control pESC-URA and pUMGP5 plasmids. The GFP

fluorescence intensity of measurements was compared within linear range of GFP signals by calculation of GFP fold induction. The horizontal

dashed line at 1.3 fold GFP induction is used as cutoff or genotoxicity threshold. Other negative (untransformed yeast cells) and process (medium)

controls are not presented here.

doi:10.1371/journal.pone.0168721.g002
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observed in the other coexpressing systems, cotransformed with vectors including either

CYP2B6 or CYP2D6 genes. These alternative coexpression systems contained the following

two separate expression vectors, CPR-CYP2B6 and RAD54-GFP or CPR-CYP2D6 and

RAD54-GFP, respectively.

Validation and evaluation of fluorescence induction in different

coexpressing systems

The three coexpression systems, CYP3A4/CYP2B6/CYP2D6 + RAD54, were exposed to vary-

ing serial dilutions of three procarcinogens (AFB1, BaP, NDMA) and a genotoxic carcinogen

(MMS, a positive control). The GFP fold induction interpreted as positive (+)/ negative (–) sig-

nals [19] of all systems in response to test compounds is summarized in Table 1.

The higher positive signals indicate higher levels of DNA damage whereas negative signals

indicate that no genotoxic effect was caused by the compound. Treatment with different con-

centrations of compounds resulted in varying fluorescence signals or genotoxic results in all

systems. The CYP3A4 + RAD54 system exhibited strong positive signals (+, ++) at all treated

concentrations of AFB1 and BaP, but showed negative signals (–) when exposed to any con-

centration of NDMA. The CYP2B6 + RAD54 system produced weak positive signals (+) when

treated with even the highest concentrations of AFB1 (0.4μM) and NDMA (40 mM) but nega-

tive signals upon treatment with any concentration of BaP. The CYP2D6 + RAD54 system

showed negative signals when exposed to any concentration of the three procarcinogens

(AFB1, BaP, and NDMA; Table 1), although the 2D6+ system showed a higher affinity and

specificity for conversion of 7-ethoxycoumarin-3-carbonitrile as compared with the 3A4+ and

2B6+ (Fig 1). Very strong positive genotoxic signals (+, ++++) were obtained in response to

increasing concentrations of MMS with all three systems (Table 1).

Table 1. Analysis and evaluation of fluorescence signals in different yeast strains in response to serial dilution concentrations of test

compounds.

Substance Concentration CYP3A4 + RAD54 CYP2B6 + RAD54 CYP2D6 + RAD54 RAD54 NCs

Aflatoxin B1 NT – – – – –

0.1 μM + – – – –

0.2 μM ++ – – – –

0.4 μM ++ + – – –

Benzo(a)pyrene NT – – – – –

10 μM + – – – –

20 μM + – – – –

40 μM ++ – – – –

N-nitrosodimethylamine NT – – – – –

10 mM – – – – –

20 mM – – – – –

40 mM – + – – –

Methyl methanesulfonate NT – – – – –

25 μM + + + + –

50 μM +++ +++ +++ +++ –

100 μM ++++ ++++ ++++ ++++ –

CYP3A4 + RAD54; CYP2B6 + RAD54; and CYP2D6 + RAD54: Strains transformed with two CPR-CYP and RAD54-GFP expression constructs; RAD54:

Strain transformed with only one RAD54-GFP expression construct; NCs (negative control): Strain transformed with two control pESC-URA and pUMGP5

plasmids. Negative (�1.3 GFP fold induction),–; positive (>1.3 GFP fold induction), + (1.3, 2]; ++ (2, 3]; +++ (3, 4]; ++++ (4,1]

doi:10.1371/journal.pone.0168721.t001
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Regarding sensitivity and specificity of the systems presented as GFP fold induction (Fig 2)

or positive signals (Table 1), the GFP signal obtained was proportional to the concentrations

of analytes within a limited linear concentration range, with high concentrations resulting in

high GFP signals. A minimum signal but greater than genotoxicity threshold (>1.3 GFP fold

induction) was obtained at lower concentrations. Outside the optimal linear concentration

range, GFP signals were still detected but no longer in a linear proportional relation of signal

intensity to investigated concentrations. The signal tended to decrease when exposed to levels

above the highest concentrations of the linear range as the result of cell death. In comparison

of the three coexpressing systems, the CYP3A4 + RAD54 system was considerably more sensi-

tive and specific for identifying AFB1 and BaP than the CYP2B6 + RAD54 system, but nonspe-

cific for NDMA. Whereas the CYP2B6 + RAD54 system was shown to be more specific for

detecting NDMA but less specific for AFB1 than the CYP3A4 + RAD54 system, and nonspe-

cific for BaP. The CYP2D6 + RAD54 was neither sensitive nor specific for all the three procar-

cinogens. In respect to genotoxic carcinogen (MMS, a positive control), both coexpressing

systems (CYP3A4/CYP2B6/CYP2D6 + RAD54) and single expressing system (RAD54) exhibit

a high sensitivity and specificity in determination of MMS, while the system carrying control

vectors (NCs) shows neither sensitivity nor specificity for MMS (Table 1). Thus, only the coex-

pressing systems harboring both CPR-CYP and RAD54-GFP expression cassettes were able to

determine both genotoxic carcinogens and procarcinogens, while systems with a single

RAD54-GFP construct could detect genotoxic carcinogens only.

Comparison of test results

In this study, we used a selection of relevant test compounds that had not been investigated

before and reevaluated others at different concentrations [19, 30]. The concentrations of test

compounds were selected to overlap or the concentration ranges of previously published data

sets but also had to include the linear range for detection of the GFP signals in response to test

compound treatments (Fig 2, Table 2).

The test results determined by the three cotransformants, CYP3A4/CYP2B6/CYP2D6 +

RAD54 used in this study, were compared to those analyzed with two other transformants,

RAD54-GFP integrant + CYP3A4 or CYP1A2 [30], that were established when the integrated

RAD54-GFP strain was transformed with either human CPR-CYP3A4 or human CPR-CYP1A2
constructs, respectively. Regardless to sensitivity, all systems were able to detect DNA-damaging

substances, with positive results presented as (+), in response to a wide range of concentrations

of two procarcinogens, aflatoxin B1 and N-nitrosodimethylamine, and a positive control, methyl

Table 2. Summary and comparison of the results of the present study with the data from published report.

Substance Results from the present study Results from published report (Walsh et al. 2005)

Concentration

(μg/mL)

RAD54 CYP3A4

+ RAD54

CYP2B6

+ RAD54

CYP2D6

+ RAD54

Concentration

(μg/mL)

RAD54-GFP

integrant

RAD54-GFP

integrant

+ CYP3A4

RAD54-GFP

integrant

+ CYP1A2

Aflatoxin B1 0.03–0.13 – + + – 20–40 – Not tested +

Benzo(a)pyrene 2.52–10.09 – + – – Not tested Not tested

N-nitroso-

dimethylamine

0.74–2.96 – –* + – 1.56–6.25 – + Not tested

Methyl

methane-

sulfonate

2.75–11.01 + + + + 1.02–33 + + +

– or +, negative or positive results; –*, varying results inconsistent with those from the original study of Walsh et al. 2005 [30]

doi:10.1371/journal.pone.0168721.t002
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methanesulfonate (Table 2). There are also conflicting data between the two studies, regarding

the detection of N-nitrosodimethylamine, which was only identified in one CYP3A4 + RAD54

system (–�, +). Moreover, aflatoxin B1 and benzo(a)pyrene or benzo(a)pyrene and N-nitrosodi-

methylamine in the referred report were not tested by the RAD54-GFP integrant + CYP3A4 or

CYP1A2 systems, respectively (Table 2). The variation in test results between individual systems

from two different setups will be discussed later.

Discussion

According to the statistics report of the Vietnam Food Administration (VFA), 250–500 out-

breaks of foodborne and waterborne diseases caused by hazardous substances are annually

reported since 2008–2014. Thus, development of bioanalytical tools to quickly identify hazard-

ous substances including genotoxic carcinogens and procarcinogens is of great current interest

in Vietnam. However, many organic exogenous chemical carcinogens are procarcinogens that

are harmless substances and do not cause cancer by themselves, but need to be bioactivated by

cytochrome P450 enzymes (CYPs) before forming DNA or protein adducts. Furthermore, the

stable and bulky DNA adducts cannot be simply repaired by the different repair systems [31].

It was documented that CYP2C8, -2C9, and -2D6 enzymes contribute less to bioactivation of

procarcinogens into electrophiles or ultimate carcinogens than CYP1A1, -1B1, -2A6, -2A13,

-2E1, and -3A4 enzymes [26]. Thanks to the remarkable gene homology between yeast and

human cells, yeast cells provide an excellent cell model for toxicity assays. About 40% of yeast

genes share conserved amino acid sequences with known or predicted human proteins [32].

Furthermore, fundamental biochemical pathways and cellular processes are conserved

between yeast and humans, and about 30% of human genes known to be involved in human

diseases have orthologs in yeast [33]. Thus, genetically modified yeast cells provide an excellent

model for the 3R concept (reduction, replacement, and refinement) in toxicology and ecotoxi-

cology, and are ideal as cell based bioanalytical, biosensor tools due to the simple cultivation

and lack of ethical problems. Although, yeast has at least three functional endogenous CYP

type enzymes, which can bind various chemical carcinogens [34, 35], the yeast CYP enzymes

have other substrate specificities in comparison to the human CYP enzymes.

Therefore, the aim of this study was to use recombinant human CYP enzymes to develop a

yeast-based biosensor for the detection of both genotoxic carcinogens and procarcinogens that

can be widely used for the evaluation of genotoxic risk potential. We used these biosensors to

identify and assess four chemical compounds, a genotoxin (MMS) and three procarcinogens

(AFB1, BaP, and NDMA) that were not investigated or detected in the range of concentrations

used here by previously developed systems [16, 19].

The fluorogenic substrate, 7-ethoxycoumarin-3-carbonitrile, has been used to determine the

activity of CYP1A family enzymes as it is converted to a fluorescent product, 7-hydroxycou-

marin. In our experiments it was suitable for continuous determination of cytochrome P450

mixed-function monooxygenases, such as CYP3A4, CYP2C9, CYP2B6, CYP2D6, since CYPs

have broad and overlapping substrate specificities [36, 37]. Single expression of human CYP3A4,

CYP2B6, and CYP2D6 did not yield any CYP activity, while coexpression together with human

NADPH-cytochrome P450 reductase (CPR) resulted in clearly measurable activity expressed as

amount of fluorescent product formed per minute (Fig 1B). The present results support the

notion that CYP reactions require the cofactor NADPH as the source of electrons and CPR as

the electron transfer partner [22]. These findings also indicate that the endogenous CPR of S. cer-
evisiae is incompatible with human CYP3A4, CYP2B6, and CYP2D6. A similar incompatibility

had been observed in Pichia pastoris [21]. Regarding the enzymatic efficiency of coexpressing

clones measured by the fluorogenic substrate conversion, the 2D6+ clone exhibited a higher

RAD54 Cytochrome P450 Biosensor
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catalytic activity in biotransformation of the substrate into the fluorescence product than the

3A4+ and 2B6+ clones (Fig 1B). The higher affinity and substrate conversion rate of 2D6+ clone

was also confirmed by the lower Km and higher Vmax values as compared with those of 3A4+

and 2B6+ clones (Km ~ 2.1, 3.5, and 3.7 μM and Vmax ~ 4.7, 3.2, and 2.7 pmol/pmol CYP/min

for the 2D6+, 3A4+, and 2B6+ clones, respectively). In addition, some studies reported that

7-ethoxycoumarin-3-carbonitrile together with dextrometorphan were two typical substrates for

CYP1A2 and CYP2D6 [21, 37].

When individual cotransformants harboring both CPR-CYP and RAD54-GFP expression

cassettes in two separate vectors to form the three reporter strains designated as the CYP3A4 +

RAD54, CYP2B6 + RAD54, and CYP2D6 + RAD54 systems, these systems produced distinct

fluorescence or positive signals in the presence of different concentrations of AFB1, BaP, and

NDMA (Fig 2 and Table 1). These individual responses may be explained by the fact that

CYPs probably converted procarcinogens, AFB1, BaP, and NDMA, into several metabolic

products including genotoxic and non-genotoxic metabolites. Of which only genotoxic metab-

olites were able to induce the activity of the DNA-damage inducible RAD54promoter leading to

expression of GFP, while non-genotoxic metabolites were not. For example, CYP3A4, an enzyme

mainly expressed in the liver, is known to oxidize AFB1 into several subproducts, AFB1-exo-

8,9-epoxide, AFB1-8,9-endo-epoxide, and AFB1-3 known to [6, 38]. But only the AFB1-exo-

8,9-epoxide stereoisomer is a mutagenic metabolite, which reacts efficiently with DNA at the N7

position of guanine to form AFB1-N7-Gua adduct and induce G-to-T transversions [38–40].

Thus, AFB1-exo-8,9-epoxide was capable of activating the RAD54promoter to drive GFP expres-

sion producing fluorescence signals (Fig 2A and Table 1). CYP3A4 is also involved in BaP trans-

formation [23]. CYP3A4 presumably metabolized BaP into BaP-3-hydroxy, BaP-9-hydroxy,

BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, and the ultimate genotoxic metabolite, BaP-7,8-dihy-

drodiol-9,10-epoxide (diol epoxide). The reaction mechanism is similar to that of AFB1, in

which this diol epoxide covalently binds to DNA at the N7 position of guanine [41, 42], thereby

inducing RAD54promoter and downstream GFP expression (Fig 2B and Table 1).

Like CYP3A4, CYP2B6 is also capable of biotransformation of AFB1 to a potent mutagen pro-

ducing positive signals but much less than those produced by the CYP3A4 strain (Table 1). In

fact, some studies reported that human CYP2B6 was responsible for metabolism of AFB1 to car-

cinogenic derivatives [43, 44]. The major activation pathway of AFB1 by CYP2B6 and CYP3A4

to form an active mutagen, AFB1-exo-8,9-epoxide, could be the same [44, 45]. CYP2B6 also had

some activity in metabolic activation of a nitrosamine compound, NDMA, which was not acti-

vated by CYP3A4 (Table 1). The CYP2B6-mediated conversion of NDMA probably led to form

an alkyl-diazonium ion causing the carcinogenic effect through covalent binding to DNA [26,

46]. Thus, these CYP2B6-mediated covalent DNA adducts were able to trigger the RAD54-GFP
expression cassette generating low positive signals (Table 1).

In contrast to CYP3A4 and CYP2B6, CYP2D6 seems not to be involved in the enzymatic

activation of the three procarcinogens to their respective genotoxic metabolites, or biotransfor-

mation by CYP2D6 only resulted in nongenotoxic metabolites unable to activate the RAD54
promoter. Some studies reported that CYP2D6 is only weakly or not involved in bioactivation

of procarcinogens including 4-(methylnitro-samino)-1-(3-pyridyl)-1-butanone (NNK) or

AFB1, BaP, and NDMA to their active carcinogenic stereoisomers [27, 47, 48].

It must be kept in mind that the yeast cell wall, the outer membrane, and associated proteins,

including ATP-binding cassette (ABC) transporter proteins present a potential barrier to influx

and efflux, or promote active efflux of a wide range of drugs and chemical compounds. Accord-

ing to Lipinski’s rule of five (RO5) a drug-like compound typically has a molecular mass less

than 500 [49], which fits well to the compounds in this study that are all less than 500 g/mol. To

improve sensitivity in connection with import and export mechanisms, Walsh et al. (2005) [30]
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established a collection of yeast strains in which single or multiple genes (pdr5, erg6, snq2, yor1)

required for cell wall integrity and/or multi-drug resistance were deleted. In general, a single

cell wall mutant was not effective in improving the detection of genotoxins, while double or

multiple cell wall mutants showed more sensitivity to growth inhibition than genotoxicity when

exposed to such genotoxins compared with the wild-type strain [30].

Thus, the varied specificity and sensitivity of the coexpressing systems for detection of pro-

carcinogens could either be due to different efficiencies in enzymatic processing by the CYPs

or due to varying ratios of genotoxic to non-genotoxic products. Indeed, mycotoxins, such as

AFB1, and PAHs, such as BaP, were known to be predominately and moderately catalyzed by

human CYP3A4, respectively, while N-nitrosamines, such as NDMA, were moderately cata-

lyzed by CYP2B6. Moreover, CYP3A subfamily enzymes favor or prefer formation of AFB1-

exo-8,9-epoxide to AFB1-3 alpha-hydroxy metabolite as compared with CYP2B subfamily

enzymes [20, 27, 50]. Taken together, DNA damage, RAD54 promoter activity, and conse-

quently positive signals would be induced at different levels. Nevertheless, MMS, a genotoxic

carcinogen that directly modifies DNA both in vitro and in vivo, without metabolic activation

by methylation on N7-deoxyguanosine and N3-deoxyadenosine to form base mispairing and

replication blocks [51, 52], caused a stronger DNA damage effect and more consistent positive

signals in all systems (Table 1). Our earlier reports also show that a broad range of genotoxins

was able to directly modify DNA and induced the RAD54-GFP expression construct, subse-

quently resulting in strong positive signals [19, 28].

In comparison with previously published data (Table 2) indicated as a single negative (–) or

positive result (+), there is agreement that only the strains harboring both CPR-CYP and

RAD54-GFP constructs were capable of identifying two procarcinogens, aflatoxin B1 and N-

nitrosodimethylamine, while the systems carrying only the RAD54-GFP construct were not

(Table 2). In case of conflicting data (–� and +) concerning the use of the CYP3A4 + RAD54

system (in this study) and RAD54 integrant + CYP3A4 system [30] in detecting N-nitrosodi-

methylamine, which was deduced as negative result (–�) in this study, but positive (+) in the

published report. This inconsistency could be due to different experimental protocols, setups

or designs. For example, the negative result for N-nitrosodimethylamine in the CYP3A4 +

RAD54 system in this study could be due to low concentrations of this substance used. In con-

sequence, the tiny amounts of its metabolic products were not able to induce the RAD54 pro-

moter-driven GFP expression in the coexpression system. However, the same low

concentration of this compound was detected by the CYP2B6 + RAD54 system in this study,

presumably due to better conversion into the genotoxic metabolite with this CYP isoenzyme.

It should be noted that the concentrations used in this report were generally lower than in ear-

lier studies. The CYP3A4 + RAD54 system in this study produced a positive result when

exposed to low concentrations (0.03–0.13 μg/mL) of aflatoxin B1, while the RAD54 integrant

+ CYP1A2 system in the published report generated the positive result in response to higher

concentrations (20–40 μg/mL) of this substance (Table 2). This could be explained by predom-

inant bioactivation of aflatoxin B1 by the CYP3A4 enzyme. Taken together, these findings sup-

port the view that no single test is sufficient to adequately identify and evaluate all toxic

compounds or drug candidates and their potential mutagenic or carcinogenic hazards and

risks to animals and humans.

Our novel yeast-reporter genotoxicity assays performed in 384-well microplates (70 μL

total volume per well) instead of using four 96-well microplates (150 μL total volume per well)

allow to reduce the total volume of required chemicals by 53% when compared to the 96-well

format used in the previous studies [16, 28, 30]. In association with a computer-controlled

automated laboratory system developed and used in our previous studies [19, 29], this incor-

poration facilitates rapid, cost-effective, and high-throughput screening of both genotoxic
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carcinogens and, in particular, procarcinogens, AFB1, BaP and NDMA, that were not detected

by our previous systems [19] and GreenScreen [16]. On the other hand, these systems probably

lend themselves to evaluate other compounds with similar properties or new substances. For

example, the CYP3A4 + RAD54 system could be used to test new mycotoxin, sterigmatocystin,

or other mycotoxin, aflatoxin G1 (AFG1), or other PAH, benzo[c]phenanthrene (BcP), because

CYP3A4 enzymatically bioactivated AFG1 or BcP into AFG1-8,9-epoxide or diol epoxide stereo-

isomers that were able to intercalate into the DNA helix or covalently bind to DNA, respectively

[23, 38, 53]. The CYP2B6 + RAD54 system could be used to determine other procarcinogens,

since CYP2B6 can contribute to a broad range of procarcinogen activation reactions [43]. Of

which were N-nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), as NNK

was metabolically activated through CYP2B6-catalyzed alpha-hydroxylation to produce several

genotoxic metabolites, two of which were 4-(3-pyridyl)-4-oxo-butyl (diazohydroxide) and meth-

ane diazohydroxide covalently binding to DNA and methylating DNA to form DNA adducts,

respectively [54].

Thus, the yeast-based biosensors presented in this study provide a clear advantage to our

previous systems. The newly developed systems can be used as a single systems for the detec-

tion of both carcinogens and procarcinogens, while the earlier systems could identify only

genotoxic carcinogens [19, 28]. It also should be noted that all comparable systems detect car-

cinogenic compounds only when a certain threshold concentration sufficient for triggering

DNA-damage in the yeast strains is reached. Below this threshold concentration no signal will

be detected. Moreover, these systems are particularly appropriate for evaluating immediate

genotoxic damage, while delayed genotoxic damage triggered by low levels of contaminations,

which may lead to DNA damage after extended exposure, is not accessible with these systems.

The present systems contribute to the development of yeast-based biosensors for cytotoxic-

ity and genotoxicity, and are geared toward screening rather than analytical test. Also, they

will supplement existing analytical tools and could be applied in environmental monitoring

and food quality control. Indeed, mycotoxins and PAHs released from agricultural and indus-

trial activities are considered to be a major public health problem in developing countries like

Vietnam where long-term food storage is often inadequate for high heat and humidity, that

typically induces the growth of mold, and untreated or inadequately treated wastewater is dis-

charged into the environment.

Based on the findings presented here further improvements could be performed including

the use of alternative promoters of DNA damage-inducible genes of S. cerevisiae, such as RNR2
PLM2 or DIN7 [19, 28], or other human CYP450 genes. For example, CYP1A1 and CYP2E1

play a major role in bioactivation of PAHs and N-nitrosamines into mutagenic metabolites,

respectively [27, 55]. Apart from that, the sensitivity of yeast-based genotoxicity assays can be

further enhanced by modification of the cell wall permeability in mutant yeast strains [30],

and pretreatments increasing the biological activity of compounds in yeast cells. In general,

the yeast-based biosensor systems will be useful in any application where genotoxicity assays

are required to assess the genotoxic hazards as in drug discovery for early testing of drug

candidates.

The coexpressing systems presented here that harbor both CPR-CYP (CPR-CYP3A4, -CYP2B6,

or -CYP2D6) and RAD54-GFP expression cassettes, were able to determine genotoxic carcinogens

as well as procarcinogens. In contrast, reporter systems with the RAD54-GFP construct alone

could detect only genotoxic carcinogens. Performance of these genotoxicity assays in 384-well

microplates will allow to reduce chemical consumption to about 53% as compared with existing

96-well genotoxicity bioassays [16, 19, 28, 30]. In association with a computer-controlled auto-

mated laboratory system, this liquid handling platform enables rapid, cost-effective, and high-
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throughput screening of numerous analytes in a fully automated and continuous manner without

the need for user interactions.

Materials and methods

Yeast strains, plasmids, chemicals

The Saccharomyces cerevisiae strain Y486 (also known as FF 18984, MATa leu2- 3,112 ura3-52,

lys2-1, his7-1), the reporter plasmid, RAD54-GFPpUMGP5, and vectors harboring genes that

encode a human NADPH-cytochrome P450 reductase (CPR; EC 1.6.2.4) and three human

cytochrome P450 monooxygenases (CYPs; EC 1.14.14.1 and EC 1.14.13.x), CYP3A4, CYP2B6,

and CYP2D6, were provided by Stefan Wölfl. The pESC plasmid containing a yeast URA3

selection marker (pESC-URA, pESC Yeast Epitope Tagging Vectors, Cat. # 217454) used for

expression of CYP and CPR genes was purchased from Stratagene (Agilent Technologies, Stra-

tagene, Santa Clara, CA, USA).

All test compounds used for our genotoxicity assays were purchased from Sigma-Aldrich

(Taufkirchen, Germany): aflatoxin B1 (AFB1, CAS No. 1162-65-8), benzo(a)pyrene (BaP, CAS

No. 50-32-8), N-nitrosodimethylamine (NDMA, CAS No. 62-75-9), and one positive geno-

toxicity control, methyl methanesulfonate (MMS, CAS No. 66-27-3). Other chemicals,

reagents or substances used in this study were purchased from Merck (Darmstadt, Germany)

and Fisher Scientific (Germany).

Construction of pESC-URA plasmids containing CPR and CYP genes

The primer pairs listed in Table 3 were used to amplify CPR, CYP3A4, CYP2B6, and CYP2D6
genes by PCR. The PCR procedure was performed as described previously on a Mastercycler

pro (Eppendorf, Hamburg, Germany) [19]. The PCR products were examined by 1% agarose

gel electrophoresis analysis (Bio-Rad, Munich, Germany) and extraction and purification

(QIAquick Gel Extraction Kit, Qiagen, Hilden, Germany).

Firstly, the purified PCR product, CPR fragment (� 2064 bp), and pESC-URA plasmid

were digested with each enzyme, BamHI and KpnI, (New England Biolabs, NEB, Frankfurt,

Germany) in a separate reaction and purified (QIAquick Spin PCR Purification Kit, Qiagen).

Prior to ligation reaction, the nicked pESC-URA plasmid was dephosphorylated by antarctic

phosphatase (NEB) for preventing recircularisation. The CPR fragment was then joined by

ligation (T4 DNA ligase, NEB) into digested pESC-URA plasmid to form pESC-URA plasmid

Table 3. Primer pairs used for construction of plasmids pESC-CPR-CYPs

Primer name Sequence (50-30) Size of PCR product (bp)

CPR-F GCCGGATCCATGGGAGACTCCCACGTGGA 2064

CPR-R GGGGTACCCTAGCTCCACACGACCAGGG

CYP3A4-F GCCACTAGTATGGACCTCATCCCAAATTT 1539

CYP3A4-R GGTTAATTAATCATTCTCCACTTAGGGTTC

CYP2B6-F GCCACTAGTATGGAACTCAGCGTCCTCCT 1506

CYP2B6-R GGTTAATTAATCAGCGGGGCAGGAAGCGGAT

CYP2D6-F GCCACTAGTATGGGGCTAGAAGCACTGGT 1524

CYP2D6-R GGTTAATTAACTAGCGGGGC ACAGCACAAA

The underlined and bold bases are the restriction sites of BamHI (GGATCC) and KpnI (GGTACC); SpeI (ACTAGT) and PacI (TTAATTAA) incorporated in

forward (F) and reverse (R) primers for amplification of CPR and CYPs genes (CYP3A4, CYP2B6, and CYP2D6), respectively. The extra bases upstream

of the restriction sites are for improvement of cutting efficiency.

doi:10.1371/journal.pone.0168721.t003
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containing CPR insert, hence called pESC-CPR. These enzymes were all used and inactivated

(if necessary) according to the instruction of the manufacturer (NEB). The newly formed plas-

mid was transformed in homemade chemically E. coli competent cells (DH5α™; Invitrogen,

Darmstadt, Germany) by the conventional KCM (KCl, CaCl2, and MgCl2) transformation

method. The transformants were selected by plating on LB agar (Miller’s LB broth base, Invi-

trogen) supplemented with ampicillin (100 μg/mL). The ligation product, pESC-CPR plasmid,

was then purified (QIAprep Spin Miniprep Kit, Qiagen), digested with BamHI and KpnI, and

the digests of ligation were checked by separation in agarose gel same as mentioned above.

Next, the other three purified PCR products, CYP3A4, CYP2B6,CYP2D6 fragments, with

the expected size (Table 3) and the pESC-CPR plasmid were digested with each enzyme, SpeI
and PacI (NEB), respectively. The same procedure and steps were performed as described

above to obtain three newly formed plasmids, pESC-CPR-CYP3A4, -CYP2B6, and -CYP2D6.

Subsequently, the concentration of the purified plasmids was determined (NanoDrop 2000,

Thermo Scientific, Dreieich, Germany) and the sequencing primers provided in the kit (pESC

Yeast Epitope Tagging Vectors) were used to sequence the CYPs and CPR genes (ABI Prism1

3100 Genetic Analyzer, Applied Biosystems, USA).

Determination of enzymatic activity of CPR and CYPs

The individual plasmids were transformed into wild type S. cerevisiae cells (strain Y486) using the

LiAc/SS carrier DNA/PEG method developed by Gietz and Woods [56]. The transformants and

recombinant plasmids were maintained during cell growth and division by further selection for

uracil prototrophy in SD/-Ura agar (Clontech, TaKaRa, France). The recombinant proteins, CPR

and CYPs, were expessed when the transformants were cultured in SD/-Ura medium containing

2% galactose and 0.5% raffinose at 30˚C with shaking. After 24 hours of cultivation in main cul-

ture, yeast cells were harvested by centrifugation (3000 g, 4˚C, 10 min). Pellets were resuspended

in homogenisation buffer (50 mM potassium phosphate, pH 7.9; 1 mM EDTA; 5% Glycerol; 2

mM DTT; 1 mM PMSF) to 20 OD600 units of yeast cells. Cell suspension was added with 1 g

acid-washed glass beads (0.4–0.5 mm in diameter, Sigma Aldrich). Cell disruption was performed

by vortexing (3x5 min with cooling on ice in between) in Mixer Mill MM 300 (Retsch, Haan,

Germany). The supernatant was separated from cell debris and glass beads by centrifugation at

14000 g, 4˚C for 15 min (Hettich, Tübingen, Germany). Then, the supernatant was ultracentri-

fuged at 100000 g and 4˚C for 1 h (Beckman Coulter, Krefeld, Germany), the microsomal pellet

obtained (CPR or CYP microsomal protein) was resuspended in homogenisation buffer and

used immediately for enzymatic assays. The protein concentration was determined using the

method of Bradford (1976). The CYP concentration was determined by reduced carbon monox-

ide (CO) spectra that was measured by the method according to Omura [57]: 100 μg microsome

protein in sodium phosphate buffer (0.1 M, pH 7.4) containing 10% glycerol and 0.5% Triton X

100 were incubated on ice for 10 min. 3 to 5 mg N2S2O4 were added and the solution was then

transferred into UV-cuvettes and a reference spectrum was recorded from 400 to 500 nm by

SmartSpec Plus UV/Vis Spectrophotometer (Bio-Rad, Munich, Germany). The reaction was

started by aerating with CO gas for 30 seconds and the spectrum was remeasured. The CYP con-

centration was calculated using Beer Lambert law and demonstrated by following equation:

[CYP] (μM) = ΔOD450-490 nm.f/ε.d, where ΔOD450-490 nm is the absorbance difference at 450 and

490 nm, f is the dilution factor, ε is the extinction coefficient (91 mM-1 cm-1), and d is the cuvette

thickness (1 cm).

CPR activity assay. The determination of CPR (NADPH-cytochrome P450 reductase)

activity was performed essentially as previously described [58, 59]: The CPR activity was

spectrophotometrically measured by the rate of reduction of cytochrome c in the presence of
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NADPH (Sigma Aldrich). 500 μg cytochrome c (Sigma Aldrich) in potassium phosphate

buffer (50 mM, pH 7.5) were mixed with 100 μg microsomal protein and filled up with potas-

sium phosphate buffer to 950 μL. The reaction was started by adding 50 μL of fresh aqueous

NADPH solution (12 mM). The absorbance change was recorded at 550 nm for 20 seconds

using SmartSpec Plus UV/Vis Spectrophotometer (Bio-Rad). The CPR activity was calculated

using equation based on Beer Lambert law: ΔOD550/min/ε, where OD550 is the absorbance

change measured at 550 nm, ε is extinction coefficient of 21 mM-1 cm-1. One enzyme unit is

defined as μmol/min.

CYP activity assay. The activity of CYPs was monitored by fluorescence-based assay

according to Donato and Favreau with modifications [37, 60]: These activity assays were based

on the deethylation of 7-ethoxycoumarin by CYPs to the fluorescence product, 7-hydroxycou-

marin. A substrate solution comprising 2.5 mM 7-ethoxycoumarin-3-Carbonitrile (Sigma

Aldrich) in potassium phosphate buffer (100 mM, pH 7.4), 3 mM NADPH, and 0.02% (v/v)

Pluronic F-68 (Sigma Aldrich) was pre-incubated in a 96-well microplate with black walls and

transparent flat bottoms (8x12 well format, Greiner Bio-one, Germany) at 37˚C for 5 min and

then mixed with 200 μg CYP microsomal protein in potassium phosphate buffer (100 mM, pH

7.4) to reach a total reaction volume of 250 μL per well. The fluorescence signal was measured

at 405 nm (excitation wavelength) and 460 nm (emission wavelength) and recorded every 10

min for a total of 120 min using microplate reader (Safire2 Microplate Reader, Tecan, Switzer-

land) controlled by XFLUOR4 SAFIRE II software (Xfluor Excel macros, Version: V 4.62n for

Safire2 Microplate Reader). In addition, the kinetic parameters (Vmax, Km) were determined

from enzyme activities at 10 different substrate concentrations (1–100 μM) by either Linewea-

ver–Burk plot or performing a direct nonlinear regression of the Michaelis Menten model.

The Vmax and Km constants of this model were determined by minimizing the sum of

squared differences between predicted model and measured data using the R function nls that

was described in our previous study [29].

Development of novel yeast-based biosensor

Yeast cells (strain Y486) were co-transformed with two different kinds of plasmids. One that

was formed in this study and described above beared both the CPR and CYP genes (CPR-
CYP3A4,CPR-CYP2B6, or CPR-CYP2D6 construct); the other one that was created and used

in previous studies carried RAD54-GFP reporter construct [16, 19, 28]. For the cotransforma-

tion, the protocol was the same as mentioned above, but the SD/-Ura medium was supple-

mented with 0.2 mg/mL of geneticin antibiotic (G418) for the selection and maintenance of

cotransformants. Since the discriminative cotransformants carried only one of CYP genes dif-

ferent from another (CYP3A4, CYP2B6, or CYP2D6), they were hence designated as CYP3A4/

CYP2B6/CYP2D6 + RAD54 strain or system, respectively.

Such cotransformants, called novel yeast-based biosensors, were used to investigate the

potential genotoxicity of chemical compounds by genotoxicity assay. Four test compounds were

selected and prepared in stock solutions as follows: 0.8 μM aflatoxin B1 (249.82 ng/mL; AFB1),

80 μM benzo(a)pyrene (20.18 μg/mL; BaP), 80 mM N-nitrosodimethylamine (5.92 mg/mL;

NDMA), and one positive genotoxicity control, 0.1 mM methyl methanesulfonate (11.01 μg/mL;

MMS) were diluted in F1-Ura medium plus 4% DMSO (v/v). All components of F1-Ura

medium, except that glucose was substituted with an equivalent concentration of galactose plus

0.5% raffinose and 0.02% G418, were the same as previously described [19]. Also, the perfor-

mance of genotoxicity assay including the steps: experimental design and setup; fluorescence

measurement; data acquisition and analysis; threshold calculation; and plotting were adequately

described in our previous study [19].

RAD54 Cytochrome P450 Biosensor

PLOS ONE | DOI:10.1371/journal.pone.0168721 December 22, 2016 14 / 18



In brief, the assay was performed in 384-well microplate (24 x 16 well format; Greiner Bio-

one, Germany) with black walls and transparent flat bottoms. Each well was pipetted in tripli-

cate for determining mean values, standard deviation (SD), and the assay was repeated at least

3 times for reproducibility. Except for the preparation of stock compound solutions and seal-

ing the microplate with breathable membrane (Diversified Biotech, USA), all these steps were

automatically executed by a combination of robotic system (Genesis RSP-150 Liquid Handling

System, Tecan, Switzerland) and microplate reader (Tecan). A set of R-scripts developed in

our previous study [29] controls both the robot and reader by translating the instructions into

machine commands, executing liquid handling and measurements, collecting the data, and

processing it without user interaction. In the present study, all the fluorescence measurements

were carried out after 16 h of incubation at 30˚C with agitation in this reader. The data were

saved either in file.RData or exported to Microsoft Excel for conventional data processing and

analysis, and plotting (bar graphs with SD values) by the Excel macros.
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