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Introduction
Breast cancer is the most diagnosed cancer among women and 
the fifth leading cause of cancer mortality, accounting for over 
2.3 million new cases and 6.9% of all cancer deaths.1 Breast 
cancer patients in developing countries, especially sub-Saharan 
Africa, South Asia, and South America, suffer from the high-
est mortality rates in the world (Figure 1). One crucial factor 
contributing to the global disparity in mortality rate is a long 
diagnosis delay. Research on Turn Around Time (TAT)—the 
time from biopsy till receipt of report by clinician—from 
Malawi showed that the median TAT for unpaid samples was 
71 days. At 2 facilities in Rwanda, the delay between the initial 
development of symptoms and the ultimate receipt of a diag-
nosis could reach 15 months.2 Consequently, the long diagnosis 
delay has led to a large proportion of late-stage presentation at 
diagnosis. An analysis of 83 studies across 17 sub-Saharan 
African countries reported that 77% of all staged cases were 
stage III/IV at diagnosis.3 The long diagnosis delay is primarily 
attributed to a severe shortage of trained pathologists. The 
average number of pathologists per head of population is 1 to 
1 000 000 in sub-Saharan regions, compared with the ratio of 1 
pathologist to 15 000 to 20 000 in the US and UK.4 Another 

challenge is access to healthcare facilities. In sub-Saharan 
Africa, >170 million people are >2 hours from the nearest 
regional hospital, and about 40% of the population is >4 hours 
away from a national hospital.5 Additionally, diagnosis quality 
may be impacted by a lack of resources and training. A retro-
spective assessment of reports of breast carcinoma in the uni-
versity teaching hospital in Lagos, Nigeria showed a 46.9% 
discordance rate in the basic diagnosis when the cases were 
examined by pathologists in the UK.2

Artificial intelligence (AI) presents a new opportunity for 
advancing medicine and healthcare.6 Currently, pathologists 
manually review histopathology slides to examine whether 
cancerous regions are present in tissue samples. However, man-
ual review is time-consuming and subject to human error, espe-
cially in healthcare facilities in resource-constrained regions.2 
AI has a great potential to bring changes to cancer diagnosis by 
providing faster, more accurate, and more robust technological 
solutions. Machine learning-driven image analysis can assist 
pathologists by narrowing their search for high-risk areas on 
the whole slide of a biopsy sample and making their diagnosis 
more accurate and efficient. Progress has been made to develop 
machine learning-driven image analysis methods for breast 
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cancer diagnosis.7-9 However, real-world clinical application of 
these methods, especially in remote and under-resourced areas, 
remains a major challenge. The complex neural network archi-
tecture, computational cost, and lack of mobile capacity make 
the existing methods less feasible and adaptive to a geographi-
cally distributed and under-resourced environment.10 An 
essential step toward better model computational efficiency is 
to reduce CNN architecture complexity while maintaining 
classification performance. To develop a deep learning-driven 
resource-efficient diagnostic system for metastatic breast can-
cer, we compared four CNN architectures, that is, MobileNetV2, 
VGG16, ResNet50 and ResNet101 to assess classification per-
formance and computational efficiency. Our objective is to 
identify an appropriate CNN architecture that makes the diag-
nostic system suitable for remote and under-resourced health-
care facilities by pursuing computational efficiency and mobile 
readiness while achieving high diagnostic accuracy.

Methods
Framework of deep learning-driven diagnostic 
system for metastatic breast cancer

The deep learning-driven diagnostic system for metastatic 
breast cancer consists of 3 major components: histopathologi-
cal image pre-processing, training to build deep learning-
driven diagnostic models, and testing for prediction on unseen 
whole slide images (WSIs) (Figure 2).

The deep CNN model training for metastatic breast cancer 
was based on more than two hundred thousand (200K) training 
patches that were segmented from the training set of histo-
pathological whole slide images (WSIs). For testing, the trained 
model made patch-level predictions to classify tumor patches 
versus normal patches. Then the patch-level predictions were 
aggregated to generate tumor probability heatmaps for the 

whole slide-level classification. In addition, we used transfer 
learning based on ImageNet pre-training.11 The parameters in 
the pre-trained deep CNN models have a good initiation for 
image data, therefore reducing the requirement of training his-
topathological dataset size for metastatic breast cancer. In model 
training, we used a fixed learning rate of 0.01 and a dropout 
value of 0.2 for regularization. Each model ran through 10 iter-
ations or “epochs” with data batch sizes of 32. Model optimiza-
tion was run based on the stochastic gradient descent (SGD) 
optimizer. We evaluated 4 CNN architectures with varying 
structures, including the number of layers, depth, filter size, etc.

Histopathological image pre-processing. The diagnostic models 
were trained based on the ground truth data, that is, whole slide 
images (WSI) of sentinel lymph nodes with a pathologist’s 
delineation of regions of metastatic cancer. The image normali-
zation was conducted with the WSI Color Standardization 
procedure12 to minimize potential variations in the color and 
intensity of Hematoxylin and Eosin (H&E) staining. Tissue 
areas within the normalized WSIs were identified and extracted 
using a threshold-based segmentation method.13 The mask 
images were generated for model training from the HSV rep-
resentation transformed from the original RGB images.14

Patch-based diagnostic model building. Model training used 
WSIs and the ground truth image annotation indicating the 
delineation of cancerous regions as input data. The WSIs were 
randomly extracted into a large number of small patches. Using 
the small patches, the deep learning model was trained to rec-
ognize cancerous cells on a small scale, improving data volume 
and model training efficiency. These patches extracted from 
each WSI were categorized as a positive tumor, negative tumor, 
and negative normal. A positive tumor patch was extracted 

Figure 1. World map of breast cancer mortality rates (all ages), showing high mortality rates in sub-Saharan Africa, South Asia, and South America.1
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from a tumor slide, containing cancerous regions; a negative 
tumor patch was extracted from a tumor slide but did not con-
tain a cancerous region; a negative normal patch was extracted 
from a noncancerous/normal slide. During patch extraction, 
masks were created using a lower and upper bound of pixel 
color. After reducing mask noise with the “opening” and “clos-
ing” morphology processes, the pixel values of each mask were 
used to categorize the patch.

Four Convolutional Neural Network architectures, that is, 
MobileNetV2, VGG16, ResNet50 and ResNet101, were used 
for building diagnostic models. The 4 CNN architectures were 
assessed for diagnosis performance and computational effi-
ciency. The basic characteristics of the CNN architectures are 
summarized in section 2.2. The diagnostic models were trained 
to discriminate between cancerous and noncancerous patches 
using a large number of small positive and negative patches 
randomly extracted from the set of training WSIs. Five-fold 
cross-validation and independent (unseen) image data were 
used to evaluate diagnostic performance.

Whole slide-based diagnosis. As shown in Figure 2, unseen WSIs 
were pre-processed and segmented following the procedures 
described above. The diagnostic models were used to discrimi-
nate the cancerous versus non-cancerous patches. With the 
patch-level classification, a tumor probability heatmap was gen-
erated for each WSI to indicate the probability of each pixel 
being cancerous, with each pixel containing a value between 0 
and 1, indicating the probability that the pixel contains tumor.

Diagnostic performance evaluation. Diagnostic performance was 
evaluated using accuracy and receiver operating characteristics 

(ROC) curve. Accuracy is defined as the number of correct pre-
dictions divided by total number of predictions. ROC curve 
plots true positive rate (sensitivity) versus false positive rate 
(1-specificity); Area under ROC curve (ROC AUC) provides 
an aggregate measure of performance across all possible classifi-
cation thresholds.

Convolutional neural network architectures

Four deep learning network architectures were evaluated for 
diagnostic performance for metastatic breast cancer and com-
putational efficiency, including MobileNetV2, VGG16, 
ResNet50 and ResNet101. MobileNetV2 is a CNN architec-
ture that aims to perform computer vision tasks efficiently on 
mobile devices. It is designed to achieve efficiency by incorpo-
rating the Inverted Residual Structure and the Depthwise 
Separable Convolution to significantly reduce the model size 
and complexity.15 VGG16 is a CNN architecture that is 
designed for large-scale image recognition. VGG16 improves 
accuracy by increasing the depth to 16 weight layers using an 
architecture with very small (3 × 3) convolution filters, in com-
bination with more non-linear activation layers for better dis-
criminative decision function.16 ResNet is a Residual Network, 
a category of CNN architectures that is intended to improve 
model accuracy by stacking layers to enrich the features of the 
model.17 Resnet50 is a variant of ResNet whose neural network 
layers reach a depth of 50, with a bottleneck design to reduce 
the time taken to train the layers. ResNet101 is a large Residual 
Network with 101 neural network layers. In Keras Applications, 
MobileNetV2 uses 3.5 million (M) of parameters and has a 
size of 14 MB; VGG16 uses 138.4 M parameters and has a size 

Figure 2. The workflow of deep learning-driven diagnostic system for metastatic breast cancer.
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of 528 MB; ResNet50 uses 25.6 M parameters and has a size of 
98 MB; ResNet101 uses 44.7 M parameters and has a size of 
171 MB.18

Datasets

The data consists of 222 whole slide histopathological images 
from the 2016 Camelyon ISBM challenge.9 The slides contain 
sentinel lymph node tissues extracted by the Radboud 
University Medical Center (Nijmegen, the Netherlands), as 
well as the University Medical Center Utrecht (Utrecht, the 
Netherlands).

Results
Evaluation of deep learning network architectures: 
Diagnostic accuracy and computational eff iciency

To identify a CNN architecture that is suitable for a resource-
constrained environment, 4 CNN architectures were evaluated 
for diagnostic performance and computational cost, including 
MobileNetV2, VGG16, ResNet50 and ResNet101. The diag-
nostic models were trained and assessed for accuracy using 
5-fold cross-validation. For an individual fold, each model ran 
through 10 iterations or “epochs.” Each epoch allowed the 
model to reevaluate its weights to determine a more effective 
set of values. With a stochastic gradient descent (SGD) opti-
mizer, the weights were retrained or optimized for the data 
with a 0.01 learning rate. Model accuracy was assessed for the 
training set and validation sets at each epoch. For training, the 
accuracy of MobileNetV2 (mean ± standard deviation: 
0.963 ± 0.005) was higher than VGG16 (0.940 ± 0.006), 
ResNet50 (0.847 ± 0.015) and ResNet101 (0.851 ± 0.015). 
Similarly, the cross-validation results showed that the accuracy 
of MobileNetV2 (0.885 ± 0.043) was similar with VGG16 

(0.882 ± 0.058) but higher than ResNet50 (0.701 ± 0.072) 
and ResNet101 (0.707 ± 0.076).

The independent testing of the 4 diagnostic models with 
different CNN architectures was conducted using an inde-
pendent testing set. The accuracies of MobileNetV2 (0.903) 
and VGG16 (0.898) were substantially higher than ResNet50 
(0.721) and ResNet101 (0.857). Receiver operating character-
istic (ROC) analysis was performed and ROC Area Under 
curve (AUC) was used to measure the diagnostic performance. 
As shown in Figure 3A, the ROC AUC of MobilenetV2 
(0.933, 95% confidence interval (CI): 0.930-0.936) was higher 
than VGG16 (0.911, 95% CI: 0.908-0.915), Resnet50 (0.869, 
95% CI: 0.866-0.873), and Resnet101 (0.873, 95% CI: 
0.869-0.876).

The models were also evaluated for time per inference step, 
a measure of computational efficiency (Figure 3B). The time 
per inference step for the MobileNetV2 model was 15 ms/step, 
which was substantially lower than that of VGG16 (48 ms/
step), ResNet50 (37 ms/step), and ResNet110 (56 ms/step). 
The result suggests that the MobileNetV2 model was more 
computationally efficient than the models with more complex 
CNN architectures.

Data augmentation: Assessment of model 
generalization

Model generalization capacity is important for a model to 
properly adapt to previously unseen data and to achieve reason-
able prediction performance. It is noticeable that the accuracy 
values of both the MobileNetV2-based and VGG16-based 
models exceeded 0.880 in the cross-validation while those of 
ResNet50 and ResNet101 dropped substantially in the cross-
validation as compared with training. The result implies that 

Figure 3. (A) Receiver Operating Characteristics (ROC) curves for independent set testing: comparison of ROC AUC among the CNN architectures 

MobileNetV2, VGG16, ResNet50 and ResNet101 and (B) comparison of time per inference step among the 4 CNN architectures.
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the MobileNetV2-based and VGG16-based models had a 
stronger ability of model generalization as compared with 
ResNet50 and ResNet101. We used data augmentation tech-
niques to further evaluate model generalization of these CNN 
architectures. Data augmentation involves training models on 
data that has undergone various transformations.19 This exper-
iment was performed to evaluate whether the models can 
properly generalize to new instances. The image data transfor-
mation for data augmentation included 20-degree rotation, 
20% zoom, horizontal flip, and vertical flip (Figure 4A).

As shown in Figure 4B, with or without data augmentation, 
the accuracies of MobileNetV2 and VGG16 models were sub-
stantially higher than those of ResNet50 and ResNet101 on 
both training and validation. Additionally, the models based on 
MobileNetV2 and VGG16 showed a substantially smaller gap 
in accuracy between training and validation as compared with 
other models, indicating a stronger generalization ability of the 
MobileNetV2 and VGG16 models. Data augmentation only 
caused slight changes to the accuracies of the MobileNetV2 
and VGG16 models, while it drastically increased the accura-
cies of ResNet50 & ResNet101. These results suggest that the 
MobileNetV2 and VGG16 models were less reliant on bigger 
data volumes for achieving their peak performance.

Predictive diagnosis on unseen whole slide images

The MobileNetV2-based diagnostic model classified small 
image patches to cancerous versus non-cancerous with high 
accuracy. By iterating the model over each patch in the whole 
slide image, a probability rating was generated for each patch. 
After completion of the patch-based classification stage, the 
patch-level predictions were aggregated to create tumor prob-
ability heatmap for whole slide-based prediction. The likeli-
hood of cancer presence on a whole slide image was shown on 

the heatmap, where a pixel represents a patch, and a value rep-
resents the probability of the patch containing cancer with the 
range of 0 to 1. The threshold of 0.9 was used to control poten-
tial false positives.

Visual comparisons between the MobileNetV2 model pre-
diction and the pathologist’s diagnosis (ground truth) were 
shown in Figure 5. For tumor case A, the cancerous regions 
predicted by the model were consistent with those delineated 
by pathologists’ diagnosis. Tumor case B was a more compli-
cated case because the cancerous regions were small and 
embedded in a large area of normal cells. The MobileNetV2 
model successfully identified the small cancerous node, and the 
prediction result was consistent with the pathologists’ diagno-
sis. Identifying such a small cancerous region is challenging in 
the manual diagnosis process. The results demonstrated that 
the MobileNetV2-based diagnostic model’s capacity in identi-
fying the small regions of high risk and preventing false nega-
tive diagnoses.

Discussion
The recent research and development for computer-assisted 
cancer diagnosis has been focused on diagnostic accuracy.7-9 
Deep learning methods such as Convolutional Neural 
Networks have been used to develop automated diagnostic 
systems to improve the traditional manual assessment of his-
topathological images by pathologists. Research has shown 
that a deep learning-based diagnostic system can help a 
human pathologist to improve diagnostic accuracy.8 Such a 
diagnostic system has a great potential to support under-
resourced healthcare facilities, which often have severe short-
ages of trained pathologists, to expedite diagnosis. Despite 
the technical advances, the real-world application in develop-
ing countries is hindered by a lack of computational resources 
and general inadequacy of healthcare infrastructures. This 

Figure 4. (A) Image transformation for data augmentation and (B) effects of data augmentation on the accuracy of the classification models with different 

network structures.
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research focuses on designing a diagnostic system with com-
putational efficiency and mobile readiness while achieving 
high diagnostic accuracy.

MobileNetV2, a lightweight CNN architecture, is designed 
to achieve computational efficiency using the Inverted Residual 
Structure and the Depthwise Separable Convolution.15 The 
model size and complexity of MobileNetV2 is substantially 
lower than VGG16, ResNet50, and ResNet101.18 The high 
computational efficiency of MobileNetV2 makes it suitable for 
mobile devices or devices with low computational power. This 
research has demonstrated that the MobileNetV2-based diag-
nostic models outperformed its more complex counterparts 
VGG16, ResNet50 and ResNet101 in diagnostic performance 
and computational efficiency. The MobileNetv2 diagnostic 
models had a higher ROC AUC and a stronger model 

generalization capacity as compared with VGG16, ResNet50 
and ResNet101. The MobileNetV2 models reduced the time 
per inference step by 66.8%, 59.5%, and 73.2% as compared 
with VGG16, ResNet50, and ResNet101, respectively. The 
results justify the application of MobileNetV2 in an IT 
resource-constrained environment. Developing countries are 
experiencing severe shortages of trained pathologists, which 
causes long delays of metastatic breast cancer and high mortal-
ity rates. The average number of pathologists per head of popu-
lation is 1 to 1 000 000 in sub-Saharan regions, compared with 
the ratio of 1 pathologist to 15 000 to 20 000 in the US and 
UK.4 Meanwhile, diagnosis quality may be impacted by the 
limitations of resources and training. Therefore, the 
MobileNetV2-based diagnostic system provides an AI-driven, 
resource-efficient, automated, and standardized solution to 

Figure 5. Visual comparisons between the pathologist’s diagnosis (ground truth) and the model prediction on cancerous regions on Whole Slide 

Images.
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help relieve the severe shortages of trained pathologists and 
reduce the long diagnosis delays.

To tackle the public health crisis of long diagnosis delays 
in developing countries, a major challenge is inadequate 
accessibility to healthcare facilities. As an example, in sub-
Saharan Africa, >170 million people are >2 hours from the 
nearest regional hospital, and about 40% of the population is 
>4 hours away from a national hospital (Figure 6B).5 While 
the accessibility to health care facilities is limited across sub-
Saharan Africa, this is particularly challenging in Northern 
sub-Saharan countries, lacking access to all tiers of health 
care facilities, including basic health post (Tier 1), health 
center (Tier 2), regional hospital (Tier 3) and central hospital 
(Tier 4) (Figure 6B). The countries with high breast cancer 
mortality and those with severe health care resource shortage 
are geographically overlapped in Northern sub-Sahara 
(Figure 6A and B), suggesting a strong link between the ele-
vated breast cancer mortality and limited health care resources. 
To address this challenge, the MobileNetV2-based diagnosis 
system can be integrated into the local healthcare network to 
facilitate histopathological image processing and assist 
pathologists’ diagnosis. The system can be deployed to Tier 3 
regional hospitals and Tier 4 central hospitals to assist pathol-
ogy services (Figure 6C). Because the MobileNetV2 system is 
suitable for devices of low computational power, this system 

can also be deployed to Tier 2 and possibly Tier 1 healthcare 
facilities with limited IT resources. This system also connects 
lower tiers and high tiers healthcare facilities to expedite 
referrals for diagnosis of complex cases. This will shorten the 
delay in diagnosis, reduce the late-stage presentation at diag-
nosis, and therefore improve patients’ survival outcomes.

Conclusion
To tackle the healthcare disparities in metastatic breast cancer 
diagnosis, this research has developed a deep learning-based 
diagnosis system for metastatic breast cancer that aims to 
achieve high diagnostic accuracy as well as computational effi-
ciency suitable for an under-resourced environment. We eval-
uated 4 CNN architectures: MobileNetV2, VGG16, ResNet50 
and ResNet101. The MobileNetV2-based diagnostic model 
outperformed the more complex VGG16, ResNet50 and 
ResNet101 models in diagnostic accuracy, model generaliza-
tion, and model training efficiency. The visual comparison 
between the model prediction and ground truth has demon-
strated that the MobileNetV2 diagnostic models can identify 
very small cancerous nodes embedded in a large area of normal 
cells which is challenging for manual image analysis. Equally 
Important, the light weighted MobleNetV2 models were 
computationally efficient and ready for mobile devices or 
devices of low computational power. These advances empower 

Figure 6. Prototypical schema for application of the deep learning-based automated diagnosis system in sub-Saharan Africa. (A) Sub-Saharan countries 

with high breast cancer cases (left) and high mortality rates (right) (both highlighted with pink). Breast cancer is the most common cancer in many 

sub-Saharan countries and has been the most common cause for cancer death in the Northern Sub-Saharan Africa.20 (B) Accessibility to the nearest 

public health care facility (in travel hours), by Tier 1 to Tier 4 health care facility. Accessibility to public health care facilities is limited across the sub-

Saharan region, especially in Northern sub-Saharan countries.5 (C) The deep learning-based diagnosis system, highly efficient and mobile ready, can be 

deployed to all tiers of healthcare facilities. The collaborative diagnostic system can integrate knowledge from many institutions to support Tier 2 and 

possibly Tier 1 health care facilities for breast cancer diagnosis. (D) The system also provides connectivity between different tiers of health facility to 

expedite diagnosis of complex cases.
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the development of a resource-efficient and high performing 
AI-based metastatic breast cancer diagnostic system that can 
adapt to under-resourced healthcare facilities in developing 
countries. This research provides an innovative technological 
solution to address the long delays in metastatic breast cancer 
diagnosis and the consequent disparity in patient survival out-
come in developing countries.
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