

Development and Performance Evaluation of a Novel Ancestry Informative DIP Panel for Continental Origin Inference

Yongsong Zhou^{1,2}, Xiaoye Jin³, Buling Wu¹* and Bofeng Zhu^{1,2,4,5}*

¹Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China, ²Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China, ³School of Forensic Medicine, Guizhou Medical University, Guiyang, China, ⁴Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China, ⁵Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China

OPEN ACCESS

Edited by:

Chuan-Chao Wang, Xiamen University, China

Reviewed by:

Zheng Wang, Sichuan University, China Pengyu Chen, Affiliated Hospital of Zunyi Medical College, China

*Correspondence:

Buling Wu bulingwu@smu.edu.cn Bofeng Zhu zhubofeng7372@126.com

Specialty section:

This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Genetics

> Received: 25 October 2021 Accepted: 01 December 2021 Published: 17 February 2022

Citation:

Zhou Y, Jin X, Wu B and Zhu B (2022) Development and Performance Evaluation of a Novel Ancestry Informative DIP Panel for Continental Origin Inference. Front. Genet. 12:801275. doi: 10.3389/fgene.2021.801275 Ancestry informative markers (AIMs) are useful to infer individual biogeographical ancestry and to estimate admixture proportions of admixed populations or individuals. Although a growing number of AIM panels for forensic ancestry origin analyses were developed, they may not efficiently infer the ancestry origins of most populations in China. In this study, a set of 52 ancestry informative deletion/insertion polymorphisms (AIDIPs) were selected with the aim of effectively differentiate continental and partial Chinese populations. All of the selected markers were successfully incorporated into a single multiplex PCR panel, which could be conveniently and efficiently detected on capillary electrophoresis platforms. Genetic distributions of the same 50 AIDIPs in different continental populations revealed that most loci showed high genetic differentiations between East Asian populations and other continental populations. Population genetic analyses of different continental populations indicated that these 50 AIDIPs could clearly discriminate East Asian, European, and African populations. In addition, the 52 AIDIPs also exhibited relatively high cumulative discrimination power in the Eastern Han population, which could be used as a supplementary tool for forensic investigation. Furthermore, the Eastern Han population showed close genetic relationships with East Asian populations and high ancestral components from East Asian populations. In the future, we need to investigate genetic distributions of these 52 AIDIPs in Chinese Han populations in different regions and other ethnic groups, and further evaluate the power of these loci to differentiate different Chinese populations.

Keywords: ancestry informative marker, deletion/insertion polymorphism, AIDIP, forensic ancestry analysis, Eastern Han

INTRODUCTION

Ancestry informative markers (AIMs) refer to genetic variations that exhibit high allelic frequency divergences between different ancestral populations (Phillips et al., 2007). AIMs are useful to infer individual biogeographical ancestry and to estimate admixture proportions of admixed populations or individuals. In the last decade, as a new supplementary test, forensic ancestry information analysis

1

provides much valuable information for forensic investigative applications and other forensic fields (Phillips, 2015; Phillips and de la Puente, 2021). Most recently, a growing number of AIM panels to estimate ancestry origin of continental and subcontinental populations (Santos et al., 2016a; Wei et al., 2016; Carvalho Gontijo et al., 2020; Xavier et al., 2020) or to distinguish population structure of Asian or Chinese populations (Sun et al., 2016; Jin et al., 2019; Qu et al., 2019) were developed by forensic researchers from abroad and in China, respectively. However, the capacity of these panels to effectively infer the ancestry origins of other populations in China may not be competent enough. Furthermore, large-scale and representative population genetic data are the key element of forensic assay development and application. Unfortunately, AIM reference population data in most Chinese populations are still undeveloped to date, which limit population-specific marker selections to some extent. Accordingly, we need to investigate genetic distributions of more AIMs in Chinese populations. These data can not only enrich the genetic information resources of Chinese population, but also facilitate the screening of population specific molecular markers.

Deletion/insertion polymorphisms (DIPs) are one type of genetic variations that arise from random deletion or insertion of DNA fragments (Weber et al., 2002). This kind of polymorphism exhibits unique characteristics as AIMs: (i) wide distributions in the human genome; (ii) with low mutation rates; (iii) the frequencies of alleles varies greatly between populations; and (iv) can be easily detected by multiplex PCR and capillary electrophoresis platform (Santos et al., 2010; Li et al., 2012; LaRue et al., 2014). In recent years, DIPs received a large amount of attention from forensic geneticists. A set of DIP panels for various forensic purposes have been constructed. For example, Chen et al. developed a multiplex panel of autosomal DIPs for forensic identity testing (Chen et al., 2019); Lan et al. presented a multiplex system of 39 ancestry informative DIPs (AIDIPs) for forensic ancestry origins of three different continental populations (Lan et al., 2019); Chen et al. also constructed a novel multiplex system that could detect 38 X-chromosome DIPs to assist in individual identification and paternity testing (Chen et al., 2021). Collectively, the DIPs showed great application values in forensic research.

In this study, we firstly selected 52 AIDIPs for ancestry origin predictions of different continental populations based on the 1,000 Genome Project (Genomes Project et al., 2015) and previous studies (Mills et al., 2006; Pereira et al., 2009; Santos et al., 2010; Pereira et al., 2012b). Secondly, we evaluated the efficiencies of these AIDIPs for dissecting continental population structure. At the same time, a multiplex panel of these 52 AIDIPs was developed on the basis of capillary electrophoresis platform. Next, genetic distributions and forensic statistical parameters of these 52 AIDIPs in Eastern Han population were assessed. Finally, ancestral components of Eastern Han populations.

MATERIALS AND METHODS

AIDIPs Selection and Development of the Multiplex Panel

We aim to construct a multiplex PCR assay of 52 AIDIPs based on the capillary electrophoresis platform for forensic individual biogeographic ancestry inference and population genetic structure and background analyses. A batch of 52 AIDIPs located on autosomal chromosome were selected; they showed high allele frequency divergences among European, East Asian, and African populations, which were confirmed by previous studies (Mills et al., 2006; Pereira et al., 2009; Santos et al., 2010; Pereira et al., 2012b). AIDIPs selection criteria were consistent with Lan et al. (2019). We screened 52 biallelic DIP genetic markers that performed the following requirements: (i) all DIP markers were selected from the autosomes; (ii) variable size of deletion/insertion fragments ranged from 2 to 20 bp; (iii) allele frequency differentials ≥0.2 between at least two continental populations; and (iv) no departures from Hardy-Weinberg equilibrium (HWE) in any continental population. The detailed genomic information and reference sequences of these selected AIDIP loci were obtained from dbSNP (http://www.ncbi.nlm.nih.gov/SNP/). The primer design and multiplex assay construction of 52 AIDIP loci proceeded based on the workflows described by Pereira et al. (2012a; 2012b). Primers were designed by the Primer Premier 5. 0 software according to the following two main principles: the T_m value was close to 65°C and the amplicon sizes varied from 60 to 250 bp. Potential primer dimers and hairpin structures were evaluated by AutoDimerv1 software. Subsequently, all markers were assigned and labeled by four different fluorescent dyes (FAM, HEX, TAMRA, and ROX), respectively, and all of the primers were synthesized by Sangon Biotech (Sangon Biotech Co., Ltd., Shanghai, China).

Multiplex Amplification and AIDIP Genotyping

The PCR reaction of the 52 AIDIPs was finally optimized to amplify in a single tube with the 25- μ l reaction volume. The reaction system composed of 5 μ l of primers, 10 μ l of reaction mix (AGCU Biotech Co., Ltd., Wuxi, China), 1 μ l of template DNA, 1 μ l of polymerase (5 U/ μ l, Takara Biomedical Technology Co., Ltd., Beijing, China), and 8 μ l of sdH₂O. The PCR cycling conditions were as follows: 95°C for 5 min; 30 cycles of 94°C for 15 s, 60°C for 50 s, and 62°C for 55 s; and a final extension at 70°C for 20 min.

For capillary electrophoresis, 1 μ l of amplification products were added to 12.5 μ l of loading mixtures, which consisted of 12 μ l of deionized Hi-Di[®] formamide (Thermo Fisher Scientific, Waltham, MA United States) and 0.5 μ l of AGCU SIZ-500 internal size standard (AGCU Biotech). Detection and separation for 52 AIDIPs were performed on 3500xL Genetic Analyzers (Thermo Fisher Scientific) under default injection conditions. The raw data were genotyped with GeneMapper[®] ID-X v1.5 software (Thermo Fisher Scientific).

Ethics Statement, Population Sample Collection, and Genomic DNA Extraction

Buccal samples were obtained from the volunteers with written informed consents for the above-mentioned research purposes, approved by the Ethics Committee of Xi'an Jiaotong University, China (No. XJTULAC 2013). Buccal samples stored on FTATM cards (GE Healthcare, Buckinghamshire, United Kingdom) were collected from 345 unrelated healthy Han individuals who lived in eastern China for more than three generations, including 200 individuals living in Wuxi city, Jiangsu Province and 145 individuals living in Hangzhou city, Zhejiang Province, China. The genomic DNA was extracted and quantified using Chelex[®] 100 resin-based method (Phillips et al., 2012) and the Applied Biosystems[®] 7,500 Real-Time PCR System (Thermo Fisher Scientific), respectively. Genomic DNA was diluted to 1 ng per microliter with Tris-EDTA buffer and stored at -20° C for later use.

Statistical Analysis

Firstly, we assessed allelic frequency distributions of the same 50 AIDIPs in different continental populations. A heatmap of deletion allelic frequencies of 50 AIDIPs in African, American, East Asian, European, and South Asian populations was plotted by the pheatmap package v1.0.12 of R software v4.1.0. Pairwise fixation index (F_{ST}) and informativeness (In) values of 50 AIDIPs among continental populations were calculated by Arlequin software v3.5.1.2 (Excoffier et al., 2007) and Infocalc software version 1.1 (Rosenberg et al., 2003), respectively. Then, the F_{ST} and *In* values were graphically displayed by the TBtools software v1.09861 (Chen et al., 2020) and ggplot2 package version 3.3.0 of R software, respectively. Populationspecific divergences (PSDs) of 50 AIDIPs in each continental population were estimated by a previous report (Phillips, 2015). Next, the performance of these AIDIPs for inferring ancestry origins of continental populations was evaluated by the following methods. Principal component analysis (PCA) of five continental populations was conducted using the Plink software version 1.9 (Chang et al., 2015), and then a scatter plot of these population levels was drawn by the ggplot2 package. Genetic structure of these continental populations was explored by the Admixture software version 1.3 at K = 2-7(Alexander et al., 2009). Thorough analyses of different continental populations were performed by the Snipper online tool v2.5 (http://mathgene.usc.es/snipper/) based on 50 AIDIPs.

For the Eastern Han population, allelic frequencies, forensic statistical parameters, HWE tests, and linkage disequilibrium analyses of the 52 AIDIPs were estimated by the STRAF online tool v1.0.5 (Gouy and Zieger, 2017). PCA of Eastern Han and continental populations was also conducted by Plink and ggplot2 packages. Genetic structure of Eastern Han population was assessed by the Admixture software. Different continental populations were viewed as training sets and the Eastern Han population was viewed as the testing samples, and then ancestry origin analyses of Eastern Han population were assessed by the *Snipper*.

RESULTS AND DISCUSSION

Development of a Novel AIDIPs Multiplex Assay

An informative and applicable AIDIPs multiplex assay was developed for simultaneous genotyping of 52 AIDIP loci on the basis of capillary electrophoresis platform. The 52 AIDIP loci were laid out in blue (FAM), green (HEX), yellow (TAMRA), and red (ROX) dye channels according to dye color and expected amplicon size (Table 1). The size of amplicons varied from 63 bp at the deletion alleles of loci rs3092383, rs10549914, and rs11576045 to 246 bp at the insertion allele of rs3028297 locus. Generally, full profiles were obtained when various amounts of template DNA (0.2-10 ng) were added, during the testing of the Eastern Han population. However, the optimal concentration of template DNA for this multiplex assay is 0.5-5 ng in a 25-µl PCR final volume. When the amounts of inputted DNA were above 5 ng or below 0.5 ng, the intra-locus and/or intra-color imbalance were randomly observed. As illustrated in Figure 1, a complete genotyping profile was obtained when 500 pg of Control DNA 9948 (Promega Corporation, Madison, WI, United States) was added into a 25-µl reaction volume. Compared with AIDIP panels previously reported (Santos et al., 2010; Pereira et al., 2012b; Sun et al., 2016; Lan et al., 2019), the assay developed in this study involved a higher number of AIDIP loci in a single PCR reaction system. More AIDIPs might be more beneficial to discriminate Chinese populations than these reported panels, which remained to be investigated further.

Genetic Distributions of Selected AIDIPs in Different Continental Populations

Although 52 AIDIP loci were selected and successfully incorporated into the novel assay for ancestry origin inference, the population data of rs3033053 and rs1305047 loci were not available in the 1,000 Genome Project. Thus, genetic data of the same 50 AIDIPs were assessed in five different continental populations. To visually display the analytical results, the distributions of deletion allele frequencies of the 50 AIDIPs are shown by a heatmap. As shown in Figure 2, the allelic frequencies for the vast majority of these selected AIDIPs varied greatly among different populations. For example, rs67205569, rs10668859, rs149676649, rs3839049, rs3217613, and rs3216128 loci displayed relatively high frequencies in the East Asian populations. It is important to note that 46 AIDIP loci showed almost completely opposite allelic frequency distributions between East Asian and European populations with the exception of rs25630, rs138123572, rs1160852, and rs2307998 loci. It seems to imply that these loci were of considerable potency to distinguish East Asian populations from European populations. Furthermore, we also found that rs25630, rs3217613, rs138123572, rs1160852, and rs2307998 loci exhibited significant allele frequency differences between African and non-African populations: American, European,

TABLE 1 General information of the 52 AIDIP loci. The numbers 1 and 2 in the "Genotype of 9948" column represent deletion and insertion of nucleotides, respectively.

1 B1 rs302383 Ch20 46848790 -/AACA 1.2 80.491 FAM 3 B2 rs303083 Ch14 340982831 -/TCACCAG 2 75.456 FAM 4 B4 rs303083 Ch2 2385331 -/TCACCAG 2 103-109 FAM 5 B5 rs10408073 Ch2 2103-109 FAM 2 103-109 FAM 6 B6 rs2059690 Ch10 9181810 -/TCAC 2 112-119 FAM 9 B8 rs30688550 Ch19 969759 -/GAAAG 1.2 112-17.5 FAM 11 B11 rs16768469 Ch17 2017302 -/TCAT 1.2 181-6 FAM 12 B14 rs2080163 Ch14 2578383 -/TCAT 1.2 181-5 FAM 13 B13 rs57237250 Ch14 258383 -/TCAT 1.2 240.72-230 FAM 14	ID number	Internal code	rs number	Chromosome	Position (GRCh38)	Alleles described in dbSNP	Genotype of 9948	Range of amplicon size (bp)	Fluorescent labels
2 B2 rs1408P4 Ch1 3826080 ·/TC 2 7-4-82 FAM 4 B4 nr2337608 Ch43 2738631 ·/ATT 2 85-95 FAM 5 B5 rs14048743 Ch43 13951372 ·/TGTC 1.2 110-119 FAM 6 B8 rs17205680 Ch10 93513172 ·/TGTC 1 131-137.5 FAM 7 B7 rs7499778 Ch10 266759 ·/OGAT 2 162-108 FAM 10 B10 rs140847 Ch9 26759 ·/OGAT 2 162-108 FAM 12 B12 rs140843 Ch5 2849579 ·/OGAT 1.2 191-198 FAM 13 B13 rs520843 Ch6 109049179 ·/OGAT 1.2 191-198 FAM 14 B14 rs1208163 Ch6 1700470 1.2 191-198 FAM 15 B16 rs520817 <td>1</td> <td>B1</td> <td>rs3092383</td> <td>Chr20</td> <td>46848769</td> <td>-/AACA</td> <td>1,2</td> <td>60–69</td> <td>FAM</td>	1	B1	rs3092383	Chr20	46848769	-/AACA	1,2	60–69	FAM
3 B3 m3033053 Chrl4 4208623 /TCAGCAG 2 85-902 FAM 5 B5 rs14048743 Chr3 13813872 /TGTC 1.2 103-199 FAM 7 B7 rs74049778 Chr1 139071487 /AGTC 2 110-119 FAM 8 B8 rs12020549 Chr1 139071487 /AGTC 2 124-130 FAM 9 B9 rs10668890 Chr9 266759 /GAAG 1.2 139-147 FAM 11 B11 rs10711 Chr17 2015105 /TGTCTCAT 1.2 189-188 FAM 12 B14 R40676440 Chr16 2049279 /GGTT 1.2 191-198 FAM 13 B15 rs164784 Chr20 2629729 /CCCAC/ 1 123-232. FAM 14 B16 rs202297 Chr9 10460412 /GCTACT 1 185-513 FAM 15	2	B2	rs140864	Chr1	35926061	-/TTC	2	74–82	FAM
4 B4 mr22370000 Ch-3 2738631 JAATT 2 95.6-102 FAM 6 B5 ms14048743 Ch-10 93016130 JTGTC 1.2 110-119 FAM 7 B7 ms7420569 Ch-10 93016130 JTGTC 2 112-130 FAM 8 B8 ms13220740 Ch-2 19904072 JTATC 1 131-137.5 FAM 10 B10 ms140847 Ch-9 12017255 JCGATT 2 162-168 FAM 11 B11 ms149764640 Ch-6 2040729 JCGATT 1.2 191-169 FAM 12 B12 ms14967649 Ch-6 2040179 JCGATT 1.2 191-169 FAM 14 B14 rs2020163 Ch-14 255237829 JCCCAC 1 240.72-250 FAM 15 B16 rs2020140 Ch-1 5226369 JTTA 2 406-72.5 HEX 14<	3	B3	rs3033053	Chr14	42085293	-/TCAGCAG	2	85–95	FAM
5 B5 rs14048743 ChG 193613912 -/TGAC 1.2 100-119 FAM 7 B7 rs74490778 Chr10 19301410 -/AGCT 2 124-130 FAM 8 B8 rs12620746 Chr11 19007147 -/AGCT 2 139-147 FAM 9 B9 rs10668830 Chr19 266759 -/GAAG 1.2 139-147 FAM 11 B11 rs16711 Chr17 20161705 -/GAAT 1.2 169-181 FAM 13 B13 rs1677649 Chr37 QATTCTCTAT 1.2 191-198 FAM 14 B14 rs232730 Chr6 109941799 -/GATT 2 191-518 FAM 15 rs16438 Chr207583333 -/TGAT 1.2 240-22-250 FAM 16 B16 rs2322973 Chr9 19460412 -/GCAACTAT 1.2 240-22-250 FAM 17 G1 rs3331020 </td <td>4</td> <td>B4</td> <td>rs72375069</td> <td>Chr3</td> <td>27386331</td> <td>-/AATT</td> <td>2</td> <td>95.6-102</td> <td>FAM</td>	4	B4	rs72375069	Chr3	27386331	-/AATT	2	95.6-102	FAM
6 B6 rsf2205660 Chr10 931810 -/TGAC 2 110-119 FAM 8 B7 rsf39220748 Chr11 130071437 -/AGCT 2 1124-130 FAM 9 B9 rsf09280748 Chr9 226759 -/CGAAG 1.2 133-147 FAM 10 B10 rsf0711 Chr17 207017 2 185-188 FAM 11 B11 rsf0711 Chr17 1070170 1.2 119-198 FAM 12 B12 rsf0927829 Chr6 10981799 -/CGCAT 2 185-213 FAM 13 B15 rsf0438 Chr17 542659 -/CGCAT 2 240,72-250 FAM 14 B14 rs508163 Chr17 542659 -/TGAG 2 240,72-250 FAM 15 rsf049814 Chr17 542659 -/TGAG 2 26,72-250 FAM 16 B15 rsf0391870 Chr	5	B5	rs140498743	Chr3	139513672	-/TGTC	1,2	103-109	FAM
7 87 87 87 87 88 87 83220746 Orl2 199340972 -//ATC 1 131-137.5 FAM 9 89 n10068850 Orl9 286759 -//ATC 1 131-137.5 FAM 11 B11 n14076490 Orl6 2849279 -//GAT 1.2 189188 FAM 12 B13 n57237250 Orl6 109911799 -/GAT 1.2 191918 FAM 14 B14 nc3208183 Orl74 57563363 -//TGAT 1.2 240.72-250 FAM 15 b16 ns10549914 Orl74 525297239 -//GCAC/TAA 1.2 240.72-250 FAM 17 G1 ns10549914 Orl74 52297829 -//TGAC 1.2 280-52 HEX 18 G2 r10551451 Orl8 17294426 -//TGAC 2 90-52 HEX 19 G3 ns8/039890 Orl1 139262420	6	B6	rs67205569	Chr10	93181810	-/TTGAC	2	110-119	FAM
8 88 rs139220746 Chr2 1994/0972 -/TATC 1 131-137.5 FAM 10 B10 rs140ba7 Chr9 126759 -/CGAAG 1.2 139-147 FAM 11 B11 rs140ba7 Chr9 12617335 -/CGAAT 1.2 186-181 FAM 12 B12 rs140b74649 Chr1 22017916 -/ATTCT 1.2 181-188 FAM 13 B13 rs7237250 Chr6 109841799 -/CGCAC 1 220-72-720 FAM 14 B14 rs2306163 Chr12 194620412 -/CGCAC 1 20.72-720 FAM 15 B15 rs164381 Chr17 19462462 -/TGAG 2 70-78 HEX 19 G3 rs10564814 Chr17 1224265 -/TGAG 2 98-102 HEX 21 G5 rs105681 Chr1 1292285 -/TGAG 2 142-151 HEX	7	B7	rs74499778	Chr11	130071487	-/AGCT	2	124-130	FAM
9 89 rs1066889 Chrig 26759 -/GAAAG 1.2 132-147 FAM 11 B10 rs140847 Chrig 12171206 -/TTCTTCCTA 1.2 162-161 FAM 11 B11 rs16711607640 Chrig 29498279 -/GAT 1.2 191-188 FAM 13 B13 rs57237250 Chrig 10941799 -/GAT 1.2 191-188 FAM 14 B14 rs5028297 Chrig 104604012 2 198.5-213 FAM 15 B16 rs3028297 Chrig 104604012 -/CCTA/CTAA 1.2 240.72-250 FAM 17 G1 rs10584914 Chrig 7244246 -/TTAG 2 240.72-250 FAM 18 G2 rs1058493 Chrig 7244246 -/TTAG 1.2 86-92.5 HEX 19 G3 rs5733453 Chrig 7244266 -/TTAG 2 195-120 HEX <	8	B8	rs139220746	Chr2	199340972	-/TATC	1	131-137.5	FAM
10 B10 rs140847 Chrig 1217325 -/CGTT 2 162-168 FAM 11 B11 rs16711 Chrig 2017910 -/TICTTCTA 1.2 1815-188 FAM 12 B12 rs148676649 Chris 2949279 -/GATT 2 1815-188 FAM 13 B13 rs57237250 Chris 109941799 -/GAGTT 2 186-5213 FAM 15 B15 rs16438 Chris 25297829 -/GCCA/ 1 22-3231 FAM 16 B16 rs3028297 Chris 12492426 -/TGAC 1.2 20-70-78 HEX 17 G1 rs10544914 Chris 724942426 -/TGAC 1.2 96-90.2 HEX 18 G2 rs5034833 Chris 724942426 -/TGAC 1.2 96-90.2 HEX 20 G4 rs5831920 Chris 73704700 -/TT 2 96-90.2 HEX <tr< td=""><td>9</td><td>B9</td><td>rs10668859</td><td>Chr19</td><td>266759</td><td>-/GAAAG</td><td>1,2</td><td>139–147</td><td>FAM</td></tr<>	9	B9	rs10668859	Chr19	266759	-/GAAAG	1,2	139–147	FAM
11 B11 rs16711 Chr17 20.79106 -/TTCTTCTA 1.2 180-181 FAM 13 B13 rs57237250 Ohr6 29496279 -/GAGT 1.2 191-198 FAM 14 B14 rs2308163 Ohr14 57383363 -//CCAAC/ 1 223-231 FAM 15 B16438 Ohr14 57383363 -//CCAAC/ 1 223-2513 FAM 16 B16 rs3028297 Chr9 04060012 -//CCAAC/TAA 1.2 240.72-250 FAM 17 G1 rs1054914 Ohr17 5226569 -/TTTA 2 240.72-250 FAM 18 G2 rs10581451 Ohr6 7244246 -//TAAC 1.2 88-92.5 HEX 19 G3 rs73934833 Ohr6 137024720 -/TT 2 108-113 HEX 21 G5 rs1160852 Ohr6 137024720 -/TGAC 2 122-16.4-160 HEX	10	B10	rs140847	Chr9	12617325	-/CGTT	2	162-168	FAM
12 B12 rs146676649 Ch6 28465279 -/GATT 2 191.5-188 FAM 14 B14 rs203163 Ch14 5783363 -/TGAT 2 198.5-213 FAM 15 B15 rs16438 Ch20 22397829 -/COCA 1 223-231 FAM 16 B16 rs3028297 Ch1 14460012 -/GCTAACTAA 1.2 240.72-250 FAM 17 G1 rs10654914 Ch17 52826269 -/TTTA 2 62-85. HEX 18 G2 rs10651451 Ch18 72942426 -/TGAC 2 69-102 HEX 20 G4 rs381320 Ch1 1322252 -/CTCA 2 09-102 HEX 21 G5 rs1803093 Ch5 7416761 -/TAAC 1 18-174 HEX 22 G6 rs2630780 Ch13 13290240 -/TGAC 2 142-151 HEX 23	11	B11	rs16711	Chr17	20179106	-/TTTCTTCCTA	1,2	169–181	FAM
13 B13 rs7237250 Chef 1094/1799 -/GAGT 1.2 191-198 FAM 15 B15 rs16438 Chr14 25297829 -/COCAC/ 1 223-231 FAM 15 B16 rs3028297 Chr9 104600102 -/GCTAA/CTAA 1.2 240.72-250 FAM 17 G1 rs10549141 Chr9 124600102 -/GCTAA/CTAA 1.2 240.72-250 FAM 18 G2 rs10581451 Chr8 7242426 -/TTAA 2 62-68.5 HEX 19 G3 rs8734863 Chr2 74718761 -/TAA 1.2 206-112 HEX 20 G4 rs3831920 Chr1 1397024720 -/TT 2 106-113 HEX 21 G5 rs160852 Chr6 137024720 -/TGA 2 127-155 HEX 22 G6 rs2837984 Chr1 3583484 -/GGA 1 107-158 HEX <tr< td=""><td>12</td><td>B12</td><td>rs149676649</td><td>Chr5</td><td>28495279</td><td>-/GATT</td><td>2</td><td>181.5–188</td><td>FAM</td></tr<>	12	B12	rs149676649	Chr5	28495279	-/GATT	2	181.5–188	FAM
14 B14 rs203163 Chrl4 S758363 TGAT 2 196.5-213 FAM 15 B15 rs16438 Chrl2 25297829 COCCA/ 1 223-231 FAM 16 B16 rs3028297 Chrl9 14604012 GCTAA/CTAA 1.2 240.72-250 FAM 17 G1 rs1054914 Chrl7 5425659 TTA 2 62-85. HEX 18 G2 rs10581451 Chrl6 72942426 TGAA 1.2 86-82. HEX 20 G4 rs9831920 Chrl 137024720 TT 2 108-113 HEX 21 G5 rs1810257 Chrl6 1734110 AG 1 117-123 HEX 22 G6 rs2307940 Chrl5 7814232 GGA 2 122-151 HEX 23 G10 rs2307840 Chrl13 43990341 GTA 1 186-163 HEX	13	B13	rs57237250	Chr6	109941799	-/GAGT	1,2	191–198	FAM
15 B15 rs16438 Chr20 25297829 -/CCCAC/ 1 223-231 FAM 16 B16 rs0028297 Chr9 104604012 -/GCTAA/CTAA 1,2 240,72-250 FAM 17 G1 rs10549141 Chr17 5425659 ./TTTA 2 62-86.5 HEX 19 G3 rs0734853 Chr2 74716761 ./TAAC 1.2 86-02.5 HEX 20 G4 rs3831980 Chr1 1292825 ./CTCA 2 95-102 HEX 21 G5 rs1310852 Chr6 137024720 ./TT 2 108-113 HEX 22 G6 rs25630 Chr6 14734110 ./AGA 1 117-123 HEX 24 G8 rs3839049 Chr2 2655420 ./ACT 2 142-151 HEX 25 G9 rs3839049 Chr1 3553488 ./GT 1 186-183 HEX 26	14	B14	rs2308163	Chr14	57583363	-/TGAT	2	198.5-213	FAM
16 B16 rs3028297 Ch9 104604012 -/GCTAA/CTAA 1,2 240,72-250 FAM 17 G1 rs10541451 Ch17 5425659 -/TTAA 2 62-08.5 HEX 19 G3 rs67934853 Ch12 74716761 -/TAAC 1.2 86-92.5 HEX 20 G4 rs3831920 Ch11 1222255 -/CTCA 2 95-102 HEX 21 G5 rs160582 Ch6 137024720 -/TT 2 108-113 HEX 22 G6 rs25830 Ch16 714322 -/GGA 2 127-135 HEX 23 G7 rs2307980 Ch12 72493884 -/GTA 1 186-174 HEX 24 G8 rs138125572 Ch13 43390341 -/TAAC 2 154-160 HEX 25 G9 rs338049 Ch12 7036426 -/ATA 1 186-174 HEX 26	15	B15	rs16438	Chr20	25297829	-/CCCAC/ CCCCA	1	223–231	FAM
17 G1 rs10584914 Oh17 542859 -/TTA 2 26-86.5 HEX 18 G2 rs10581451 Oh18 7294226 -/TGAG 2 70-78 HEX 19 G3 rs7934853 Ch12 74717611 -/TAAC 1.2 86-92.5 HEX 20 G4 rs3831920 Ch11 1292285 -/CTCA 2 95-102 HEX 21 G5 rs1160852 Ch6 137024720 -/TT 2 108-113 HEX 22 G6 rs28530 Chr6 74734110 -/AGA 2 127-135 HEX 23 G7 rs207998 Chr5 72493984 -/TGAC 2 142-151 HEX 24 G8 rs138123577 Chr13 4390341 -/TGAC 2 154-160 HEX 25 G9 rs3839049 Chr17 16181674 -/CACA 1.2 186-183 HEX 26 G10 rs207840 Chr17 16181674 -/CACA 1 18-924 HEX	16	B16	rs3028297	Chr9	104604012	-/GCTAA/CTAA	1,2	240.72-250	FAM
18 G2 rs16581451 Chr8 72942428 -/TGAG 2 70-78 HEX 19 G3 rs67934633 Chr2 74716761 -/TAAC 1.2 86-92.5 HEX 20 G4 rs831920 Chr1 1292285 -/CTGA 2 95-102 HEX 21 G5 rs1160852 Chr6 137024720 -/TT 2 108-113 HEX 22 G6 rs26630 Chr6 1474110 -/AG 1 117-123 HEX 23 G7 rs26079988 Chr5 7814232 -/GGA 2 142-151 HEX 24 G8 rs13812572 Ohr1 3563348 -/GTA 1 188-174 HEX 25 G9 rs3639049 Chr1 3653348 -/GTA 1 188-174 HEX 26 G10 rs2079249 Chr1 16181674 -/CACA 1,2 185-102 HEX 28 G12<	17	G1	rs10549914	Chr17	5425659	-/TTTA	2	62-68.5	HEX
19 G3 rsf67934853 Ch2 74716761 -TACCA 1.2 86-92.5 HEX 20 G4 rs3831920 Chr1 1292285 -/CTCA 2 95-102 HEX 21 G5 rs1160852 Chr6 137024720 -/TT 2 108-113 HEX 22 G6 rs256503 Chr6 14734110 -/AGA 2 127-153 HEX 23 G7 rs2307980 Chr5 7814329 -/GGA 2 142-151 HEX 24 G8 rs133123572 Chr15 72433894 -/TGAC 2 154-160 HEX 25 G9 rs3307940 Chr13 43390341 -/TAA 1 168-173 HEX 28 G12 rs3050470 Chr17 16181674 -/CACA 1 289-202 HEX 30 G14 rs2059308 Chr12 11361720 -/CACAT 1 289-202 HEX 31	18	G2	rs10581451	Chr8	72942426	-/TGAG	2	70–78	HEX
20 G4 rs3831920 Chrl 129285 -/CTCA 2 95-102 HEX 21 G5 rs1160852 Chr6 137024720 -/TT 2 108-113 HEX 22 G6 rs25630 Chr6 14734110 -/AG 1 117-123 HEX 23 G7 rs3807998 Chr5 7814232 -/GGA 2 142-151 HEX 24 G8 rs138123572 Chr15 72493894 -/ACT 2 142-151 HEX 25 G9 rs383049 Chr1 35633488 -/GT 1 186-174 HEX 26 G10 rs307940 Chr17 16181674 -/CACA 1,2 186-193 HEX 28 G12 rs1305047 Chr17 16181674 -/CACA 1,2 186-193 HEX 29 G13 rs26969306 Chr12 111361720 -/ACA 1 0.40-59 TAMRA 31	19	G3	rs67934853	Chr2	74716761	-/TAAC	1,2	86-92.5	HEX
21 G5 rs1160852 Chr6 137024720 -/TT 2 108-113 HEX 22 G6 rs25630 Chr6 14734110 -/AG 1 117-123 HEX 23 G7 rs2307998 Chr5 7814232 -/GGA 2 127-135 HEX 24 G8 rs138123572 Chr15 72439844 -/TGAC 2 142-151 HEX 25 G9 rs3839049 Chr2 2654260 -/ACT 2 154-160 HEX 26 G10 rs207840 Chr1 365348 -/GTA 1 168-174 HEX 27 G11 rs35779249 Chr13 43390341 -/TAA 1 178-185 HEX 28 G12 rs306893708 Chr12 104020321 -/CAA 1 20-92 HEX 30 G14 rs302036 Chr13 112701055 -/ATA 1,2 80-85 TAMRA 33 <t< td=""><td>20</td><td>G4</td><td>rs3831920</td><td>Chr1</td><td>1292285</td><td>-/CTCA</td><td>2</td><td>95-102</td><td>HEX</td></t<>	20	G4	rs3831920	Chr1	1292285	-/CTCA	2	95-102	HEX
22 66 rs2630 Ohr6 14734110 -/AG 1 117-123 HEX 23 G7 rs2007998 Ohr5 7814322 -/GGA 2 127-155 HEX 24 G8 rs138125572 Chr15 72493884 -/TGAC 2 142-151 HEX 25 G9 rs380049 Chr2 26254200 -/ACT 2 154-160 HEX 26 G10 rs3079249 Chr13 33390341 -/TAA 1 178-185 HEX 28 G12 rs108047 Chr17 16181674 -/CACA 1,2 186-193 HEX 29 G13 rs6693708 Chr12 11081720 -/CC 1 218-224 HEX 30 G14 rs2016036 Chr15 64914812 -/CC 1 218-224 HEX 31 G15 rs3217613 Chr15 84932992 -/ATA 1 20-690 TAMRA 34	21	G5	rs1160852	Chr6	137024720	-/TT	2	108–113	HEX
23 G7 rs2307998 Chr5 7814232 -/GGA 2 127-135 HEX 24 G8 rs138123572 Chr15 72499884 -/TGAC 2 142-151 HEX 25 G9 rs2839049 Chr2 2654260 -/ACT 2 154-160 HEX 26 G10 rs2307840 Chr1 35633488 -/GT 1 168-174 HEX 27 G11 rs35779249 Chr17 16181674 -/CACA 1.2 186-193 HEX 28 G12 rs1305047 Chr17 16181674 -/CACA 1 218-202 HEX 30 G14 rs2308036 Chr12 11361720 -/ACA 1 60-69 TAMRA 31 G15 rs3217613 Chr15 84932992 -/ATA 2 80-85 TAMRA 32 Y1 rs11576045 Chr12 11361720 -/ACA 1 60-69 TAMRA 33 Y2 rs3217613 Chr14 68494125 -/CTCA 2 95-102	22	G6	rs25630	Chr6	14734110	-/AG	1	117-123	HEX
24 68 rs138123572 Chr15 72493894 -/TGAC 2 142-151 HEX 25 69 rs3839049 Chr2 26254260 -/ACT 2 154-160 HEX 26 610 rs207840 Chr1 36533488 -/GT 1 168-174 HEX 27 611 rs35779249 Chr13 43390341 -/TAA 1 178-185 HEX 28 612 rs1305047 Chr17 16181674 -/CACA 1,2 186-193 HEX 29 G13 rs6693708 Chr12 7004626 -/TAGG 2 195-202 HEX 30 G14 rs3074939 Chr12 11011720 -/ACA 1 60-69 TAMRA 31 G15 rs3074939 Chr14 849292 -/ATA 1,2 86-90 TAMRA 32 Y1 rs53259936 Chr11 11271065 -/AT 1,2 180-145 TAMRA 34<	23	G7	rs2307998	Chr5	7814232	-/GGA	2	127-135	HEX
25 G9 rs3839049 Chr2 26254260 -/ACT 2 154-160 HEX 26 G10 rs2307840 Chr1 3663488 -/(T 1 186-174 HEX 27 G11 rs55779249 Chr13 43390341 -/TAA 1 178-163 HEX 28 G12 rs105047 Chr17 16181674 -/CACA 1,2 186-193 HEX 29 G13 rs66693708 Chr12 7/704626 -/CAGT 1 285-202 HEX 30 G14 rs209086 Chr12 42002321 -/CAGT 1 285-202 HEX 31 G15 rs3074939 Chr15 84932922 -/ACA 1 80-69 TAMRA 33 Y2 rs3840274 Chr4 68494125 -/CTCA 2 96-102 TAMRA 36 Y5 rs838001 Chr2 6963640 -/AA 2 162-168 TAMRA 37	24	G8	rs138123572	Chr15	72493894	-/TGAC	2	142-151	HEX
26 G10 rs2307840 Chr1 35633488 -/GT 1 168-174 HEX 27 G11 rs35779249 Chr13 43390341 -/TAA 1 178-185 HEX 28 G12 rs1305047 Chr17 16181674 -/CACA 1,2 186-193 HEX 29 G13 rs66693708 Chr12 77004626 -/TAAG 2 195-202 HEX 30 G14 rs2308036 Chr12 42002321 -/CAGT 1 225-232 HEX 31 G15 rs3074939 Chr21 11361720 -/ACA 1 60-69 TAMRA 33 Y2 rs3059936 Chr11 112701065 -/AT 1,2 86-90 TAMRA 34 Y3 rs3059936 Chr14 140872558 -/AT 1,2 119-124 TAMRA 35 Y4 rs3033100 Chr2 63684046 -/CAG 1 126-145 TAMRA <t< td=""><td>25</td><td>G9</td><td>rs3839049</td><td>Chr2</td><td>26254260</td><td>-/ACT</td><td>2</td><td>154-160</td><td>HEX</td></t<>	25	G9	rs3839049	Chr2	26254260	-/ACT	2	154-160	HEX
27 G11 rs35779249 Chr13 43390341 -/TAA 1 178-185 HEX 28 G12 rs1305047 Chr17 16181674 -/CACA 1,2 186-193 HEX 29 G13 rs66693708 Chr15 64914812 -/CC 1 218-224 HEX 30 G14 rs3074939 Chr12 11081720 -/CC 1 218-224 HEX 31 G15 rs3074939 Chr12 111361720 -/CC 1 60-69 TAMRA 32 Y1 rs11576045 Chr12 111361720 -/ACA 1 60-69 TAMRA 33 Y2 rs3217613 Chr13 14932992 -/ATA 2 80-85 TAMRA 34 Y3 rs3840614 Chr4 68494125 -/CTCA 2 95-102 TAMRA 35 Y4 rs3840614 Chr2 78029712 -/TTC 1,2 186-145 TAMRA 36 Y5 rs3840614 Chr2 63684046 -/CAA 2 162-168	26	G10	rs2307840	Chr1	35633488	-/GT	1	168-174	HEX
28 G12 rs1305047 Chr17 16181674 -/CACA 1,2 186-193 HEX 29 G13 rs66693708 Chr12 77004626 -/TAAG 2 195-202 HEX 30 G14 rs2308036 Chr15 64914812 -/CC 1 218-224 HEX 31 G15 rs074939 Chr12 42002321 -/CAGT 1 60-69 TAMRA 33 Y2 rs3217613 Chr12 111361720 -/ACA 1 60-69 TAMRA 34 Y3 rs3217613 Chr14 84932992 -/ATA 2 80-85 TAMRA 35 Y4 rs3840614 Chr7 78029712 -/TC 1.2 119-124 TAMRA 36 Y5 rs3840614 Chr2 6660366 -/AT 1.2 162-168 TAMRA 37 Y6 rs303100 Chr4 100927312 -/TCA 2 162-168 TAMRA 38<	27	G11	rs35779249	Chr13	43390341	-/TAA	1	178–185	HEX
29 G13 rs66693708 Chrl2 7704626 -/TAAG 2 195-202 HEX 30 G14 rs2308036 Chrl5 64914812 -/CC 1 218-224 HEX 31 G15 rs3074939 Chr21 42002321 -/CAGT 1 225-232 HEX 32 Y1 rs1576045 Chr12 111361720 -/ACA 1 60-69 TAMRA 33 Y2 rs3217613 Chr15 84932992 -/ATA 2 80-85 TAMRA 34 Y3 rs3059936 Chr11 112701065 -/AT 1,2 86-90 TAMRA 35 Y4 rs3840014 Chr4 66494125 -/CTCA 2 95-102 TAMRA 36 Y5 rs3840014 Chr2 63684046 -/CAG 1 12-119-124 TAMRA 39 Y8 rs3049003 Chr7 6603684046 -/CAG 1 122-168 TAMRA 4	28	G12	rs1305047	Chr17	16181674	-/CACA	1,2	186–193	HEX
30 G14 rs2308036 Chr15 64914812 -/CC 1 218-224 HEX 31 G15 rs3074939 Chr21 42002321 -/CAGT 1 225-232 HEX 32 Y1 rs11576045 Chr12 111361720 -/ACA 1 60-69 TAMRA 34 Y3 rs3059936 Chr11 112701065 -/AT 1,2 86-90 TAMRA 35 Y4 rs3840274 Chr4 68494125 -/CTCA 2 95-102 TAMRA 36 Y5 rs3840614 Chr7 78029712 -/TTC 1,2 119-124 TAMRA 38 Y7 rs3838001 Chr20 63684046 -/CAA 2 162-168 TAMRA 39 Y8 rs3049003 Chr7 6660366 -/AT 1,2 172-178 TAMRA 40 Y9 rs305160 Chr10 10927312 -/TG 1 182-188 TAMRA 41<	29	G13	rs66693708	Chr12	77004626	-/TAAG	2	195-202	HEX
31 G15 rs3074939 Chr21 42002321 -/CAGT 1 225-232 HEX 32 Y1 rs11576045 Chr12 111361720 -/ACA 1 60-69 TAMRA 33 Y2 rs3217613 Chr15 84932992 -/ATA 2 80-85 TAMRA 34 Y3 rs3059936 Chr11 11270165 -/ATA 2 95-102 TAMRA 35 Y4 rs3840274 Chr4 68494125 -/CTCA 2 95-102 TAMRA 36 Y5 rs3840614 Chr7 78029712 -/TTC 1,2 119-124 TAMRA 37 Y6 rs3049003 Chr7 6660366 -/AT 1 2 162-168 TAMRA 39 Y8 rs3049003 Chr10 100927312 -/TG 1 182-188 TAMRA 40 Y9 rs3051160 Chr12 10124046 -/AAG 1 203-209 TAMRA <t< td=""><td>30</td><td>G14</td><td>rs2308036</td><td>Chr15</td><td>64914812</td><td>-/CC</td><td>1</td><td>218-224</td><td>HEX</td></t<>	30	G14	rs2308036	Chr15	64914812	-/CC	1	218-224	HEX
32 Y1 rs11576045 Chr12 111361720 -/ACA 1 60-69 TAMRA 33 Y2 rs3217613 Chr15 84932992 -/ATA 2 80-85 TAMRA 34 Y3 rs3059936 Chr11 112701065 -/AT 1.2 86-90 TAMRA 35 Y4 rs3840274 Chr4 6849125 -/CTCA 2 95-102 TAMRA 36 Y5 rs3840614 Chr7 78029712 -/TC 1.2 1136-145 TAMRA 38 Y7 rs3838001 Chr20 63684046 -/CAA 2 162-168 TAMRA 39 Y8 rs3049003 Chr7 6660366 -/AT 1.2 172-178 TAMRA 40 Y9 rs3051160 Chr10 10927312 -/TG 1 182-188 TAMRA 41 Y10 rs5783058 Chr10 8742655 -/TGTT 1 66-74 ROX 43 <td>31</td> <td>G15</td> <td>rs3074939</td> <td>Chr21</td> <td>42002321</td> <td>-/CAGT</td> <td>1</td> <td>225-232</td> <td>HEX</td>	31	G15	rs3074939	Chr21	42002321	-/CAGT	1	225-232	HEX
33 Y2 rs3217613 Chr15 84932992 -/ATA 2 80-85 TAMRA 34 Y3 rs3059936 Chr11 112701065 -/AT 1,2 86-90 TAMRA 35 Y4 rs3840274 Chr4 68494125 -/CTCA 2 95-102 TAMRA 36 Y5 rs3840614 Chr7 78029712 -/TTC 1,2 119-124 TAMRA 37 Y6 rs303100 Chr4 140872558 -/CAG 2 162-168 TAMRA 38 Y7 rs3049003 Chr7 6660366 -/AT 1,2 172-178 TAMRA 40 Y9 rs3051160 Chr10 100927312 -/TG 1 182-188 TAMRA 41 Y10 rs5796380 Chr10 8742655 -/TGTT 1 66-74 ROX 42 R1 rs5783584 Chr21 42559334 -/AGA 2 84-90 ROX 43	32	Y1	rs11576045	Chr12	111361720	-/ACA	1	60-69	TAMRA
34 Y3 rs3059936 Chr11 112701065 -/AT 1,2 86-90 TAMRA 35 Y4 rs3840274 Chr4 68494125 -/CTCA 2 95-102 TAMRA 36 Y5 rs3840614 Chr7 78029712 -/TTC 1,2 119-124 TAMRA 37 Y6 rs3033100 Chr4 140872558 -/CAG 1,2 136-145 TAMRA 38 Y7 rs3838001 Chr20 63684046 -/CAA 2 162-168 TAMRA 39 Y8 rs3049003 Chr7 6660366 -/AT 1,2 172-178 TAMRA 40 Y9 rs3051160 Chr10 100927312 -/TG 1 182-188 TAMRA 41 Y10 rs5796380 Chr12 1012406 -/AAG 2 84-90 ROX 42 R1 rs5783058 Chr14 42559334 -/AGA 2 84-90 ROX 43 R2 rs3216128 Chr21 28691710 -/TAC 1 113-118	33	Y2	rs3217613	Chr15	84932992	-/ATA	2	80-85	TAMBA
35 Y4 rs3840274 Chr4 68494125 -/CTCA 2 95-102 TAMRA 36 Y5 rs3840614 Chr7 78029712 -/TTC 1,2 119-124 TAMRA 37 Y6 rs3033100 Chr4 140872558 -/CAG 1,2 136-145 TAMRA 38 Y7 rs383801 Chr20 63684046 -/CAA 2 162-168 TAMRA 39 Y8 rs3049003 Chr7 6660366 -/AT 1,2 172-178 TAMRA 40 Y9 rs3051160 Chr10 100927312 -/TG 1 182-188 TAMRA 41 Y10 rs5796380 Chr12 10124046 -/AAG 2 84-90 ROX 43 R2 rs3216128 Chr21 42559334 -/AGA 2 84-90 ROX 44 R3 rs582284 Chr18 5980141 -/TACC 1 103-110 ROX 45	34	Y3	rs3059936	Chr11	112701065	-/AT	1.2	86-90	TAMRA
36 Y5 rs3840614 Chr7 78029712 -/TTC 1.2 119-124 TAMRA 37 Y6 rs3033100 Chr4 140872558 -/CAG 1.2 136-145 TAMRA 38 Y7 rs3838001 Chr20 63684046 -/CAA 2 162-168 TAMRA 39 Y8 rs3049003 Chr7 6660366 -/AT 1.2 172-178 TAMRA 40 Y9 rs3051160 Chr10 100927312 -/TG 1 182-188 TAMRA 41 Y10 rs5796380 Chr12 10124046 -/AAG 1 203-209 TAMRA 42 R1 rs5783058 Chr10 8742655 -/TGTT 1 66-74 ROX 43 R2 rs3216128 Chr21 42559334 -/AGA 2 84-90 ROX 44 R3 rs5822884 Chr18 5980141 -/TAGT 1 103-110 ROX 45 R4 rs3053514 Chr21 28691710 -/TAC 1 113-118	35	Y4	rs3840274	Chr4	68494125	-/CTCA	2	95-102	TAMBA
37 Y6 rs3033100 Chr4 140872558 -/CAG 1,2 136-145 TAMRA 38 Y7 rs3838001 Chr20 63684046 -/CAA 2 162-168 TAMRA 39 Y8 rs3049003 Chr7 6660366 -/AT 1,2 172-178 TAMRA 40 Y9 rs3051160 Chr10 100927312 -/TG 1 182-188 TAMRA 41 Y10 rs5796380 Chr12 10124046 -/AAG 1 203-209 TAMRA 42 R1 rs5783058 Chr10 8742655 -/TGTT 1 66-74 ROX 43 R2 rs3216128 Chr21 42559334 -/AGA 2 84-90 ROX 44 R3 rs5822884 Chr18 5980141 -/TAGT 1 103-110 ROX 45 R4 rs3053514 Chr21 28691710 -/TAC 1 113-118 ROX 46 R5 rs3840019 Chr15 65752777 -/AATT 2 121-128	36	Y5	rs3840614	Chr7	78029712	-/TTC	1.2	119–124	TAMRA
38 Y7 rs3838001 Chr20 63684046 -/CAA 2 162-168 TAMRA 39 Y8 rs3049003 Chr7 6660366 -/AT 1,2 172-178 TAMRA 40 Y9 rs3051160 Chr10 100927312 -/TG 1 182-188 TAMRA 41 Y10 rs5796380 Chr12 10124046 -/AAG 1 203-209 TAMRA 42 R1 rs5783058 Chr10 8742655 -/TGTT 1 66-74 ROX 43 R2 rs3216128 Chr21 42559334 -/AGA 2 84-90 ROX 44 R3 rs5822884 Chr18 5980141 -/TAGT 1 103-110 ROX 45 R4 rs3053514 Chr21 28691710 -/TAC 1 113-118 ROX 46 R5 rs3840019 Chr15 65752777 -/AATT 2 121-128 ROX 47	37	Y6	rs3033100	Chr4	140872558	-/CAG	1.2	136-145	TAMBA
39 Y8 rs3049003 Chr7 6660366 -/AT 1,2 172-178 TAMRA 40 Y9 rs3051160 Chr10 100927312 -/TG 1 182-188 TAMRA 41 Y10 rs5796380 Chr12 10124046 -/AAG 1 203-209 TAMRA 42 R1 rs5783058 Chr10 8742655 -/TGTT 1 66-74 ROX 43 R2 rs3216128 Chr21 42559334 -/AGA 2 84-90 ROX 44 R3 rs5822884 Chr18 5980141 -/TAGT 1 103-110 ROX 45 R4 rs3053514 Chr21 28691710 -/TAC 1 113-118 ROX 46 R5 rs3840019 Chr15 65752777 -/AATT 2 121-128 ROX 47 R6 rs1610951 Chr5 57319423 -/TGTTCA 1,2 165-175 ROX 48	38	Y7	rs3838001	Chr20	63684046	-/CAA	2	162-168	TAMBA
40 Y9 rs3051160 Chr10 100927312 -/TG 1 182-188 TAMRA 41 Y10 rs5796380 Chr12 10124046 -/AAG 1 203-209 TAMRA 42 R1 rs5783058 Chr10 8742655 -/TGTT 1 66-74 ROX 43 R2 rs3216128 Chr21 42559334 -/AGA 2 84-90 ROX 44 R3 rs5822884 Chr18 5980141 -/TAGT 1 103-110 ROX 45 R4 rs3053514 Chr21 28691710 -/TAC 1 113-118 ROX 46 R5 rs3840019 Chr15 65752777 -/AATT 2 121-128 ROX 47 R6 rs1610951 Chr5 109664135 -/CCAA 2 144-151 ROX 48 R7 rs105057 Chr5 57319423 -/TGTTCA 1,2 165-175 ROX 49 R8 rs3073179 Chr11 18237493 -/AT 1,2 176-181	39	Y8	rs3049003	Chr7	6660366	-/AT	1.2	172-178	TAMBA
41 Y10 rs5796380 Chr12 10124046 -/AAG 1 203-209 TAMRA 42 R1 rs5783058 Chr10 8742655 -/TGTT 1 66-74 ROX 43 R2 rs3216128 Chr21 42559334 -/AGA 2 84-90 ROX 44 R3 rs5822884 Chr18 5980141 -/TAGT 1 103-110 ROX 45 R4 rs3053514 Chr21 28691710 -/TAC 1 113-118 ROX 46 R5 rs3840019 Chr15 65752777 -/AATT 2 121-128 ROX 47 R6 rs1610951 Chr5 109664135 -/CCAA 2 144-151 ROX 48 R7 rs105057 Chr5 57319423 -/TGTTTCA 1,2 165-175 ROX 49 R8 rs3073179 Chr11 18237493 -/ATT 1,2 176-181 ROX 50 R9 rs2307727 Chr2 135675653 -/TT 1 197-203 <	40	Y9	rs3051160	Chr10	100927312	-/TG	1	182-188	TAMRA
42 R1 rs5783058 Chr10 8742655 -/TGTT 1 66-74 ROX 43 R2 rs3216128 Chr21 42559334 -/AGA 2 84-90 ROX 44 R3 rs5822884 Chr18 5980141 -/TAGT 1 103-110 ROX 45 R4 rs3053514 Chr21 28691710 -/TAC 1 113-118 ROX 46 R5 rs3840019 Chr15 65752777 -/AATT 2 121-128 ROX 47 R6 rs1610951 Chr5 109664135 -/CCAA 2 144-151 ROX 48 R7 rs105057 Chr5 57319423 -/TGTTCA 1,2 165-175 ROX 49 R8 rs3073179 Chr11 18237493 -/AT 1,2 176-181 ROX 50 R9 rs2307727 Chr2 135675653 -/TT 1 197-203 ROX 51 R10 rs5891726 Chr8 59361584 -/TACT 1 213-220 R	41	Y10	rs5796380	Chr12	10124046	-/AAG	1	203-209	TAMRA
43 R2 rs3216128 Chr21 42559334 -/AGA 2 84-90 ROX 44 R3 rs5822884 Chr18 5980141 -/TAGT 1 103-110 ROX 45 R4 rs3053514 Chr21 28691710 -/TAC 1 113-118 ROX 46 R5 rs3840019 Chr15 65752777 -/AATT 2 121-128 ROX 47 R6 rs1610951 Chr5 109664135 -/CCAA 2 144-151 ROX 48 R7 rs1305057 Chr5 57319423 -/TGTTTCA 1,2 165-175 ROX 49 R8 rs3073179 Chr11 18237493 -/AT 1,2 176-181 ROX 50 R9 rs2307727 Chr2 135675653 -/TT 1 197-203 ROX 51 R10 rs5891726 Chr8 59361584 -/TACT 1 213-220 ROX 52 R11 rs5824539 Chr18 44391691 -/TA 2 221-224 <	42	B1	rs5783058	Chr10	8742655	-/TGTT	1	66-74	ROX
44 R3 rs5822884 Chr18 598011 -/TAGT 1 103-110 ROX 45 R4 rs3053514 Chr21 28691710 -/TAGT 1 113-118 ROX 46 R5 rs3840019 Chr15 65752777 -/AATT 2 121-128 ROX 47 R6 rs1610951 Chr5 109664135 -/CCAA 2 144-151 ROX 48 R7 rs1305057 Chr5 57319423 -/TGTTTCA 1,2 165-175 ROX 49 R8 rs3073179 Chr11 18237493 -/AT 1,2 176-181 ROX 50 R9 rs2307727 Chr2 135675653 -/TT 1 197-203 ROX 51 R10 rs5891726 Chr8 59361584 -/TACT 1 213-220 ROX 52 R11 rs5824539 Chr18 44391691 -/TA 2 221-224 ROX	43	R2	rs3216128	Chr21	42559334	-/AGA	2	84-90	ROX
45 R4 rs3053514 Chr21 28691710 -/TAC 1 113-118 ROX 46 R5 rs3840019 Chr15 65752777 -/AATT 2 121-128 ROX 47 R6 rs1610951 Chr5 109664135 -/CCAA 2 144-151 ROX 48 R7 rs1305057 Chr5 57319423 -/TGTTTCA 1,2 165-175 ROX 49 R8 rs3073179 Chr11 18237493 -/AT 1,2 176-181 ROX 50 R9 rs2307727 Chr2 135675653 -/TT 1 197-203 ROX 51 R10 rs5891726 Chr8 59361584 -/TACT 1 213-220 ROX 52 R11 rs5824539 Chr18 44391691 -/TA 2 221-224 ROX	44	R3	rs5822884	Chr18	5980141	-/TAGT	- 1	103-110	ROX
46 R5 rs3840019 Chr15 65752777 -/AATT 2 121–128 ROX 47 R6 rs1610951 Chr5 109664135 -/CCAA 2 144–151 ROX 48 R7 rs1305057 Chr5 57319423 -/TGTTTCA 1,2 165–175 ROX 49 R8 rs3073179 Chr11 18237493 -/AT 1,2 176–181 ROX 50 R9 rs2307727 Chr2 135675653 -/TT 1 197–203 ROX 51 R10 rs5891726 Chr8 59361584 -/TACT 1 213–220 ROX 52 R11 rs5824539 Chr18 44391691 -/TA 2 221–224 ROX	45	R4	rs3053514	Chr21	28691710	-/TAC	1	113-118	ROX
47 R6 rs1610951 Chr5 109664135 -/CCAA 2 144-151 ROX 48 R7 rs1305057 Chr5 57319423 -/TGTTTCA 1,2 165-175 ROX 49 R8 rs3073179 Chr11 18237493 -/AT 1,2 176-181 ROX 50 R9 rs2307727 Chr2 135675653 -/TT 1 197-203 ROX 51 R10 rs5891726 Chr8 59361584 -/TACT 1 213-220 ROX 52 R11 rs5824539 Chr18 44391691 -/TA 2 221-224 ROX	46	R5	rs3840019	Chr15	65752777	-/AATT	2	121-128	ROX
48 R7 rs1305057 Chr5 57319423 -/TGTTTCA 1,2 165-175 ROX 49 R8 rs3073179 Chr11 18237493 -/AT 1,2 176-181 ROX 50 R9 rs2307727 Chr2 135675653 -/TT 1 197-203 ROX 51 R10 rs5824539 Chr18 59361584 -/TACT 1 213-220 ROX 52 R11 rs5824539 Chr18 44391691 -/TA 2 221-224 ROX	47	R6	rs1610951	Chr5	109664135	-/CCAA	2	144-151	BOX
49 R8 rs3073179 Chr11 18237493 -/AT 1,2 176-181 ROX 50 R9 rs2307727 Chr2 135675653 -/TT 1 197-203 ROX 51 R10 rs5824539 Chr18 59361584 -/TACT 1 213-220 ROX 52 R11 rs5824539 Chr18 44391691 -/TA 2 221-224 ROX	48	R7	rs1305057	Chr5	57319423	-/IGTTICA	12	165-175	BOX
50 R9 rs2307727 Chr2 135675653 -/TT 1 197-203 ROX 51 R10 rs5891726 Chr8 59361584 -/TACT 1 213-220 ROX 52 R11 rs5824539 Chr18 44391691 -/TA 2 221-224 ROX	49	 R8	rs3073179	Chr11	18237493	-/AT	12	176-181	BOX
51 R10 rs5891726 Chr8 59361584 -/TACT 1 213-220 ROX 52 R11 rs5894539 Chr18 4491691 -/TA 2 221-224 ROX	50	R9	rs2307727	Chr2	135675653	-/TT	.,1	197-203	BOX
52 R11 rs5824539 Chr18 44391691 -/TA 2 221–224 ROX	51	B10	rs5891726	Chr8	59361584	-/TACT	1	213-220	BOX
	52	R11	rs5824539	Chr18	44391691	-/TA	2	221-224	ROX

FIGURE 1 | Representative 500 pg of Control DNA 9948 profile amplified with the 52-AIDIP panel for 25-µl reaction volumes. Five hundred picograms of Control DNA 9948 was amplified with the developed panel for 30 cycles. One microliter of PCR product added into 12.5 µl of loading mixtures (12 µl Hi-Di formamide +0.5 µl SIZ-500 Size Standard) was electrophoresed on a 3500xL Genetic Analyzer using the default injection conditions.

South Asian, and East Asian populations. However, the differences of allele distributions between American and European/South Asian populations were relatively small for most loci.

To reveal genetic divergences of these AIDIPs among different continental populations better, pairwise F_{ST} values were also calculated, as shown in **Figure 3**. Results revealed that most loci showed relatively high F_{ST} values between East Asian and other continental populations, especially between East Asians and

Europeans, whereas most loci showed low F_{ST} values between American and European/South Asian populations. *In* is commonly used to evaluate the ancestral information of genetic markers in different populations (Phillips, 2015). Hence, the pairwise *In* values of these 50 AIDIPs were also estimated. Similar to F_{ST} values, most loci showed high *In* values between East Asian and other continental populations (**Supplementary Figure 1**). Shriver et al. stated that the developed AIM panel should possess balance differentiation efficiencies among each population, which could

bring little bias into ancestral components of admixed individuals (Shriver et al., 2004). Therefore, we assessed the cumulative PSD values of 50 AIDIPs in the five continental populations. Results demonstrated that these 50 loci showed the highest cumulative PSD values in the East Asian population, followed by African, European, South Asian, and American populations (**Supplementary Figure 2**).

In this study, to infer ancestry origins of East Asian populations more accurately, we selected AIDIP loci that showed high genetic variations between East Asian and other continental populations, resulting in higher cumulative PSD values in East Asian populations. In addition, we found that 50 AIDIP loci also showed relatively high cumulative PSD values in European and African populations.

Nonetheless, relatively low cumulative PSD values of these 50 loci in South Asian and American populations suggested that they might not be suitable for ancestry origin analyses of these two intercontinental populations.

Ancestry Resolutions of the Developed AIDIP Panel for Continental Populations

Here, the PCA was primarily conducted on the basis of the same 50 AIDIPs to evaluate the capacity of the developed AIDIP assay to differentiate continental populations. Results of the PCA analysis for the five continental populations are shown in Figure 4A. At PC1, African, European, and East Asian individuals formed three population clusters, respectively, and they could be clearly separated from each other. At PC3, some South Asian and American individuals could be differentiated from other continental populations. Subsequently, the genetic structure of these continental populations was also explored. The results with K ranging from two to seven are presented in **Figure 4B.** At K = 2, five East Asian populations exhibited high blue components and could be discriminated from other populations. As K becomes 3, African, European, and East Asian populations showed their distinct ancestral components, respectively. Moreover, American and South Asian populations

showed similar ancestral component distributions. When K increased to 4, South Asian populations could be separated from other populations. No more significant changes in population structure were observed from the bar plot when the K values were greater than 4. These results demonstrated that the novel AIDIP panel could clearly differentiate African, European, and East Asian populations. The capacity of this assay to differentiate continental populations is similar to those of previously reported panels (Santos et al., 2010; Pereira et al., 2012b; Lan et al., 2019). Nevertheless, unlike the weaker capacity of the 46-AIM-InDels panel to differentiate the East Asian population (Pereira et al., 2012b), the current AIDIP panel revealed an excellent characteristic to estimate the ancestry information of East Asians.

The *Snipper* online tool was developed to infer ancestry origins of populations by the Bayesian method (Santos et al., 2016b). Therefore, we further evaluated ancestry resolutions of 50 AIDIPs for continental populations by the *Snipper*. Results indicated that most individuals from African, European, East Asian, and South Asian populations could be classified into correct continental origins, whereas some individuals from American populations were classified into European and South Asian populations (**Supplementary Figure 3**). Admixed genetic background of American populations went against their ancestry origin

inferences (Genomes Project et al., 2015). In addition, relatively few American-specific genetic markers in the extant panel might also lead to this result. Even so, obtained results revealed that these 50 AIDIPs could be utilized to differentiate African, European, and East Asian populations well.

Allelic Frequencies and Forensic Statistical Parameters of 52 AIDIPs in Eastern Han Population

HWE tests of 52 AIDIPs in the Eastern Han population are given in **Supplementary Table 1**. No loci were observed to deviate from HWE after applying Bonferroni correction (p = 0.05/52 = 0.00096). Linkage disequilibrium (LD) analyses of pairwise AIDIPs in the Eastern Han population are listed in **Supplementary Table 2**. The results showed that a significant association between rs2307840 and rs140864 loci was revealed, even after applying Bonferroni correction (p = 0.05/1,326 = 0.000037). LD between the two loci in the Eastern

Han population may be caused by genetic linkage because both of them are located on chromosome one and just 292,573 bp apart from each other. The locus rs140864 exhibited a little more excellent characteristic of forensic statistical parameters, therefore, it was preferentially selected for further data analysis in Eastern Han population. Furthermore, to better understand the associations among loci in different population groups, further evaluations containing more populations and lager sample sizes need to be investigated.

Allelic frequencies of 52 AIDIPs in the Eastern Han population are presented in **Figure 5A** and **Supplementary Table 1**. Deletion allelic frequencies of these loci ranged from 0.0000 to 0.9159. We also calculated forensic parameters of these loci in Eastern Han population, as given in **Figure 5B** and **Supplementary Table 1**. Mean observed heterozygosity (Ho), expected heterozygosity (He), polymorphism information content (PIC), match probability (MP), discrimination power (DP), power of exclusion (PE), and typical paternity index (TPI) of 52 AIDIPs in Eastern Han population were

0.2491, 0.2527, 0.2107, 0.6215, 0.3785, 0.0594, and 0.6910, respectively. Cumulative DP and PE of these loci in the Eastern Han population were 0.999 999 999 9977646 and 0.9619, respectively. As expected, these loci exhibited relatively low genetic diversities in the Eastern Han population. Even so, relatively high cumulative DP indicated that these loci could be viewed as a supplementary tool for forensic identity testing in the Eastern Han population.

Ancestry Component Dissections of Eastern Han Populations by 50 AIDIPs

Based on the raw data of 50 AIDIPs, PCA of Eastern Han and continental populations was conducted. We found that the studied Eastern Han individuals were predominately superimposed on the East Asian individual cluster located on the right part of the plot (Figure 6A). Ancestral components of the Eastern Han populations were also assessed in comparisons to five continental populations, as presented in Figure 6B. The studied Eastern Han population displayed high ancestral components from East Asian populations. Subsequently, we treated five continental populations as training set and Eastern Han population as unknown population and explored the power of these AIDIPs to infer ancestral origins of Eastern Han population by the Snipper. The obtained results revealed that all Eastern Han individuals could be categorized into East Asian population, implying that these AIDIPs could perform ancestry origin analyses of Eastern Han population well. Besides, these results also reflected that the studied Eastern Han population had intimate genetic relationships with East Asian populations.

Lang et al. assessed genetic structure of Eastern Han population by 27 Y-STRs and 143 Y-SNPs and found that the Han populations showed closer genetic affinities with East Asian populations than South Asian populations. Furthermore, they also pointed out that genetic differentiations between Southern Han and Northern Han populations were observed (Lang et al., 2019). Lu et al. investigated genetic distributions of 17 autosomal STRs in an Eastern Han population (Jiangsu Han) and they found that the Han population showed low genetic divergences with Hubei Han populations (Lu et al., 2019). Chiang et al. conducted a comprehensive analysis of genetic variations in

Chinese Han populations and found an east-west differentiation among Han populations except for a known south-north cline (Chiang et al., 2018). Moreover, Li et al. exploited the genetic landscape of Chinese Han populations based on the mitochondria DNA and revealed that genetic divergences among Han populations residing in different river systems existed (Li et al., 2019). On this basis, we speculated that genetic substructure potentially existed among different Han populations in China. Consequently, we intend to investigate genetic polymorphism distributions of selected 52 AIDIPs in Han populations from different regions. Those studies can not only depict the genetic architecture of different Han Chinese populations, but also contribute to screen region-specific genetic markers. Moreover, due to the large allele frequency differences between European and East Asian populations of these AIDIP loci selected in the present study, next we intend to explore the capacity of this novel assay to infer the ancestral origins of groups with admixed Eurasian ancestry in China.

CONCLUSION

In summary, we developed a multiplex PCR panel for ancestry origin predictions of different continental populations that contained 52 AIDIP loci. Most loci out of these 52 AIDIPs showed high genetic divergences between East Asian and non-East Asian populations. We also demonstrated that this AIDIP panel could be employed for inferring biogeographical origins of continental populations, specifically for East Asian, African, and European populations. In addition, these 52 AIDIP loci also showed relatively high application values for forensic identity testing in the Eastern Han population. For ancestral component analysis of the Eastern Han population, the novel panel could accurately estimate its close genetic affinities and high ancestral components with East Asian populations. In the future, we need to assess genetic distributions of the 52 AIDIPs in other populations from different regions to unveil genetic portraits of these populations. Only in this way could the performance of the developed panel to infer sub-populations and estimate interethnic admixture proportions be completely understood.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available to maintain the participants privacy. Requests to access the datasets should be directed to the corresponding author, BZ.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethics Committee of Xi'an Jiaotong University, China. The patients/participants provided their written informed consents to participate in this study.

AUTHOR CONTRIBUTIONS

YZ, Investigation, Sample collection, Methodology, Data curation, and Manuscript preparation and revision; XJ, Data curation, Formal analysis, Visualization, and Manuscript preparation and revision; BW, Conceptualization, Supervision, and Manuscript review and editing; BZ, Conceptualization, Supervision, Resources, Funding acquisition, Project administration, and Manuscript review and editing. All listed authors have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

FUNDING

This project was supported by the National Natural Science Foundation of China (No. 81772031), GDUPS (2017).

REFERENCES

- Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast Model-Based Estimation of Ancestry in Unrelated Individuals. *Genome Res.* 19 (9), 1655–1664. doi:10.1101/gr.094052.109
- Carvalho Gontijo, C., Porras-Hurtado, L. G., Freire-Aradas, A., Fondevila, M., Santos, C., Salas, A., et al. (2020). PIMA: A Population Informative Multiplex for the Americas. *Forensic Sci. Int. Genet.* 44, 102200. doi:10.1016/j.fsigen.2019.102200
- Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., and Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of Larger and Richer Datasets. *GigaSci.* 4, 7. doi:10.1186/s13742-015-0047-8
- Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020). TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. *Molecular Plant* 13 (8), 1194–1202. doi:10.1016/j.molp.2020.06.009
- Chen, L., Du, W., Wu, W., Yu, A., Pan, X., Feng, P., et al. (2019). Developmental Validation of a Novel Six-Dye Typing System with 47 A-InDels and 2 Y-InDels. *Forensic Sci. Int. Genet.* 40, 64–73. doi:10.1016/j.fsigen.2019.02.009
- Chen, L., Pan, X., Wang, Y., Du, W., Wu, W., Tang, Z., et al. (2021). Development and Validation of a Forensic Multiplex System with 38 X-InDel Loci. Front. Genet. 12, 670482. doi:10.3389/fgene.2021.670482
- Chiang, C. W. K., Mangul, S., Robles, C., and Sankararaman, S. (2018). A Comprehensive Map of Genetic Variation in the World's Largest Ethnic Group-Han Chinese. *Mol. Biol. Evol.* 35 (11), 2736–2750. doi:10.1093/molbev/msy170
- Excoffier, L., Laval, G., and Schneider, S. (2007). Arlequin (Version 3.0): an Integrated Software Package for Population Genetics Data Analysis. *Evol. Bioinform Online* 1, 47–50.
- Genomes Project, C., Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., et al. (2015). A Global Reference for Human Genetic Variation. *Nature* 526 (7571), 68–74. doi:10.1038/nature15393
- Gouy, A., and Zieger, M. (2017). STRAF-A Convenient Online Tool for STR Data Evaluation in Forensic Genetics. *Forensic Sci. Int. Genet.* 30, 148–151. doi:10.1016/j.fsigen.2017.07.007
- Jin, X.-Y., Wei, Y.-Y., Lan, Q., Cui, W., Chen, C., Guo, Y.-X., et al. (2019). A Set of Novel SNP Loci for Differentiating continental Populations and Three Chinese Populations. *PeerJ* 7, e6508. doi:10.7717/peerj.6508
- Lan, Q., Shen, C., Jin, X., Guo, Y., Xie, T., Chen, C., et al. (2019). Distinguishing Three Distinct Biogeographic Regions with an In-house Developed 39-AIM-InDel Panel and Further Admixture Proportion Estimation for Uyghurs. *Electrophoresis* 40 (11), 1525–1534. doi:10.1002/elps.201800448
- Lang, M., Liu, H., Song, F., Qiao, X., Ye, Y., Ren, H., et al. (2019). Forensic Characteristics and Genetic Analysis of Both 27 Y-STRs and 143 Y-SNPs in Eastern Han Chinese Population. *Forensic Sci. Int. Genet.* 42, e13–e20. doi:10.1016/j.fsigen.2019.07.011

ACKNOWLEDGMENTS

The authors are grateful to all the volunteers that took part in the present study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.801275/full#supplementary-material

Supplementary Figure 1 | Pairwise *In* values of five continental populations for 50 ancestry informative DIPs.

Supplementary Figure 2 | Cumulative PSD values of 50 ancestry informative DIPs in different continental populations.

Supplementary Figure 3 | Ancestry origin analyses of different continental populations by the *Snipper* 2.5 online tool.

- LaRue, B. L., Lagacé, R., Chang, C.-W., Holt, A., Hennessy, L., Ge, J., et al. (2014). Characterization of 114 Insertion/deletion (INDEL) Polymorphisms, and Selection for a Global INDEL Panel for Human Identification. *Leg. Med.* 16 (1), 26–32. doi:10.1016/j.legalmed.2013.10.006
- Li, C., Zhang, S., Li, L., Chen, J., Liu, Y., and Zhao, S. (2012). Selection of 29 Highly Informative InDel Markers for Human Identification and Paternity Analysis in Chinese Han Population by the SNPlex Genotyping System. *Mol. Biol. Rep.* 39 (3), 3143–3152. doi:10.1007/s11033-011-1080-z
- Li, Y.-C., Ye, W.-J., Jiang, C.-G., Zeng, Z., Tian, J.-Y., Yang, L.-Q., et al. (2019). River Valleys Shaped the Maternal Genetic Landscape of Han Chinese. *Mol. Biol. Evol.* 36 (8), 1643–1652. doi:10.1093/molbev/msz072
- Lu, Y., Sun, H.-j., Zhou, J.-c., and Wu, X. (2019). Genetic Polymorphisms, Forensic Efficiency and Phylogenetic Analysis of 17 Autosomal STR Loci in the Han Population of Wuxi, Eastern China. Ann. Hum. Biol. 46 (7-8), 601–605. doi:10.1080/03014460.2019.1693628
- Mills, R. E., Luttig, C. T., Larkins, C. E., Beauchamp, A., Tsui, C., Pittard, W. S., et al. (2006). An Initial Map of Insertion and Deletion (INDEL) Variation in the Human Genome. *Genome Res.* 16 (9), 1182–1190. doi:10.1101/gr.4565806
- Pereira, R., Pereira, V., Gomes, I., Tomas, C., Morling, N., Amorim, A., et al. (2012a). A Method for the Analysis of 32 X Chromosome Insertion Deletion Polymorphisms in a Single PCR. *Int. J. Leg. Med.* 126 (1), 97–105. doi:10.1007/ s00414-011-0593-2
- Pereira, R., Phillips, C., Alves, C., Amorim, A., Carracedo, Á., and Gusmão, L. (2009). A New Multiplex for Human Identification Using Insertion/deletion Polymorphisms. *Electrophoresis* 30 (21), 3682–3690. doi:10.1002/elps.200900274
- Pereira, R., Phillips, C., Pinto, N., Santos, C., Santos, S. E. B. d., Amorim, A., et al. (2012b). Straightforward Inference of Ancestry and Admixture Proportions through Ancestry-Informative Insertion Deletion Multiplexing. *PLoS One* 7 (1), e29684. doi:10.1371/journal.pone.0029684
- Phillips, C., and de la Puente, M. (2021). The Analysis of Ancestry with Small-Scale Forensic Panels of Genetic Markers. *Emerg. Top. Life Sci.* 5 (3), 443–453. doi:10.1042/ETLS20200327
- Phillips, C. (2015). Forensic Genetic Analysis of Bio-Geographical Ancestry. Forensic Sci. Int. Genet. 18, 49–65. doi:10.1016/j.fsigen.2015.05.012
- Phillips, C., Salas, A., Sánchez, J. J., Fondevila, M., Gómez-Tato, A., Álvarez-Dios, J., et al. (2007). Inferring Ancestral Origin Using a Single Multiplex Assay of Ancestry-Informative Marker SNPs. *Forensic Sci. Int. Genet.* 1 (3-4), 273–280. doi:10.1016/j.fsigen.2007.06.008
- Phillips, K., McCallum, N., and Welch, L. (2012). A Comparison of Methods for Forensic DNA Extraction: Chelex-100 and the Qiagen DNA Investigator Kit (Manual and Automated). *Forensic Sci. Int. Genet.* 6 (2), 282–285. doi:10.1016/ j.fsigen.2011.04.018
- Qu, S., Zhu, J., Wang, Y., Yin, L., Lv, M., Wang, L., et al. (2019). Establishing a Second-Tier Panel of 18 Ancestry Informative Markers to Improve Ancestry

Distinctions Among Asian Populations. Forensic Sci. Int. Genet. 41, 159-167. doi:10.1016/j.fsigen.2019.05.001

- Rosenberg, N. A., Li, L. M., Ward, R., and Pritchard, J. K. (2003). Informativeness of Genetic Markers for Inference of Ancestry*. Am. J. Hum. Genet. 73 (6), 1402–1422. doi:10.1086/380416
- Santos, C., Phillips, C., Fondevila, M., Daniel, R., van Oorschot, R. A. H., Burchard, E. G., et al. (2016a). Pacifiplex : an Ancestry-Informative SNP Panel Centred on Australia and the Pacific Region. *Forensic Sci. Int. Genet.* 20, 71–80. doi:10.1016/j.fsigen.2015.10.003
- Santos, C., Phillips, C., Gomez-Tato, A., Alvarez-Dios, J., Carracedo, Á., and Lareu, M. V. (2016b). Inference of Ancestry in Forensic Analysis II: Analysis of Genetic Data. *Methods Mol. Biol.* 1420, 255–285. doi:10.1007/978-1-4939-3597-0_19
- Santos, N. P. C., Ribeiro-Rodrigues, E. M., Ribeiro-Dos-Santos, Â. K. C., Pereira, R., Gusmão, L., Amorim, A., et al. (2010). Assessing Individual Interethnic Admixture and Population Substructure Using a 48-Insertion-Deletion (INSEL) Ancestry-Informative Marker (AIM) Panel. *Hum. Mutat.* 31 (2), 184–190. doi:10.1002/humu.21159
- Shriver, M. D., Kennedy, G. C., Parra, E. J., Lawson, H. A., Sonpar, V., Huang, J., et al. (2004). The Genomic Distribution of Population Substructure in Four Populations Using 8,525 Autosomal SNPs. *Hum. Genomics* 1 (4), 274–286. doi:10.1186/1479-7364-1-4-274
- Sun, K., Ye, Y., Luo, T., and Hou, Y. (2016). Multi-InDel Analysis for Ancestry Inference of Sub-populations in China. Sci. Rep. 6, 39797. doi:10.1038/srep39797
- Weber, J. L., David, D., Heil, J., Fan, Y., Zhao, C., and Marth, G. (2002). Human Diallelic Insertion/deletion Polymorphisms. Am. J. Hum. Genet. 71 (4), 854–862. doi:10.1086/342727

- Wei, Y.-L., Wei, L., Zhao, L., Sun, Q.-F., Jiang, L., Zhang, T., et al. (2016). A Single-Tube 27-plex SNP Assay for Estimating Individual Ancestry and Admixture from Three Continents. *Int. J. Leg. Med.* 130 (1), 27–37. doi:10.1007/s00414-015-1183-5
- Xavier, C., de la Puente, M., Phillips, C., Eduardoff, M., Heidegger, A., Mosquera-Miguel, A., et al. (2020). Forensic Evaluation of the Asia Pacific Ancestry-Informative MAPlex Assay. *Forensic Sci. Int. Genet.* 48, 102344. doi:10.1016/j.fsigen.2020.102344

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor and the reviewer ZW declared as past co-authorship with one of the authors BZ.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zhou, Jin, Wu and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.