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Abstract
Over the last decade, many analytical methods and tools have been developed for microar-

ray data. The detection of differentially expressed genes (DEGs) among different treatment

groups is often a primary purpose of microarray data analysis. In addition, association stud-

ies investigating the relationship between genes and a phenotype of interest such as sur-

vival time are also popular in microarray data analysis. Phenotype association analysis

provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary

to identify genes that are both DEGs and PAGs. We consider the joint identification of

DEGs and PAGs in microarray data analyses. The first approach we used was a naïve

approach that detects DEGs and PAGs separately and then identifies the genes in an inter-

section of the list of PAGs and DEGs. The second approach we considered was a hierarchi-

cal approach that detects DEGs first and then chooses PAGs from among the DEGs or vice

versa. In this study, we propose a new model-based approach for the joint identification of

DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies

genes simultaneously that are DEGs and PAGs. This method uses standard regression

models but adopts different null hypothesis from ordinary regression models, which allows

us to perform joint identification in one-step. The proposed model-based methods were

evaluated using experimental data and simulation studies. The proposed methods were

used to analyze a microarray experiment in which the main interest lies in detecting genes

that are both DEGs and PAGs, where DEGs are identified between two diet groups and

PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin,

insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number

of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed

that they have more power than other methods. Through analysis of data from experimental

microarrays and simulation studies, the proposed model-based approach was shown to
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provide a more powerful result than the naïve approach and the hierarchical approach.

Since our approach is model-based, it is very flexible and can easily handle different types

of covariates.

Background
The development of new technologies has greatly affected the biological research field. Specifi-
cally, the advent of microarray technology provides a crucial turning point in biological
research [1,2,3,4]. Microarray technology has commonly been used for simultaneously identi-
fying the gene expression patterns in cells for thousands of genes. In addition, the sensitivity
and specificity of microarray technology continues to improve, and microarrays are becoming
a more economical research tool [5]. An important emerging medical application for microar-
ray technology is clinical decision support for diagnosis of a disease as well as the prediction of
clinical outcomes in response to a treatment [6].

Recently, the improvements in microarray technology have been guiding the development
of various platforms. Many studies have tried to integrate several platforms; for example, the
MicroArray Quality Control (MAQC) project provided gene expression levels that were mea-
sured from seven different platforms. The MAQC study provided a resource representing an
important first step toward establishing a framework for the use of microarrays in clinical and
regulatory settings [7]. In addition, microarray technology has been successfully commercial-
ized, and as a result, a substantial amount of microarray data has been generated. Several stud-
ies have performed an integration analysis of microarray data. Meta-analysis is powerful for
unifying the results of various gene expression studies (for example, breast cancer [8]). Statisti-
cal models such as analysis of variance are effective in integration analysis for identifying genes
that have different gene expression profiles in the presence of many controlling variables [9].

In general, the primary goal of microarray data analysis is to identify differentially expressed
genes (DEGs). Microarray technology allows us to obtain data on the expression of target
genes more easily than other technologies. DEGs have become more easily detected by micro-
array technology than ever before. When applied to experimental data, the causal genes related
to diseases can be obtained by discovering DEGs. Over the last decade, numerous statistical
methods have been proposed such as t-tests, significance analysis of microarray (SAM) [10],
regression modeling, mixed modeling [11], and local pooled error (LPE) tests [12].

Of these approaches, the t-test is the most popular statistical test for comparing the means
between two groups. The t-test is a parametric method that requires a normality assumption.
However, microarray data rarely satisfy the normal distribution assumption. Therefore, a per-
mutation test that does not require such assumptions is preferably used to detect DEGs
[13,14]. The SAM [10] uses a t-type of statistics using a fudge factor to stabilize the variance,
and controls for the false discovery rate (FDR) [15]. The SAM is also a non-parametric analysis
that does not require normality distributional assumption.

The application of microarray technology has also led to diverse studies that go beyond
identifying DEGs such as a study examining the relationship between phenotype and expres-
sion data. Various phenotypes have been used in microarray experiments; for example, the sur-
vival time was utilized as a phenotype for analyzing the recurrence of cancer in clinical studies
[16,17]. Several genes associated with the survival time were identified. Microsatellite instability
(MSI) was utilized as a phenotype in a microarray study of colorectal cancer. Since the CpG
island methylator phenotype (CIMP) was associated with MSI and BRAF mutations in
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colorectal cancer [18], MSI has played an important role in colorectal cancer studies. In addi-
tion, the tumor subtype can also be an important phenotype. For example, estrogen receptor
(ER), progesterone receptor (PR), andHER2 jointly define the subtypes of breast cancer. The
triple-negative phenotype (ER-negative, PR-negative, and HER2-negative) is most commonly
used [19].

Phenotype-associated genes (PAGs) are the genes that are associated with a phenotype of
interest. The PAGs can be identified by regression analyses such as linear regression analysis
for continuous phenotypes and the Cox regression model for survival time phenotypes [20].
When the phenotype is a binary variable representing two groups, the identification of PAGs
becomes equivalent to identification of DEGs.

In this article, we focus on the joint identification of DEGs and PAGs in microarray data
analyses. Our study was motivated by the need for an analysis of a microarray experiment con-
sisting of high fat diet (HFD) and normal diet (ND) groups. Ten mice were assigned to each
group for the microarray experiment. In addition, four phenotypes reflecting the expression
levels of leptin, adiponectin, insulin-like growth factor 1 (IGF-1) and insulin were measured in
blood samples. Leptin is an adipocyte-secreted hormone with a key role in energy homeostasis
[21]. IGF-1 is similar in molecular structure to insulin and is an important hormone for child-
hood growth. Adiponectin controls glucose levels as well as fatty acid breakdown, and Insulin
is one of the most important hormones in the metabolic system of mammals. The microarray
experiment focused on gene expression changes associated with dietary fat control, and the
determination of influential genes associated with obesity-related phenotypes. Thus, we need
to identify DEGs for HFD and ND groups that are also PAGs for the four obesity-related
phenotypes.

Although many approaches have been proposed for the separate identification of DEGs and
PAGs, only a few approaches are available for the joint identification of DEGs and PAGs. The
first approach we used for the joint identification of DEGs and PAGs was a naïve approach
that detects DEGs and PAGs separately and then identifies the intersecting genes from the lists
of PAGs and DEGs. The second approach is a hierarchical approach [22] that detects DEGs
first and then chooses PAGs among DEGs or vice versa. Both approaches are two-stage analy-
ses that require separate testing of DEGs and PAGs, making it difficult to control false positive
errors.

We propose a new model-based approach for the simultaneous identification of DEGs and
PAGs. Our model-based approach uses a linear regression model. We have use the linear
regression model since it is easy to use, flexible in dealing with individual covariates, and easy
extendibility (i.e. extension to permutation test can be done without using normality assump-
tion). Our method is a one-stage analysis that takes less computing time, makes it easier to con-
trol false positive errors, and has greater power than naïve or hierarchical approaches. Through
analysis of data from a microarray experiment carried out in mice and from simulation studies,
we compare our model-based approach with naïve and hierarchical approaches.

Method

Ethics statement
All animal experimental procedures were reviewed and approved by the Institutional Animal
Care and Use Committee of Sookmyung Women’s University (SMU-IACUC-2011-0401-005).

Data
Microarray data consisted of data obtained from HFD and ND groups of mice to determine
influential genes associated with obesity. Four-week-old male C57BL/6J mice were purchased
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from SLC Japan (Hamamatsu, Tokyo, Japan). Mice were housed in plastic cages (three to four
mice per cage) under a constant temperature (23 ± 2°C) and humidity (50 ± 10%) with a 12-h
light/dark cycle. Animals were allowed to acclimatize to the laboratory environment for 1 week
before the experiment onset. The composition of experimental diet was based AIN-93G. The
fat sources of normal diet (ND, 15% of fat calories) and high-fat diet (HFD, 45% of fat calories)
were based on corn oil and lard. The reference we have used for such fat percentage definition
can be seen in “A high-fat diet impairs neurogenesis: Involvement of lipid peroxidation and
brain-derived neurotrophic factor” [23]. Fresh diet was provided every 2~3 days and mice had
free access to water and food throughout all experiments. Animals were maintained for 8
weeks and were killed by CO2 inhalation at 13 week of age. At necropsy, blood and tissue sam-
ples were collected; serum samples were prepared by centrifugation of whole blood samples at
650 × g for 20 min and stored at -80°C until analysis; colon tissues were rapidly removed,
immediately frozen in liquid nitrogen, and stored at -80°C until microarray analysis.

Illumina MouseRef-8 v1.1 Expression BeadChip was used in our microarray experiment.
We observed changes in the gene expression pattern due to HFD-induced obesity. We assigned
10 mice to each ND group and HFD group. Then, three mice from the ND group and six mice
from the HFD group were selected via QC for the microarray experiment, and each sample
had 45281 probes.

Four phenotypes associated with regulating metabolism were extracted using levels of
expression in the blood sample including leptin, adiponectin, insulin-like growth factor 1
(IGF-1), and insulin. Serum insulin concentration was measured with an ELISA kit (Linco
Research, St Louis, MO, USA) according to the manufacturer’s instruction. Serum concentra-
tions of IGF-1, leptin (R&DMinneapolis, MN, USA) and adiponectin (Biovendor, Brno, Czech
Republic) were also measured with an ELISA kit, according to the manufacturer’s instructions.
IGF-1 is similar in molecular structure to insulin and is an important hormone for childhood
growth. Adiponectin controls glucose levels as well as fatty acid breakdown, and insulin is one
of the most important hormones in the metabolic system of mammals. The expression values
are log-transformed. After log-transformation, QQ plots and goodness of fit tests for normal
distribution did not provide evidence that the data do not follow normal distribution. We pro-
vided Fig A in S1 File which shows p-values obtained by Shapiro Wilks tests performed to each
gene expressions and also showed some QQ plots for genes which are significant from model-
based approach in Fig B in S1 File.

Detection of DEGs
First, we detected DEGs by using a two-sample t-test. Secondly, we used significance analysis
of microarray (SAM) [10] for identifying DEGs. SAM uses the t- statistics modified by adding
a fudge factor (s0) to common statistics as one of the penalty methods. The variable si is the
estimated standard error from gene i, and s0 is calculated as a percentile based on α. Then, the
following test statistic is used:

di ¼
Expression1i � Expression2i

Si þ S0
; i ¼ 1; 2; . . . ; p ð1Þ

In addition, the SAMmethod uses a permutation algorithm to control for the false discovery
rate (FDR) [15]. Therefore, we can control FDR more easily with this test than for the other
tests such as the t-test.
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PAGs detection
Linear regression analysis is utilized to determine PAGs. There are two treatment groups in
our microarray data: ND and HFD. Group information is denoted by Group. Expressioni indi-
cates the expression value for each gene. As mentioned earlier, the phenotypes of interest con-
sist of leptin, adiponectin, IGF-1, and insulin expression. Linear regression analysis is
performed for each phenotype. Two linear regression models are applied to identify the linear
relationship between genes and phenotypes.

M1 : Phenotype ¼ b0 þ b1Expressioni þ �i; �i � Nð0; s2Þ ð2Þ

M2 : Phenotype ¼ b0 þ b1Expressioni þ b2Groupþ �i; �i � Nð0; s2Þ ð3Þ

where i (= 1,2,. . .,p) represents the gene. Group information is denoted by Group. Expressioni
indicates the expression value for each gene. The first model M1 is to identify the effect of
expression on the phenotype, whereas the second model M2 is an extension of M1 with an
additional Group covariate.

The significance of the linear relationship between gene and phenotype may be affected by
the group effect because some genes may not have marginal effects on the phenotype but may
have conditional effects given the group information. M1 is used for detecting the marginal
effect, while M2 is used for detecting conditional effects. PAGs may depend on the group effect.
For example, the v1rh4 gene is a non-PAG by model M1. However, it is identified as a PAG by
model M2 (Fig 1). Model M2 is a more appropriate model than M1, when a group effect exists.
However, model M1 provides PAGs that do not depend on the group effect, suggesting both
M1 and M2 need to be fitted. Therefore, we use models M1 and M2 simultaneously to identify
PAGs.

In model M1, the expression effect β1 is of the main interest. In model M2, β1 is still of the
main interest even though the group effect β2 is added to explain the high fat diet effect
between the ND group and the HFD group. The PAGs can be identified by testing the

Fig 1. Model M1 andM2 problems.Model without considering a group effect cannot detect any significant
correlation between Leptin and gene V1rh4. The y-axis represents the Leptin level and the x-axis the
expression level of V1rh4. The blue line is a regression line for HFD, while the red line for ND. The black solid
line is the regression line using all sample. However, if we consider the group effect, we can identify a
significant association between phenotype and gene expression.

doi:10.1371/journal.pone.0149086.g001
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following hypotheses:

H0 : b1 ¼ 0 for M1 ð4Þ

H0 : b1 ¼ 0 for M2 ð5Þ

significances of these effects can be tested by calculating F-statistic for each gene.

Joint identification analysis
Naïve approach. The naïve approach detects DEGs and PAGs separately, and then identi-

fies the intersection of PAGs and DEGs. It consists of the following two steps:

1. Identifying DEGs set and PAGs set separately for total data.

2. Determining intersection gene sets of DEGs and PAGs.

Hierarchical approach. The hierarchical approach [21] detects DEGs first and then
chooses PAGs among DEGs, or vice versa. The hierarchical approach consists of two steps:
identifying DEGs and then detecting PAGs among the DEGs, or alternatively, identifying
PAGs and then detecting DEGs among the PAGs.

1. Identifying DEGs by statistical tests such as two-sample t-tests, and SAM.

2. Detecting PAGs by linear regression models M1 and M2 for the DEGs selected at Step 1.

Both naïve and hierarchical approaches are two-stage analyses that require separate testing
of DEGs and PAGs, and as a result, it was not straightforward to control the false positive
errors because two tests are not independent. Thus, we propose a new model-based approach
for joint identification of DEGs and PAGs. Our model-based approach uses a linear regression
model, as explained in the following section.

Model-based approach. We propose a new test based on the likelihood ratio to determine
DEGs and PAGs simultaneously. Consider the following model (6)

M3 : Expressioni ¼ g0 þ g1Groupi þ g2Phenotypeþ �i ð6Þ

For finding the DEGs and PAGs, consider the following hypotheses.

H0 : g1 ¼ 0 or g2 ¼ 0;H1 : g1 6¼ 0&g2 6¼ 0 ð7Þ

Under the null hypothesis, the likelihood can be maximized as follows.

argmaxg1 ;g22H0
L0ðg1; g2Þ ¼ argmaxg1 ;g22H0

maxðLðg1; 0Þ; Lð0; g2ÞÞ ð8Þ

Thus, the likelihood ratio test statistic Λ is derived as follows:

L ¼ �2logðmaxðLðbg1 0; 0Þ; Lð0; bg2 0ÞÞ=Lðbg1 ; bg2ÞÞ ð9Þ

Where bg1
0 is MLE of γ1 when γ2 = 0, bg2

0 is MLE of γ2 when γ1 = 0 and (bg1 ; bg2) are MLE in the
whole parameter space

Un the null hypothesis, if γ1 or γ2 is large, the LRT statistic asymptotically follows χ2(1) dis-
tribution. Since this likelihood ratio test statistic is smaller than each likelihood ratio test statis-
tic for testing H01: γ1 = 0 or H02: γ2 = 0, the p-value of LRT statistics is larger than that of both
likelihood ratio test statistics for testing each beta. In this reason, even we test DEG and PAG at
the same time with Chi-square test under 1 degree of freedom, type I error will be conserved.
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However, we cannot say that our test is most powerful among the tests. Thus, we performed
simulation for power comparison between our proposed method and naïve approach.

Simulation study. For a more systematic comparison, we performed an extensive simula-
tion study with following settings. First, we generated phenotype data from the normal distri-
bution with the same mean and variance as the actual phenotype data. Since adiponectin most
closely followed the normal distribution according to the normality test [24], the mean 25.06
and the variance 274.896 of adiponectin were used to simulate the phenotype data from the
normal distribution. 50 samples consisting of 25 cases and 25 controls were generated. Finally,
expression levels were generated from the Eq (6), where ε follows a normal distribution with
mean 0 and variance 78.3.

Results

DEGs
Two-sample t-tests, and the SAMmethod, were utilized to identify DEGs. The results of t-tests
were not significant after controlling for multiple testing at 5% level using Bonferroni correc-
tion or FDR. The SAMmethod provided significant results at the 0% median FDR = 0: Tfrc,
Sprr1a, Cyp4f16, and 9030605I04Rik. Although SAM provided only a few genes that are all up
regulated genes, the SAM result is expected to be very reliable because it did not contain any
false positives (FDR = 0)[24]. In Table 1, we displayed top 5 genes by using the nominal p-val-
ues from the Student’s t-test without any corrections for multiple comparisons. These lists of
genes from two sample t-tests are different from those of SAM.

PAGs
Fig 2 shows a pairwise plot that illustrates the correlation coefficients among four phenotypes.
All of them are highly positively correlated. Specifically, leptin and insulin have a particularly
high correlation coefficient (0.836). Both leptin and insulin are known to be associated with
body composition [25], BMI, and type 2 diabetes [26,27].

Models M1 and M2 were employed to detect PAGs for these phenotypes. Fig 3 shows the
Venn diagram for the number of PAGs identified by M1 and M2 at the 5% significance level.
Depending on the phenotypes, the numbers of overlapping and non-overlapping PAGs differ
greatly. Thus, we could assume that in many genes, conditional distributions of gene expres-
sions given groups are different from marginal distribution. Fig 4 shows examples of PAGs. Fig
4(A) shows example of pattern which was detected only by M1, Fig 4(B) shows that detected
by both M1 and M2, and the Fig 4(C) shows that was detected only by M2.

Joint identification analysis
We applied three joint identification methods to the microarray data from the mice. We first
applied the naïve approach by comparing the list of DEGs and the list of PAGs. We then

Table 1. Top gene list from t-test.

Gene Symbol p-value q-value

A230069A22Rik 0.000166 0.930077

2610018G03Rik 0.000190 0.930077

Pim3 0.000303 0.930077

D930042N17Rik 0.000326 0.930077

Ctns 0.000333 0.930077

doi:10.1371/journal.pone.0149086.t001
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applied the hierarchical approach by detecting DEGs first and then PAGs. Finally, we applied
the model based approach using the likelihood ratio test from model M3. For the purpose of a
fair comparison, we fixed significance and FDR at the same level. Table 2 summarizes the num-
bers of significant genes that are both DEGs and PAGs. A larger number of significant genes
were identified by the model based approach than the other methods. The top gene list for four
phenotypes at a significance level of 5%, the p-value and q-value for each effect are summarized
in Table 2. Since naïve approach and hierarchical approach provided the same results, the
numbers of significant genes in Table 2 are the same for both approaches.

Fig 2. Correlation plot of phenotype. Leptin and insulin show the highest correlation value. IGF-1 and
ADIPO give low correlation values with leptin and insulin, respectively.

doi:10.1371/journal.pone.0149086.g002

Fig 3. The Venn diagram of PAG. Fig (A) shows detected genes that are significant with leptin. Fig (B)
shows detected genes that are significant with IGF-1. Fig (C) shows detected genes which are significant with
ADIPO. Fig (D) shows detected genes that are significant with insulin. In all of these four figures, Both M1 and
M2 reveal a large number of different significant PAGs. Thus, we could assume that conditional distributions
of expression levels, given group, are different frommarginal distribution in many genes.

doi:10.1371/journal.pone.0149086.g003
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Simulation study
To check the type I error and power, we set the values of γ1 as follows: 0, 0.08, 0.12, 0.16, 0.2,
0.24, 0.28, and let γ2 vary from 0 to 8 by 2. These parameter values represent the effect sizes
derived from the real data. Since our type I error needs to be evaluated not at a point but two
axes generated by γ1 and γ2, we checked both (γ1 = 0, γ26¼0) and (γ1 6¼0, γ2 = 0) cases. Table 3
shows how well each method preserves the type I error under the various simulation settings.
When both γ1 and γ2 equal 0, the type I error is smaller than 0.05 for all methods. However, as
either γ1 or γ2 increases, the type I error becomes closer to 0.05. Therefore, all methods tend to
preserve the type I errors.

Figs 5 and 6 show the powers of each methods for varying simulation settings. In this paper,
power means the probability that the statistical hypothesis test is rejected when the null

Fig 4. The PAG example plots: The y-axis is Leptin levels and the x-axis is the expression values of
selected genes. Fig (A) shows an example of a gene that is significantly detected only by model M1 (1)
(2610018G03Rik). Fig (B) shows an example of significantly detected gene by both models M1 and M2 (2)
(1700052N19Rik). Fig (C) illustrates a gene significantly detected by model M2 (4921524L21Rik) only. Blue
line is high fat diet (HFD) group and red line is normal diet (ND) group.

doi:10.1371/journal.pone.0149086.g004

Table 2. Result of joint identification.

Naïve
approach

Naïve
approach

Hierarchical approach
(DEGs!PAGs)

Hierarchical approach
(DEGs!PAGs)

Model-based
approach

DEGs
method

M1 M2 M1 M2 M3

Leptin p-value
(FDR)

935(0) 124(0) 935(0) 124(0) 3787(15)

IGF.1 p-value
(FDR)

41(0) 67(0) 41(0) 67(0) 1418(0)

Adiponectin p-value
(FDR)

0(0) 13(0) 0(0) 1(0) 1027(3)

Insulin p-value
(FDR)

337(0) 129(0) 337(0) 129(0) 1953(3)

The number of significant genes determined from three joint identification methods. The numbers in each cell show the number of significant genes

without multiple comparison corrections. For the purpose of comparing each approach, significance level is fixed at 5%.The numbers in the brackets show

the number of significant genes detected by FDR q-value below 5%. The model-based approach provides better power than other approaches.

doi:10.1371/journal.pone.0149086.t002
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hypothesis is truly positive In Fig 5 where we fixed γ1 and varied γ2, M1 and M2 showed almost
the same power in every case. On the contrary, the model-based method showed better power
than other methods. In Fig 6 where we fixed γ2 and varied γ1, similar tendencies were
observed.

Discussion
As the experimental designs using microarrays becomes more complex, a more complicated
analysis method needs to be developed. In early microarray studies, either DEGs or PAGs need
to be identified. However, recent microarray designs require a more complicated method to
detect the genes that are simultaneously DEGs and PAGs.

Our proposed model provided some interesting lists of genes (Table 4). Gene expression
profiling figures are included in S1 File (Figs C-E). We also provided gene expressions for lists
of genes and phenotypes for real data analysis in S2 and S3 Files. The four selected phenotypes

Table 3. Type I error of the simulation results from naïve approach, hierachical approach andmodel-based approach.

Naïve
approach

Naïve
approach

Hierarchical approach
(DEGs!PAGs)

Hierarchical approach
(DEGs!PAGs)

Model-based
approach

γ1 γ2 M1 M2 M1 M2 M3

0 0 0.002 0.002 0.002 0.002 0.003

0 2 0.011 0.011 0.011 0.011 0.014

0 4 0.034 0.034 0.034 0.034 0.038

0 6 0.041 0.041 0.041 0.041 0.048

0 8 0.052 0.052 0.052 0.052 0.056

0.08 0 0.018 0.018 0.018 0.018 0.021

0.12 0 0.032 0.032 0.032 0.032 0.036

0.16 0 0.038 0.038 0.038 0.038 0.034

0.2 0 0.042 0.042 0.042 0.042 0.038

0.24 0 0.059 0.059 0.059 0.059 0.053

0.28 0 0.047 0.047 0.047 0.047 0.058

doi:10.1371/journal.pone.0149086.t003

Fig 5. Power comparison and false positives plots with fixed γ1. These plots show the power
comparisons between the methods while changing the γ2 with fixed γ1. Figs (A-F) shows the powers of each
methods when γ1 changes from 0.08 to 0.28 by 0.04.

doi:10.1371/journal.pone.0149086.g005
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are known to be associated with regulating metabolism. Therefore, many of the significant
genes tend to be associated with this regulatory function. For example, The Grb10 gene is
known to encode a growth factor receptor-binding protein that interacts with insulin receptors
and insulin-like growth-factor receptors [28]. FABP9 (Fatty Acid Binding Protein 9, Testis) is a
Protein Coding gene which is associated with sporadic breast cancer. GO annotations related

Fig 6. Power comparison and false positives plots with fixed γ2. These plots show the power
comparisons between the methods while changing the γ1 with fixed γ2. Figs (A-F) shows the powers of each
methods when γ2 changes from 2 to 8 by two.

doi:10.1371/journal.pone.0149086.g006

Table 4. P-values and q-values of the top genes list frommodel based approach with 4 phenotypes.

Gene symbol DEG PAG M1 (p-
value)

PAG M2(p-
value)

model-based approach (p-
value)

model-based approach(q-
value)

phenotype

Fabp9 0.103 0.806 0.001 1.15E-05 0.037 leptin

Aps-pending 0.078 0.566 0.000 6.44E-07 0.015 leptin

Sgce 0.919 0.365 0.000 2.81E-06 0.024 leptin

IGHV1S134_AF304554 0.154 0.893 0.000 1.36E-06 0.021 leptin

LOC434960 0.326 0.879 0.001 1.07E-05 0.037 leptin

Hspa12a 0.346 0.081 0.000 7.51E-06 0.037 leptin

Acd 0.222 0.831 0.000 3.84E-06 0.025 leptin

Lgals4 0.524 0.124 0.000 9.69E-06 0.037 leptin

Dll4 0.177 0.721 0.000 8.86E-06 0.037 leptin

V1rh4 0.454 0.779 0.000 2.12E-07 0.010 leptin

1700028I16Rik 0.210 0.027 0.000 3.21E-06 0.024 leptin

6330565C02Rik 0.456 0.085 0.000 1.46E-05 0.044 leptin

LOC231501 0.365 0.043 0.000 6.36E-06 0.036 leptin

Telo2 0.461 0.770 0.000 9.01E-06 0.037 leptin

Gm1549 0.700 0.532 0.000 2.90E-06 0.024 leptin

1700072E05Rik 0.063 0.152 0.000 1.56E-06 0.024 adiponectin

Asb17 0.115 0.057 0.000 7.49E-07 0.018 adiponectin

LOC236170 0.308 0.010 0.000 7.87E-07 0.018 adiponectin

9030421J09Rik 0.040 0.513 0.000 1.19E-06 0.031 Insulin

4930404F20Rik 0.312 0.120 0.000 2.95E-06 0.045 Insulin

Klhdc4 0.475 0.065 0.000 1.38E-06 0.031 Insulin

doi:10.1371/journal.pone.0149086.t004
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to this gene include transporter activity and lipid binding [29]. SGCE (Sarcoglycan, Epsilon) is a
Protein Coding gene which is associated with myoclonic, dystonia-11, or dystonia. It is known
that SGCE gene works together with SGCA [30]. SGCA is known that is associated with type 2d
[31]. Although SGCA cannot reach q-value below 0.05, that of p-value for model-based
approach is 0.0011. Therefore, these genes would have significant relationships for finding dif-
ferences of effects between high-fat diet and low-fat diet. LGALS4 (Lectin, Galactoside-Binding,
Soluble, 4) is a Protein Coding gene. Diseases associated with LGALS4 include colon adenocar-
cinoma and measles. Among its related pathways are Cell adhesion_Cell-matrix glycoconju-
gates. GO annotations related to this gene include carbohydrate binding [32].

These candidate genes demonstrate that the proposed method successfully identified the
genes known to be associated with regulating metabolism. In addition, we have performed
gene ontology analysis using DAVID functional annotation tool, using the genes only detected
by model-based method with q-value below 0.05 as input. We found five GO terms contained
in the CC_FAT terms that reached p-values below 0.05 or around 0.05 [33,34]. These results
are summarized in Table 5. On the contrary, other methods could not find any significant
molecular signatures. This may infer that genes undetected by the naïve and the hierarchical
approaches could play important roles; in other words, important candidate genes may be
overlooked if only the traditional approaches are used.

In this paper, we propose a statistical model for simultaneously detecting DEGs and PAGs.
The proposed model is more efficient than other naïve methods for the joint identification of
DEGs and PAGs. Using microarray data from an experiment and using simulation studies, the
proposed model was compared to the other tested methods and was shown to have greater
power. In other words, the proposed model identified more significant genes than other
approaches under the same conditions (Table 4). The proposed approach was flexible and easy
to extend. Since our model is a linear regression model, it can be extended for the cases where
there are multiple factors. For example, our model can be applied to the analysis of a variety of
covariates at the same time.

Supporting Information
S1 File. For checking the normality of log-transformed gene expressions, we performed
Shapiro-Wilks test for each gene and drew a histogram of the p-values. P-values for most
genes are larger than 0.05 which means log-transformed gene expressions follow normal distri-
butions (Fig A). QQ-plots for some genes which are significant in model-based approach (Fig
B). Gene expression profiles for significant genes with leptin detected by model-based
approach. Blue dots are ND samples and Red dots are HFD samples. X-axis shows log-normal-
ized gene expression for each gene and Y-axis shows expression of leptin (Fig C). Gene expres-
sion profiles for significant genes with adiponectin detected by model-based approach. Blue
dots show ND samples and Red dots show HFD samples. X-axis shows log-normalized gene

Table 5. Results of Gene ontology analysis for CC_FAT GOTERM using the functional annotation tool: Database for Annotation, Visualization and
Integrated Discovery (DAVID).

Term Count % p-value

GO:0000781~chromosome, telomeric region 2 11.76471 0.010036

GO:0005887~integral to plasma membrane 3 17.64706 0.032798

GO:0031226~intrinsic to plasma membrane 3 17.64706 0.035245

GO:0043232~intracellular non-membrane-bounded organelle 4 23.52941 0.078055

GO:0043228~non-membrane-bounded organelle 4 23.52941 0.078055

doi:10.1371/journal.pone.0149086.t005
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expression for each gene and Y-axis shows expression of adiponectin (Fig D). Gene expression
profiles for significant genes with insulin detected by model-based approach. Blue dots are ND
samples and Red dots are HFD samples. X-axis shows log-normalized gene expression for each
gene and Y-axis shows expression of insulin (Fig E).
(PPTX)

S2 File. Expression data for significant genes listed on Table 4.
(CSV)

S3 File. Phenotype data for real data analysis.
(CSV)
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