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Abstract: Nucleic acids and proteins form two of the key classes of functional biomolecules. Through
the ability to access specific protein-oligonucleotide conjugates, a broader range of functional
molecules becomes accessible which leverages both the programmability and recognition potential of
nucleic acids and the structural, chemical and functional diversity of proteins. Herein, we summarize
the available conjugation strategies to access such chimeric molecules and highlight some key case
study examples within the field to showcase the power and utility of such technology.
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1. Introduction

Nucleic acids and proteins form the key classes of functional molecules in biology and
thus, it stands to reason that each of these biomolecules serves as an important building
blocks for biological chemistry and chemical biology. However, just like in biology, the
classes are often exploited to different ends, based on their fundamentally different proper-
ties (Figure 1). The limited number of structural components which comprise nucleic acids,
in concert with their defined hydrogen bonding properties, afford them unique programma-
bility and ease with which to predict overall geometry [1]. For these reasons nucleic acids
are often used for specific recognition of partner strands enabling the formation of defined
nano objects, or for the physical transfer of information through conformational change by
acting as molecular circuitry. It is important to note that such systems can rely equally on
native DNA or on designer nucleic acids (such as peptide nucleic acids (PNA) [2–10] or
threoninol nucleic acids [11]) to fulfill this role. In contrast, proteins have a much wider
array of potentially accessible structures as a result of their larger number of component
building blocks, as well as the broader range of interactions these can undergo to influence
global structure [1]. However, this broader molecular space available to proteins makes
them inherently more difficult to program for specific shapes and interactions (although
significant advances are being made in this area [12–15]). By creating hybrid structures,
composed of both nucleic acids and proteins it is possible to harness the power of each to
create uniquely powerful systems.
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Figure 1. Comparison of nucleic acids and proteins as molecular building blocks.
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2. Strategies for Conjugation

While nucleic acids and proteins have tremendous power and utility from a functional
perspective, this can be infinitely expanded through their combination. [1,16–19] However,
this is predicated upon the ability to undertake such combination in a programmable and
controllable manner. As such, the fundamental conjugation chemistries available are the
ultimate determining factors for the success of such an endeavor. Undertaking precision
chemistry on biological molecules is inherently challenging, given the ubiquity of many
functional groups and thus only a specific range of chemical modifications are applicable
in this setting. Broadly, these can be classified as either purely chemical transformations
or biochemical transformations (i.e., those assisted by the presence of an enzyme or by
supramolecular interactions such as streptavidin-biotin [20]) (Figure 2). Below we discuss
the most widely exploited means of protein-oligonucleotide conjugation. While these
transformations are depicted with a particular directionality (i.e., which reactive partner is
present on which biomolecule) it should be noted that in many cases (particularly for the
chemical conjugation methods), this connectivity can be reversed, thereby broadening the
potential options for conjugation.
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2.1. Chemical Conjugation Strategies

While the vast majority of strategies for conjugation of proteins and nucleic acids are
chemical in nature, the subset of these reactions applicable in a given setting relies upon the
choice of whether to exploit a naturally occurring reactive handle (predominantly lysine or
cysteine) or an unnatural one. While naturally occurring moieties present practical ease in
terms of substrate access, they can suffer from difficulties in specificity. Conversely access
to unnaturally occurring reactive handles provides chemical specificity but at the expense
of challenges in obtaining the starting protein.
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The most widely utilized strategy for targeting naturally occurring reactive handles is
conjugation through the nucleophilic amine side chain of lysine residues
(Figure 2A). This is predominantly achieved through the functionalization of the oligonu-
cleotide with an N-hydroxysuccinimide ester which following nucleophilic attack yields
a stable amide linkage [8,21–27]. Cysteine residues are also commonly used as nucle-
ophilic handles for protein modification with maleimide functionalized oligonucleotides
(Figure 2B) [2,24–26,28–32]. While this is a commonly exploited strategy, through the conju-
gate addition of the cysteine thiol to yield to a thioether linkage, this type of conjugation is
inherently unstable due to the acidity of the α-proton, which can lead to the elimination
of the thiol residue and decomposition of the conjugate. Cysteine can also participate
in the linking of protein and oligonucleotides through the formation of disulfide bonds
(Figure 2C) [33,34]. Such conjugation is often assisted through the initial formation of a reac-
tive disulfide intermediate (such as pyridylthiol) to drive the formation of the desired stable,
disulfide conjugate. While disulfides are easily accessible from a synthetic standpoint, their
reversibility must also be considered, especially in the harsh redox environment of a biolog-
ical system. Finally, N-terminal cysteine residues undergo native chemical ligation (NCL)
in the presence of an oligonucleotide bearing a C-terminal thioester (Figure 2D) [3,4,35]. An
initial trans-thioesterification step links the two components, which is followed by a rapid
S-to-N acyl shift to generate the stable amide bond linkage and regenerate the cysteine
side chain.

The incorporation of non-native functional handles can either be achieved through bi-
functional linker chemistry or through the incorporation of unnatural amino acids (UAAs).
Either of these strategies can be used to incorporate azide reactive handles into protein
sequences, including via the UAA pAzF (p-azidophenylalanine) [11,36]. This can then
subsequently be exploited for copper-catalyzed azide-alkyne cycloaddition (CuAAC) [37]
with an alkyne functionalized oligonucleotide or strain-promoted azide-alkyne cycload-
dition (SPAAC) [11,24,38,39] by exploiting a strained cyclooctyne (Figure 2E). Another
commonly exploited UAA is p-acetylphenylalanine (pAcF) [7,31] which facilitates site
specific incorporation of a ketone into a protein which can then undergo oxime ligation
chemistry [32,40] with an alkoxyamine functionalized oligonucleotide (Figure 2F). Finally,
the incorporation of a tetrazine derivatized phenylalanine residue facilitates conjugation to
a trans-cyclooctene functionalized oligonucleotide via an inverse electron demand Diels
Alder reaction (IEDDA) (Figure 2G) [24].

2.2. Biochemical Conjugation Strategies

There are also a wide variety of biochemical-based conjugation strategies available for
the construction of protein-oligonucleotide conjugates. One of the most widely applied
strategies of this type utilizes enzymes which recognize a small molecular tag and transfer
it to a specific peptide sequence within a larger protein substrate (Figure 2H). These
enzymes only consider the molecular tag but are promiscuous relative to the nature of
the appended unit. Thus, oligonucleotides functionalized with the appropriate tag can
be conjugated to the target protein. One of the most well-known enzymes of this type
is the Sortase A [10,41–43] enzyme which recognizes a LPXTG tag on the C-terminus
of a target protein and conjugates it to molecules bearing an N-terminal poly-glycine
tag. Similarly, the asparaginyl endopeptidase OaAEP1 can transfer a molecule bearing
an N-terminal GL tag to a protein containing a NGL consensus sequence through the
liberation of the C-terminal GL dipeptide. [9] Enzymes can also be used to create a reactive
intermediate such as in the case of the formylglycine generating enzyme (FGE) which
recognizes a CXPXR consensus sequence and converts the requisite cysteine residue into
a formylglycine, allowing for the site-specific placement of a reactive aldehyde within
the protein sequence. [40] This residue can then react with an incoming nucleophile such
as an alkoxyamine to facilitate conjugation. Other classes of enzymes used for protein
oligonucleotide conjugation rely on the transfer of post-translational modification. For
example, a protein farnesyl transferase (PFTase) can transfer an oligonucleotide labelled
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with farnesyl pyrophosphate to the cysteine residue of a CVIA consensus sequence [37],
while Hedgehog autoprocessing domains can transfer a steroid labelled oligonucleotide to
a fused protein of interest, followed by self-cleavage [44,45].

Finally, biochemical conjugation of proteins and oligonucleotides can be accessed via
self labelling proteins (Figure 2I). These recognize a small molecule tag and (in contrast
to the small tag category) transfer this label onto themselves. The two most common
enzymes of this class are the HaloTag [46,47] (which recognizes a haloalkane ligand) and
the SnapTag [5,6,46,48] (which recognizes a modified O6-benzylguanine nucleobase). Both
enzymes are sufficiently promiscuous beyond the recognition of the tag to facilitate the
conjugation of tags bearing large substituents, including oligonucleotides.

2.3. Hybrid Conjugation Strategies

While each of the individual conjugation strategies highlighted above has the potential
to efficiently achieve conjugation between protein and nucleic partners, these individual
strategies can often be used to greater effect when combined. The simplest way this can be
achieved is through the use of bifunctional linkers, harnessing a pair of orthogonal chemical
transformation [26,31,34,49]. Conversely, individual chemical conjugation techniques can
be coupled with a templating element (ligand, protein–protein interaction, antibody, metal
chelation) [3,4,22,27,32,50–53] which can be used to direct the conjugation to a specific
region on a target protein, thereby improving the selectivity of the process (Figure 3). This
strategy relies on the recognition element (red) which binds to the target and displays
an oligonucleotide strand. The complimentary conjugation oligonucleotide strand (blue)
then hybridizes with the first strand, bringing it close to the desired region on the protein
surface in order to undergo covalent conjugation, followed by dissociation of the tem-
plating moiety. While conventional NHS chemistry can be exploited in this setting [50],
most commonly photocrosslinking motifs (such as diazirines [51], aryl azides [52,53] and
benzophenones [49]) are used to enable regiochemical specific conjugation without specific
requirements for chemical reactivity.

Biomolecules 2022, 11, x  4 of 13 
 

[40] This residue can then react with an incoming nucleophile such as an alkoxyamine to 

facilitate conjugation. Other classes of enzymes used for protein oligonucleotide conjuga-

tion rely on the transfer of post-translational modification. For example, a protein farnesyl 

transferase (PFTase) can transfer an oligonucleotide labelled with farnesyl pyrophosphate 

to the cysteine residue of a CVIA consensus sequence, [37] while Hedgehog autopro-

cessing domains can transfer a steroid labelled oligonucleotide to a fused protein of inter-

est, followed by self-cleavage [44,45]. 

Finally, biochemical conjugation of proteins and oligonucleotides can be accessed via 

self labelling proteins (Figure 2I). These recognize a small molecule tag and (in contrast to 

the small tag category) transfer this label onto themselves. The two most common en-

zymes of this class are the HaloTag[46,47] (which recognizes a haloalkane ligand) and the 

SnapTag[5,6,46,48] (which recognizes a modified O6-benzylguanine nucleobase). Both en-

zymes are sufficiently promiscuous beyond the recognition of the tag to facilitate the con-

jugation of tags bearing large substituents, including oligonucleotides. 

2.3. Hybrid Conjugation Strategies 

While each of the individual conjugation strategies highlighted above has the poten-

tial to efficiently achieve conjugation between protein and nucleic partners, these individ-

ual strategies can often be used to greater effect when combined. The simplest way this 

can be achieved is through the use of bifunctional linkers, harnessing a pair of orthogonal 

chemical transformation [26,31,34,49]. Conversely, individual chemical conjugation tech-

niques can be coupled with a templating element (ligand, protein–protein interaction, an-

tibody, metal chelation) [3,4,22,27,32,50–53] which can be used to direct the conjugation 

to a specific region on a target protein, thereby improving the selectivity of the process 

(Figure 3). This strategy relies on the recognition element (red) which binds to the target 

and displays an oligonucleotide strand. The complimentary conjugation oligonucleotide 

strand (blue) then hybridizes with the first strand, bringing it close to the desired region 

on the protein surface in order to undergo covalent conjugation, followed by dissociation 

of the templating moiety. While conventional NHS chemistry can be exploited in this set-

ting, [50] most commonly photocrosslinking motifs (such as diazirines, [51] aryl azides 

[52,53] and benzophenones [49]) are used to enable regiochemical specific conjugation 

without specific requirements for chemical reactivity. 

 

Figure 3. Templated conjugation relies on the regiospecific binding of a recognition motif to the 

protein surface, thereby imparting regiospecificity to the conjugation event. R: see red box for 
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examples of interaction; C: see blue box for examples of crosslinking moieties; POI: protein of interest;
PPI: protein-protein interaction.
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3. Applications of Protein-Oligonucleotide Conjugates

With such a wealth of conjugation strategies available it thus becomes possible to
fully exploit the potential of oligonucleotide protein conjugates for a vast array of ap-
plications. One of the broadest classes of applications is to enable the specific 1:1 func-
tionalization of proteins [27,50] (particularly antibodies) with functional handles includ-
ing fluorophores, [51,53] pulldown handles, [52] radiolabels [8,10,42] and nucleic acid
barcodes [4]. Fluorescently labelled proteins are particularly applicable and can be lever-
aged for downstream applications such as sensors [29] and for the transient cell surface
labelling required for the high-resolution imaging such as DNA-paint [3,20]. Protein-
oligonucleotide conjugates can also be applied to the sensing of nucleic acids through
acting as primers for PCR-based detection systems [21,31,48]. In addition to these readout
applications protein-oligonucleotide conjugates can also be utilized for structural purposes.
These predominantly involve the site-specific localization of target proteins to structures
including DNA origami, [2,6,9,11,23,24,37,46,49] arrays, [35] nanoparticles [25] or even
the surfaces of phages [41] to impart new activity. The oligonucleotide tags can also
be used to bring labelled protein units together to form new entities with precise three-
dimensional arrangements, [7,39] such as the characteristic Y-shape to be able to mimic
antibody binding [26,40] or to recapitulate enzyme activity [22,28,33,45]. Herein we select
several examples as case studies to highlight the utility of these biomolecular systems.

3.1. Case Study 1

While inherent challenges exist in terms of the site specificity available through purely
chemical conjugation approaches these can be overcome through careful system design.
This is elegantly showcased in the work of Ricci and Gothelf, [38] whereby they are specif-
ically able to target the hinge region of IgG1 antibodies for oligonucleotide conjugation.
This is achieved through the use of a Lysine Directed Labelling Reagent (LDLR) previ-
ously developed by Gothelf [54] which is predisposed towards reactivity at the lysine-rich
hinge region of IgG1. The reagent is based upon a salicaldehyde moiety (Figure 4) which
undergoes reversible covalent interaction with surface exposed lysine residues to form
a corresponding iminium ion. Crucially, this iminium ion then causes activation of the
adjacent p-phenol ester, increasing its reactivity towards nucleophilic attack by nearby
lysine residues. Without the initial iminium ion formation, such reactivity is not sufficient
and thus conjugation is only achieved when two lysine residues are found in close prox-
imity, such as in the hinge region of IgG1. Through functionalization of the LDLR with
an azide and subsequent SPAAC conjugation to a DBCO (dibenzocyclooctyne) labelled
oligonucleotide, the authors where able to achieve site selective conjugation on IgG1 anti-
bodies. They then exploited these chimeric molecules to facilitate programmable protein
template reactions by choosing pairs of IgG1 antibodies specific to orthogonal regions of
the same target protein. The appended oligonucleotides could then be used to recruit a
corresponding pair of reactant strands, bearing the chemical reaction partners. Specifically,
the authors used an azide and alkyne pair, which when brought into to close proximity by
the oligonucleotide scaffold underwent CuAAC to conjugate the two reactant strands.

3.2. Case Study 2

While it is possible to achieve protein-oligonucleotide conjugation in a specific manner
harnessing only chemical reactivity, it is a far more common and general approach to
combine this with a site specific non-covalent interaction. This initial templation step
thereby provides the regiospecificity for the chemical transformation. A powerful example
of this strategy is demonstrated by de Greef and coworkers [49] to enable the display
of any antibody or Fc fusion protein on DNA origami architectures. This platform is
underpinned by the specificity of protein G for the Fc domain of antibodies (Figure 5).
The authors engineered the immunoglobulin binding protein to contain an unnatural
p-benzoylphenylalanine (BPA) in the Fc binding site, which upon UV irradiation enables
site-specific covalent conjugation as originally reported by Tsourkas and coworkers [55].
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Protein G was also engineered to contain a single N-terminal cysteine residue, allowing
for conjugation to an amino functionalized oligonucleotide through a heterobifunctional
sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC) linker.
The authors thereby use Protein G as a small and easily engineerable adaptor protein to
enable specific conjugation of oligonucleotides to both antibodies, as well as other proteins
of interest expressed as fusion proteins with the Fc domain. They exploit this to enable
display of these proteins on the surface of DNA origami structures through complementary
base pairing with the conjugate nucleic acid tag.
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enabling site specific conjugation to the hinge region of IgG1 antibodies (B). This can be exploited for
proximity templated chemistry through the use of an orthogonal pair of antibodies against a single
target (C).
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to a mutant Protein G containing a single cysteine residue. The specificity of Protein G for the Fc
domain of antibodies is then harnessed to facilitate site specific conjugation through a BPA residue
(represented as a red circle).
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3.3. Case Study 3

As shown above, protein–protein interactions provide a powerful means of templation
to enable site-specific chemical conjugation between oligonucleotides and proteins. How-
ever, these interactions are not limited to large protein structures, with precisely designed
isolated secondary structural elements capable of affording similar templation. This is
demonstrated by Seitz and coworkers [4] in their use of coiled-coil protein interactions
for the labelling of cell surface membrane proteins (Figure 6). The authors exploit the
coiled-coil tag system pioneered by Matsuki [56] to genetically encode orthogonal coiled-
coil acceptor units (blue) on the N-terminus of two cancer associated receptors, ErbB2 and
EGFR. The corresponding coiled-coil donor sequences were then accessed synthetically as
an mercaptophenylacetic acid (MPAA) thioester. These were linked to the oligonucleotide
portion (the synthetic oligonucleotide mimic peptide nucleic acid (PNA)) via SPAAC. Upon
addition of the functionalized donor strand to the expressed acceptor strand, the two
strands are brought into close proximity by the specific coiled-coil interaction. This places
the N-terminal cysteine residue from the acceptor strand nearby the synthetic thioester
containing strand, leading to proximity templated native chemical ligation (NCL). This
proceeds through an initial trans-thioesterification step which transfer the PNA to the
acceptor strand and liberates the donor strand. This is then followed by a rapid intramolec-
ular S-to-N acyl shift to generate a stable amide bond, conjugating the PNA to the cell
surface receptor. The authors exploited this system for the erasable labelling of these
cancer-associated receptors through the use of an erasable imaging complex in which the
fluorescent label is present on a strand which is bridged by a third strand. The binding of
the labelled strand can then be erased by the addition of a fourth strand due to the presence
of an overhang on the labelled strand.
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3.4. Case Study 4

Enzymes can also provide a powerful means of conjugating oligonucleotides to pro-
teins. Callahan and coworkers [45] provide an elegant demonstration of this through their
exploitation of the Hedgehog autoprocessing domain (HhC) (Figure 7). HhC natively
catalyses two linked activities: (1) the cleavage of an N-terminal protein and (2) the liga-
tion of a sterol to the C-terminal residue of the departing protein fragment. The authors
were able to hijack this reactivity to allow for the C-terminal functionalization of proteins
with so called “steramers” (sterylated DNA), thereby providing an enzymatic means of
conjugating nucleic acids to proteins. The authors exploit this system in a subsequent
publication [44] for the detection of mutations within the spike protein of SARS-CoV2. This
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is facilitated through the production of an enzymatic beacon (E-beacon), through the conju-
gation of a conventional molecular beacon architecture bearing a quencher moiety (Q), to the
ATP-independent bioluminescent nanoluciferase Nluc. In the closed state of the beacon the
bioluminescence produced by Nluc upon turnover of the furimazine substrate is quenched,
and therefore no bioluminescence is observed. However, in the presence of the target
nucleic acid strand the molecular beacon exists in the open state, thereby removing the
quencher from the vicinity of Nluc, thereby turning on the bioluminescence, and providing
a highly sensitive nucleic acid detection platform.
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3.5. Case Study 5

Luciferase enzymes not only provide the potential for use in detection-based systems
but can also be used to initiate photochemical transformations, hence providing a com-
mon and attractive target for oligonucleotide conjugation. Winssinger and coworkers [5]
demonstrated this through the development of the luciferase-based photocatalysis induced
via nucleic acid template (LUPIN) system (Figure 8). This system is underpinned by the
bioluminescence resonance energy transfer (BRET) from the Nluc donor to a ruthenium
photocatalyst, which then undergoes photoexcitation to facilitate reductive cleavage of a
pyridinium linker to liberate either a drug or fluorophore. In order to enable efficient energy
transfer from the Nluc to the photocatalyst, ensuring the correct geometry of the system is
vital. This is achieved by the precise positioning of multiple protein and PNA components.
Firstly, the Nluc is expressed as a fusion protein with dihydrofolate reductase (DHFR)
and the SNAP protein, which forms the geometric foundation of the system. The second
key component is a synthetic linker bearing an O6-benzylguanine residue on one end to
facilitate SNAP labelling and a methotrexate ligand on the other end to bind to DHFR,
thereby locking the geometry of the system. Within the linker assembly the photocatalyst
itself is immobilized in close proximity to the Nluc BRET donor as well as a template
PNA strand. This then recruits a complementary substrate PNA strand, positioning the
functional warhead and its pyridinium linker in close proximity to the photocatalyst to
enable efficient cleavage. While this system has several crucial components, its effectiveness
is underpinned by the precise three-dimensional arrangement of its components, which
is enabled by the dual conjugation of the PNA linker strand, both by SNAP and ligand
binding. The requirement for this precise positioning makes the system responsive to
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ligand binding, and the presence of an analyte (methotrexate) compete for binding to
cpDHFR and turns off the catalysis.
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4. Discussion

Proteins and oligonucleotides both serve as important functional molecules in biologi-
cal environments, facilitating programmable functionality. By harnessing the complemen-
tary properties of these two classes of biomolecules it is possible to create bespoke systems
capable of a vast range of functional outputs. However, underlying each of these systems
is the fundamental ability to join the building block biomolecules together in a specific
and controlled manner. It is thus the conjugation chemistry which underpins each of these
systems. As such the continued growth in the area of bioconjugation is fundamental to
the continued expansion of hybrid protein-oligonucleotide systems, particularly in terms
of providing site specific conjugation without the need for genetic reengineering. Given
the prevalence of photocatalysis in other areas of bioconjugation it is anticipated that such
reactivity will enjoy greater application for the synthesis of protein-oligonucleotide conju-
gates over the coming years, potentially facilitating the desired site selectivity without the
difficulties associated with accessing the substrate. Improved conjugation methodologies
may also lead the field to shift away from the non-specific and reversible reactivities which
have long formed a mainstay in the area, although complete retirement of these techniques
is unlikely. Overall, in the areas of the synthetic biomolecules there is an increasing trend
towards increased chemical rigor in modification and characterization which can only
be of benefit towards accessing high-quality conjugated biomolecules for downstream
applications. As we begin to view biomolecules through the lens of chemical building
blocks this can only inspire more creativity within the area of protein-oligonucleotide
conjugates and allow the community to build ever more complex and elegant systems for
functional exploitation.

Author Contributions: E.E.W. and N.W. wrote the manuscript. All authors have read and agreed to
the published version of the manuscript.
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