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Polycomb repressive complex 2 (PRC2) is a multisubunit histone-modifying enzyme
complex that mediates methylation of histone H3 lysine 27 (H3K27). Trimethylated
H3K27 (H3K27me3) is an epigenetic hallmark of gene silencing. PRC2 plays a crucial
role in a plethora of fundamental biological processes, and PRC2 dysregulation has been
repeatedly implicated in cancers and developmental disorders. Here, we review the
current knowledge on mechanisms of cellular regulation of PRC2 function, particularly
regarding H3K27 methylation and chromatin targeting. PRC2-related disease
mechanisms are also discussed. The mode of action of PRC2 in gene regulation is
summarized, which includes competition between H3K27 methylation and acetylation,
crosstalk with transcription machinery, and formation of high-order chromatin structure.
Recent progress in the structural biology of PRC2 is highlighted from the aspects of
complex assembly, enzyme catalysis, and chromatin recruitment, which together provide
valuable insights into PRC2 function in close-to-atomic detail. Future studies on the
molecular function and structure of PRC2 in the context of native chromatin and in the
presence of other regulators like RNAs will continue to deepen our understanding of
the stability and plasticity of developmental transcriptional programs broadly impacted
by PRC2.

Keywords: polycomb-group proteins, PRC2, chromatin, histone methylation, gene regulation, protein structure,
developmental disorder, cancer
1 INTRODUCTION

Cell type specification directed by gene expression programs is a central process in the development
of multicellular organisms. Gene regulation at the transcriptional level entails a series of complex
DNA transactions known to be directly impacted by chromatin architecture. Polycomb repressive
complex 2 (PRC2) is a multisubunit chromatin-binding complex, which also harbors intrinsic
enzymatic activity responsible for methylation of histone H3 lysine 27 (H3K27) (1–5); trimethylated
H3K27 (H3K27me3) is an epigenetic hallmark of gene repression (6). PRC2 plays a vital role in
many fundamental biological processes, like genomic imprinting, body segmentation, and
vernalization, in various species ranging from humans to flies and plants (7–9). In stem cells,
PRC2 cooperates with Polycomb repressive complex 1 (PRC1), which deposits monoubiquitinated
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H2AK119 (H2AK119ub) (10), to mediate repression of many
developmental loci; expression of these loci is necessary for stem
cell differentiation (11, 12). Components of both PRC1 and
PRC2 belong to the family of Polycomb group (PcG) proteins
originally identified in Drosophila melanogaster (13). Reversible
gene repression marked by H3K27me3 in stem cells predisposes
target genes, including tumor suppressor genes, to DNA
hypermethylation in cancer cells, which confers permanent
gene silencing (14–16). On the other hand, PRC2 functions to
maintain cell identity (17); loss of cell identity through
dedifferentiation—a mechanism whereby differentiated cells are
reverted to progenitor cells—is believed to serve as a mechanism
for cancer initiation (18). This review summarizes the current
knowledge on the mechanism of PRC2-mediated gene regulation
in normal and diseased cells and links molecular function to the
recent progress in structural studies of PRC2.
Frontiers in Oncology | www.frontiersin.org 2
2 H3K27 METHYLATION AND PRC2
TARGETING

PRC2 impacts gene expression at the transcriptional level in large
part through H3K27 methylation (Figure 1A). The H3K27me3
repressive histone mark is enriched in Polycomb domains in
distinct genomic regions (Figure 1A), such as promoters of
inactive or lowly expressed genes, intergenic regions,
subtelomeric regions, transposable elements, and megabase
domains on the X chromosome (6, 19, 20). In human and
mouse embryonic stem cells (hESCs and mESCs), H3K27me3
is often colocalized with the H3K4me3 active histone mark,
which defines ‘bivalent’ chromatin domains poised for gene
activation (Figure 1A) (21–25). Other histone marks
associated with gene silencing include H2AK119ub, H3K9me3,
and H4K20me3. In contrast to frequent colocalization of
A

B

FIGURE 1 | Complex composition, chromatin association, and protein domain structure of PRC2.1 and PRC2.2. The core subunits and accessory subunits specific
to PRC2.1 and PRC2.2 are indicated. (A) Complex composition and chromatin association. Single-headed arrows depict the deposition of histone marks, and
double-headed arrows indicate chromatin binding. CGI chromatin in the Polycomb domain or bivalent domain is represented by gray rectangles. (B) Domain
structure of PRC2 subunits. EPOP and PALI1/PALI2 of PRC2.1 are not shown, as their 3D structures have not yet been determined. Linker regions are omitted.
EZH2: SBD (SANT1-Binding Domain), EBD (EED-Binding Domain), BAM (b-Addition Motif), SAL (SET Activation Loop), SRM (Stimulation-Responsive Motif), SANT1
(SWI3, ADA2, N-COR, and TFIIIB 1), MCSS (Motif Connecting SANT1 and SANT2), SANT2 (SWI3, ADA2, N-COR, and TFIIIB 2), CXC, SET (SU(VAR)3-9, Enhancer-
of-zeste and Trithorax); SUZ12: NT (N-Terminal), ZnB (Zinc Finger-Binding), WDB1 (WD40-Binding 1), C2, Zn (Zinc finger), WDB2 (WD40-Binding 2), VEFS (VRN2,
EMF2, FIS2, and SU(Z)12); EED: NT (N-Terminal), WD40; RBBP4: NT (N-terminal), WD40; PCL1/2/3 or PHF1/MTF2/PHF19: Tudor, PHD1 (Plant HomeoDomain 1),
PHD2 (Plant HomeoDomain 2), EH/WH (Extended Homology/Winged-Helix), RC/CL (Reversed Chromo/Chromo-Like); AEBP2: NT (N-terminal), Zn (Zn finger), KR (K
(lysine) and R (arginine)-rich), CC (Central Connecting), C2B (C2-Binding), H3K4D (H3K4 Displacement); JARID2: UI (Ubiquitin Interaction), K116 (K (lysine) 116), TR
(TransRepression), R/NB (RNA/Nucleosome Binding, JmjN (Jumonji N), ARID (AT-Rich Interaction Domain), JmjC (Jumonji C), Zn (Zinc finger).
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H2AK119ub and H3K27me3 at facultative heterochromatin,
H3K9me3 and H4K20me3 are typical histone marks associated
with constitutive heterochromatin (26, 27). Mutual exclusivity of
H3K27me3 and H3K9me3 is not strictly maintained in some
contexts (20). In addition to trimethylation, PRC2 also mediates
mono and dimethylation of H3K27; whereas more than 50% of
total histone H3 is dimethylated at K27 (H3K27me2),
H3K27me3 and monomethylated H3K27 (H3K27me1) are
substantially less abundant at about 10–20% in mESCs (27–
29). Notably, H3K27me1 accumulates at gene bodies of highly
transcribed loci (29).

PRC2 is preferably targeted to CpG islands (CGIs) in cells
(Figure 1A) (25, 30). At the same time, binding sites of many
transcription factors are also located in GC-rich CGI promoters
(31, 32). Hypomethylated CGIs lacking transcription factor
binding and active transcription is sufficient to recruit PRC2
(33–35). In Drosophila, PRC2 is targeted to chromatin via DNA
motifs known as Polycomb response elements (PREs) and
cognate transcription factors; in comparison, how the
chromatin recruitment of mammalian PRC2 is achieved
remains incompletely understood, primarily due to the lack of
conservation of PREs in mammals (36–38). Unlike transcription
factors that initiate transcription on specific genes, PRC2 does
not trigger gene repression; instead, PRC2 targeting and
H3K27me3 deposition occur after transcriptional silencing (39,
40). Accordingly, the primary function of PRC2 is thought to
maintain established gene expression programs corresponding to
discrete cell types (17). PRC2 is dispensable for pluripotency and
self-renewal of mESCs but is required for proper stem cell
differentiation (41, 42). For example, the formation of
embryoid bodies (EBs) through mESC differentiation is
impaired when all three H3K27 methylation states are reduced,
which coincides with an increase of the acetylated H3K27
(H3K27ac) active histone mark (43). In contrast, EB formation
is not affected when only H3K27me3 but not H3K27me1 or
H3K27me2 is markedly diminished (43, 44). Prominently, the
differentiated cell identity is reverted to a stem cell-like state
when single cells dissociated from EBs are challenged to grow in
stem cell media in the absence of full H3K27 trimethylation,
highlighting an essential role of PRC2 and H3K27me3 in the
maintenance of differentiated cell identity (44).
3 CORE AND ACCESSORY SUBUNITS
OF PRC2

A functional mammalian PRC2 holo complex consists of core
and accessory subunits (Figures 1A, B). EZH2 or its paralog
EZH1 is the catalytic subunit, each containing a SET (SU(VAR)
3-9, Enhancer-of-zeste and Trithorax) lysine methyltransferase
domain (Figures 1A, B) (45–48). Other core subunits include
EED, SUZ12, and another pair of paralogs, RBBP4 and RBBP7
(Figures 1A, B). EED and SUZ12 are necessary for PRC2
enzymatic activity, whereas RBBP4 substantially enhances
catalysis by the EZH2–EED–SUZ12 ternary complex (49).
Knockout of EZH2, EED, or SUZ12 causes embryonic lethality
Frontiers in Oncology | www.frontiersin.org 3
in mice (50). EED recognizes H3K27me3, a product of PRC2
catalysis, leading to the allosteric stimulation of PRC2 enzymatic
activity. This positive feedback mechanism is believed to at least
partially account for the spreading of the H3K27me3 repressive
histone mark in large chromatin domains (51, 52).

Biochemistry and proteomics studies have identified different
families of accessory subunits, which form two classes of PRC2
holo complexes, PRC2.1 and PRC2.2, based on their mutually
exclusive binding to the core subunits (Figures 1A, B) (53, 54).
PHF1/MTF2/PHF19, EPOP, and PALI1/PALI2 belong to
PRC2.1, whereas AEBP2 and JARID2 are present in PRC2.2
(Figures 1A, B). PHF1 (a.k.a. PCL1), MTF2 (a.k.a. PCL2), and
PHF19 (a.k.a. PCL3) are three homologs of the Drosophila PCL
protein, and among themMTF2 is the most abundant in mESCs.
In the absence of AEBP2, MTF2 and JARID2 can form an
atypical hybrid holo complex with the core subunits (53).
PRC2.1 and PRC2.2 colocalize at most PRC2 target loci in
mESCs; combined knockout of PHF1/MTF2/PHF19 and
JARID2 disturbs PRC2 targeting and results in diffusely
distributed H3K27me3 on chromatin, highlighting a pivotal
role of these accessory subunits in the locus-specific chromatin
recruitment of PRC2 (55, 56). In human induced pluripotent
stem cells (hiPSCs), selective disruption of PRC2.1 favors PRC2.2
complex formation, and vice versa; when PRC2.2 is disrupted
and PRC2.1 is forced to form, overall chromatin occupancy of
PRC2 is increased, likely due to a higher chromatin binding
affinity of PRC2.1 compared to that of PRC2.2 (57). Despite the
largely overlapped chromatin association of PRC2.1 and PRC2.2,
they regulate mESC differentiation via distinct mechanisms:
MTF2-containing PRC2.1 maintains the silent state of target
genes already marked by H3K27me3 in mESCs, whereas
JARID2-containing PRC2.2 preferentially mediates de novo
repression of active genes (58). Existing data indicate that the
mechanism of how accessory subunits facilitate PRC2
recruitment involves their direct binding to linker DNAs and
histone marks (see 6.3 below).
4 PRC2 DYSREGULATION IN
HUMAN DISEASE

Dysregulation of PRC2 function is widely associated with human
diseases, including cancers and developmental disorders.
Hotspots of mutation include EZH2 residues from the catalytic
SET domain and a structural motif mediating the allosteric
stimulation of PRC2 (see 6.2 below) (59). Both gain-of-
function and loss-of-function changes of PRC2 are linked to
cancer, which reflects contradicting roles of PRC2 in oncogenesis
and tumor suppression (17, 60). For example, H3K27
hypertrimethylation required for the growth of a subset of
human B-cell lymphoma is generated by heterozygous
activating mutations of EZH2 (61–64). In addition, cancer
dependence on EZH2 sometimes relies on genetic alterations
of the SWI/SNF chromatin remodeling complex, making EZH2
an epigenetic target for drugs based on synthetic lethality (65,
66). Furthermore, EZH2 expression is correlated with active cell
June 2022 | Volume 12 | Article 894585
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proliferation, and EZH2 is often aberrantly overexpressed in a
number of cancer types, such as breast cancer, prostate cancer,
endometrial cancer, melanoma, glioblastoma, ovarian cancer,
lung cancer, and so on, where tumor suppressor genes, DNA
damage repair genes, and cell signaling genes are among the
targets of PRC2 (17, 67–69). On the other hand, an elevated
EZH2 expression level may merely be a consequence of
tumorigenesis in some cases (65). Pharmacological inhibition
of PRC2 enzymatic activity by a panel of clinically relevant
specific pyridone inhibitors markedly restricts the proliferation
of PRC2-dependent cancer cells (68, 70).

In line with its role in tumor suppression, loss-of-function of
PRC2 caused by inactivating mutations or chromosomal
translocation of essential components of PRC2, including
EZH2 , EED, and SUZ12 , i s f r equent l y found in
myelodysplastic syndrome/myeloproliferative neoplasm (MDS/
MPN), T cell acute lymphoblastic leukemia (T-ALL), and
malignant peripheral nerve sheath tumors (MPNSTs) (17, 68).
Notably, PRC2 is enzymatically inactivated by protein factors in
distinct types of cancers, including diffuse midline gliomas
expressing oncohistone H3 with a K27M mutation (H3K27M)
and posterior fossa ependymoma expressing EZHIP that harbors
an H3K27M-mimicking sequence (71–77). Likewise, genetic
mutations of PRC2 subunits and especially EZH2 have been
found to impair H3K27 trimethylation and cause Weaver
syndrome and Cohen-Gibson syndrome, which are both
overgrowth syndrome often characterized by facial deformity
and intellectual disability (78).

PRC2 is also connected to cancer via cell signaling and
metabolic pathways. For example, EZH2 phosphorylation by
the AKT kinase suppresses PRC2 enzymatic activity and
promotes hormone-refractory prostate cancer independent of
other PRC2 subunits (79–81). In addition, EZH2 is
phosphorylated by AMP-activated protein kinase (AMPK)
upon energy starvation, which leads to PRC2 disassembly,
cause derepression of tumor suppressor genes, and correlates
with better survival in cancer patients (82). The intracellular
concentrations of SAM and SAH profoundly impact histone
methylation (83, 84). SAM is synthesized from methionine and
ATP by methionine adenosyltransferase (MAT), and methionine
restriction reduces the H3K27me3 level in HCT116 colon cancer
cells and C57BL/6J mice (84). Conversely, DZNep, an SAH
hydrolase inhibitor, also inhibits H3K27 methylation and
induces apoptosis in breast cancer cells by reactivating certain
apoptosis factors (85). Some more details of the PRC2–disease
connection are further discussed below where PRC2 structures
are analyzed.
5 MODE OF ACTION OF PRC2 IN
GENE REGULATION

Several direct or indirect mechanisms have been proposed to
underlie PRC2-mediated transcriptional regulation. Listed below
are emerging models involving key aspects of the molecular
function of PRC2, such as enzymatic activity, RNA and
Frontiers in Oncology | www.frontiersin.org 4
chromatin binding, and protein-protein interaction. Active
transcription is kept in check from multiple levels, ranging
from antagonization of deposition of active histone marks to
crosstalk with components of RNA polymerase II (pol II)
transcription machinery and to orchestration of high-order
chromatin structure.

5.1 Competition Between H3K27
Methylation and Acetylation
Lysine acetylation of histone proteins usually correlates with
active transcription, whereas lysine methylation can mark either
gene activation or repression depending on positions of the
lysine residue and methylation multiplicity (86, 87). H3K27
acetylation is mediated by p300/CBP histone acetyltransferase
(HAT), and H3K27ac is preferentially enriched at both
promoters and active enhancers (88, 89) (Figure 2A). Studies
in Drosophila embryos and mESCs have shown that H3K27ac
and H3K27me3 are antagonistic, suggesting a direct competition
between PRC2 and p300/CBP in posttranslational modification
of H3K27 (Figure 2B) (90, 91). Furthermore, PC, a component
of Drosophila PRC1, impedes H3K27 acetylation by directly
inhibiting the HAT activity of CBP (92). In line with the
competition model, the widespread deposition of H3K27me2 is
believed to protect target loci from HAT activity, ensuring
proper control of cell type-specific enhancers (29).
Additionally, EZH1 or a catalytically impaired EZH2 mutant is
unable to fully restore H3K27me2 or H3K27me3 levels in an
EZH2 knockout background, leading to invasion of H3K27ac
into the otherwise H3K27me3-marked promoters and causing
defects in mESC differentiation (43).

5.2 Crosstalk With Transcription
Machinery
PRC2 is mechanistically linked to pol II transcription elongation
through Elongin and SPT6 (Figure 2C). Elongin positively
regulates pol II elongation by suppressing transcriptional
pausing; the heterotrimeric Elongin complex consists of the
largest active subunit Elongin A and two smaller regulatory
subunits, Elongin B and C (93–95). PRC2 methylates Elongin
A at residue K754, and loss of this methylation results in de-
repression of PRC2 target genes and defective EB formation
(Figure 2C) (96). In addition, the accessory subunit EPOP from
PRC2.1 has been proposed to connect Elongin B and C to PRC2
in mESCs, maintaining low expression of PRC2 target genes
through a mechanism that is not understood (Figure 2C) (97,
98). Direct crosstalk also exists between PRC2 and the elongation
factor SPT6: PRC2 recruitment and H3K27me3 deposition are
impeded by SPT6 due to the competitive binding of SPT6 and
EZH2 to SUZ12, which blocks the assembly of functional PRC2
(Figure 2C) (99).

RNAs provide another link between PRC2 and transcription
machinery (Figure 2D). PRC2 mediates promiscuous binding to
RNAs with a preference for G-tract sequences (100, 101). RNAs
associate with dispersed sites on PRC2 surface (102, 103),
antagonizing direct chromatin binding of PRC2 but linking
PRC2 to chromatin physically (104, 105). In particular, PRC2
June 2022 | Volume 12 | Article 894585
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interacts with short RNAs transcribed from target genes, where
pol II and H3K4me3 are observed, to repress gene expression in
cis in primary T cells (Figure 2D) (106). Congruently, PRC2 is
also found to bind nascent RNAs from active promoters devoid
of H3K27me3 in mESCs (Figure 2D) (107). RNAs can inhibit
PRC2 enzymatic activity both in vitro and in vivo, possibly by
preventing nucleosomal substrate binding (108–110), which may
serve as a mechanism to sustain the active state of genes while
keeping PRC2 poised for chromatin surveillance (100, 107, 109).
Additional data suggest PRC2 interaction with nascent
transcripts can tune the transition between promoter-proximal
pausing and productive elongation (Figures 2A, D) (111).

5.3 Formation of High-Order
Chromatin Structure
PRC2 has been linked to at least two types of distinct high-order
chromatin structures: compacted chromatin and long-range
chromatin loops or contacts. Chromatin compaction causes
Frontiers in Oncology | www.frontiersin.org 5
transcriptional inactivation by restricting promoter accessibility
(Figure 2E). In a hierarchical recruitment model, PRC2 is
targeted to chromatin decorated by H3K27me3, which recruits
canonical PRC1 via the chromodomain (CD) of CBX proteins
(112). This allows PHC and CBX2 subunits of PRC1 to compact
target chromatin, independent of PRC1 enzymatic activity (113–
116). EZH1-containing PRC2 also exhibits chromatin
compaction activity, which appears to depend on histone tails
but is independent of SAM (67). Unlike the EZH2-containing
counterpart, EZH1-containing PRC2 displays a higher binding
affinity towards nucleosomes and, correspondingly, represses in
vitro transcription from chromatinized templates (67, 117).

Long-range chromatin interactions between genes and
regulatory elements, like enhancers, repressors, and insulators,
are widely implicated in gene regulation in the context of a three-
dimensional genome, for which PRC2 and H3K27me3 are also
known as important players (118–123). H3K27me3-rich
genomic regions can act as gene silencers through PRC2-
A B

C D

E F

FIGURE 2 | Mode of action of PRC2 in gene regulation A schematic of the mode of action of PRC2 is shown. Single-headed arrows depict the deposition of
histone marks, and double-headed arrows indicate chromatin or RNA binding. (A) A simplified version of the schematic of typical active gene loci. (B) Antagonistic
action of PRC2 and P300/CBP in histone H3K27 modification. (C) Crosstalk of PRC2 with transcription elongation factors. (D) Interaction of PRC2 with nascent
RNAs. (E) Chromatin compaction by PRC2 and PRC1. (F) Left, schematic of multiple connected chromatin loops with repressed and active loci; right, a
representative chromatin loop bound by CTCF and PRC2.
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dependent long-range chromatin interactions (124, 125).
Differential chromatin binding of PRC2 along the HoxA
cluster impacts long-range interactions of HoxA in mouse
embryos, which unexpectedly also promotes enhancer-
promoter contacts (126). Likewise, PRC2 facilitates contact
between poised enhancers and target genes during mESC
differentiation (127). Hox clusters are organized into multiple
connected chromatin loops, which involve PcG proteins and
other architectural factors, like CTCF (Figure 2F) (128, 129).
Relatedly, the SUZ12 subunit of PRC2 has been found to interact
with CTCF at a long-range intrachromosomal loop between
IGF2/H19 imprinting control region (ICR) and IGF2
promoters, maintaining monoallelic expression of IGF2
(Figure 2F) (130, 131). In line with these data, PRC2 directly
mediates DNA bending and looping in reconstituted systems, as
shown by atomic force microscopy (AFM) and molecular
dynamics simulations (132, 133).
6 STRUCTURAL MECHANISM OF
PRC2 FUNCTION

Over the years, the structural biology of PRC2 has generated a
large body of knowledge on the molecular mechanism of some
central aspects of PRC2 function, including complex assembly,
enzyme catalysis, and chromatin recruitment, which are known
to be dysregulated in diverse human diseases. First, structures of
PRC2 subcomplexes and holo complexes have together shed
light on the overall architecture of PRC2 and have provided a
structural basis for the mutually exclusive assembly of PRC2.1
and PRC2.2. Second, the catalytic mechanism has been
elucidated from the structure of an active PRC2, which also
lays the foundation for a mechanistic understanding of cancer
mutations, drug inhibition, oncohistone-mediated enzyme
inactivation, and allosteric stimulation of PRC2. Third,
structures of PRC2 engaging with nucleosomes and of
functional domains bound to linker DNAs or histone marks
have offered direct visualization of PRC2 targeting in various
chromatin contexts.
6.1 Complex Assembly
Proper assembly of core and accessory subunits is a prerequisite
for PRC2 enzymatic activity and chromatin recruitment. Crystal
structures of a minimal mouse EZH2–EED complex and of
NURF55 (homolog of RBBP4 in Drosophila) bound to a
minimal fragment of SU(Z)12 (homolog of SUZ12 in
Drosophila) represent the initial attempts to tackle the puzzle
of complex assembly (134, 135). The negative stain EM structure
of a five-member PRC2.2, PRC2-AEBP2, further reveals a
bipartite structure architecture (136). Recent X-ray
crystallographic and cryo-EM studies have together built a
near-complete atomic model of the core complex and started
to add pieces of various accessory subunits into the picture of
holo complex structures (Figure 3). Overall, the PRC2 core
complex consists of two structurally and functionally distinct
Frontiers in Oncology | www.frontiersin.org 6
modules, including the catalytic module and the accessory
subunit-binding module (Figure 3A) (137): whereas the
former contains the minimally active ternary complex of
EZH2, EED, and the C-terminal VEFS (VRN2, EMF2, FIS2,
and SU(Z)12) domain of SUZ12 (SUZ12(VEFS)) (Figure 3B)
(138–140), the latter is composed of the N-terminal portion of
SUZ12 (SUZ12(N)) and RBBP4, which together form docking
sites for various accessory subunits (Figure 3C) (140, 141). EZH2
is folded into a series of functional domains dispersed across the
catalytic module (138, 139) (Figure 3B). EED and SUZ12(VEFS)
are bound to distinct subsets of EZH2 domains, juxtaposing with
each other (Figure 3B) (138, 139). In the accessory subunit-
binding module, functional domains of SUZ12(N) are scattered
on the surface of the RBBP4 WD40 repeat, forming both
intramolecular and intermolecular complexes (Figure 3C)
(141, 142). The accessory subunit-binding module also
mediates PRC2 dimerization in the context of PRC2.1, which
facilitates chromatin binding of PRC2 (see below) (142). Key
structural features of the assembly of these two modules are
described in sections below, with the disease connection or
clinical relevance highlighted.

EZH2–EED interaction and stapled peptide inhibitor of PRC2.
In the catalytic module of PRC2, the EBD (EED-binding
domain) of EZH2 associates with the bottom face of the EED
WD40 repeat, dominating the interaction of these two proteins
(Figure 4A) (134, 138, 139). Stapled a-helical peptide inhibitors
have opened a new window for drug discovery by targeting
protein-protein interactions, which has been difficult with small
molecule inhibitors (143). Stapled peptides designed based on
the EBD structure compete with EZH2 for EED binding in vivo,
leading to disruption of PRC2 assembly (Figure 4A) (144). These
peptides inhibit PRC2-dependent growth and induce
differentiation of MLL-AF9 leukemia cells (144).

Intramolecular complex and gene activation function of EZH2
in cancer cells. In the catalytic module of PRC2, the SANT1
(SWI3, ADA2, N-CoR, and TFIIIB 1) domain and the SBD
(SANT1-binding domain) of EZH2 mediate intramolecular
interactions (Figure 4B) (138, 139). The SANT1 harbors a
partially disordered acidic transactivation domain (TAD),
which is normally sequestered by SBD binding (145). The
TAD can be released by EZH2 phosphorylation at residue S21
by AKT kinase or at residue Y244 by JAK3 kinase (Figure 4B)
(145). These two phosphorylation events are activated in prostate
cancer and natural killer/T-cell lymphoma cells, respectively,
converting EZH2 from a gene repressor to a gene activator (80,
81, 146). In line with this model, the EZH2 TAD forms stable
complexes with components of the active transcription
machinery, such as p300/CBP (145). Intriguingly, the EZH2
TAD interacts with the MYC oncoprotein in a PRC2-
independent manner to promote the growth of leukemia cells
(147). Indeed, EZH2 also physically associates with MYC or
MYCN in other cellular contexts, including neuroblastoma and
prostate cancer cells, to drive cancer development, making EZH2
degradation an attractive strategy for cancer treatment (147–
150). In contrast, it remains to be shown whether enzymatic
inhibitors of PRC2 can specifically target the ‘solo’ EZH2, as the
June 2022 | Volume 12 | Article 894585
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drug-binding site may not exist in the absence of EED and
SUZ12 (see 6.2 below).

C2 domain, a mediator of mutual exclusivity and PRC2
dimerization. In the accessory subunit-binding module of
PRC2, SUZ12(N) contains a mobile non-canonical C2 domain,
which becomes ordered only when bound to the accessory
subunit PHF19 or AEBP2 (Figure 5A) (141, 142). The C2
domain is named based on the observation that it adopts an
eight-strand b-sandwich structure, mimicking the classical C2
domain that mediates phospholipid binding (Figure 5A) (141).
It is not unprecedented that phospholipids regulate the function
of chromatin complexes, and it remains to be explored if such a
mechanism also exists for PRC2 (141, 151). PHF19 and AEBP2
interact with overlapping surfaces of the C2 domain, which
accounts for the mutual exclusivity in complex assembly
between PRC2.1 and PRC2.2 (141, 142). Formation of a PRC2
Frontiers in Oncology | www.frontiersin.org 7
dimer has long been implicated (67, 117, 152–155), and recent
structural work reveals that the PRC2 core complex forms an
intrinsic dimer via the C2 domain of SUZ12: a basic loop region
on the C2 domain from one protomer is swapped to occupy the
acidic central cavity of RBBP4 from the other protomer
(Figures 5A, B) (142). This dimeric structural scaffold has a
profound impact on the ability of PRC2 to bind chromatin
(see below).

PHF19 binding and stabilization of the intrinsic PRC2 dimer.
The RC (reversed chromo) domain of PHF19 (PHF19(RC))
mediates concurrent binding to the C2 domain of SUZ12 from
one protomer and the SUZ12(N)–RBBP4 protein body from the
other protomer (142) (Figure 5B). In this way, PHF19 is not
involved in PRC2 dimerization per se; instead, it stabilizes the
intrinsic dimer of PRC2 (Figure 5B). Structure-guided
functional studies indicate that PRC2 dimerization promotes
A

B

C

FIGURE 3 | Overall structure of PRC2.2 The overall structure of PRC2 is revealed by X-ray crystallographic and cryo-EM studies. The PRC2 core complex can be
structurally divided into two modules. Components of structures are color-coded. Structure figures are rendered in PyMOL (The PyMOL Molecular Graphics System,
Version 2.5.2 Schrödinger, LLC). (A) Cryo-EM structure of AEBP2 and JARID2-bound PRC2.2 (PDB 6C23). (B) Crystal structure of the catalytic module of PRC2
(PDB 5HYN). H3K27M and JARID2K116me3 peptides are shown as surface representation. (C) Crystal structure of the accessory subunit-binding module bound to
AEBP2 and JARID2 (PDB 5WAI). Two views are shown with the rotation matrix indicated.
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A B

C D

FIGURE 5 | Structural dissection of the complex assembly of the accessory subunit-binding module Structural features of the accessory subunit-binding module are
highlighted. (A) Structure of the SUZ12(C2) domain (from PDB 5WAI). The basic loop for RBBP4 binding and b strand for ABEP2 and PHF19 binding are indicated.
(B) Structure of the SUZ12(N)–RBBP4 dimer stabilized by the PHF19(RC) domain (from PDB 6NQ3). SUZ12 is colored in gray except for the C2 domain, which is
swapped between two protomers and shown in green. Domains and subunits from two protomers are distinguished by the prime symbol. (C) Structure of AEBP2
bound to SUZ12(N)–RBBP4 (from PDB 5WAI). The C2 domain from the dimeric structure is shown in gray. Structural transition of the C2 domain accompanied by
AEBP2 binding and dimer disruption is indicated by a curved gray arrow. The JARID2(TR) is omitted for clarity. (D) Structure of JARID2(TR) bound to the
intramolecular complex of SUZ12(ZnB) and SUZ12(Zn) (from PDB 5WAI). The breakpoint of SUZ12(ZnB) in oncogenic chromosomal translocation is indicated by a
black arrow. The black bracket indicates the part of the SUZ12(ZnB) helix replaced by JAZF1.
A B

FIGURE 4 | Structural dissection of the complex assembly of the catalytic module Structural features of the catalytic module are highlighted. (A) Structure of the
EZH2(EBD)–EED complex (from PDB 5HYN). Q47 and E51 (gray discs) are the two residues at positions i and i+4, where a hydrocarbon staple is incorporated.
E54Q mutation (orange disc) is introduced to enhance the cellular uptake of the stapled peptide. (B) Intramolecular complex of EZH2(SBD) and EZH2(SANT1).
Residues S21 and Y244, which are phosphorylated in cancer cells, are labeled and shown as sticks representation.
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chromatin binding of MTF2 or PHF19-containing PRC2.1,
possibly through an avidity effect (142). There is no evidence
on whether PRC2 plays a direct architectural role in forming
long-range chromatin contacts. However, it is not impossible
that the dimeric structural scaffold may allow PRC2 to bring two
distal chromatin regions close to each other via direct chromatin
binding. In this regard, a set of specific structure-based dimer-
disrupting mutations can serve as a valuable tool to test this
possibility (142).

AEBP2 binding and the dimer-to-monomer transition. There
are long and short isoforms of AEBP2 in mammals (156). AEBP2
used in the published structural studies corresponds to the
isoform 2 (UniProtKB Q6ZN18-2), lacking the N-terminal D/
E-rich, S-rich, and G-rich patches (140, 141, 157). The C2B (C2-
binding) domain of AEBP2 (AEBP2(C2B)) is bound to the C2
domain of SUZ12 (Figure 5C) (141). A part of the AEBP2(C2B)
also associates with the ZnB (zinc finger binding) helix of SUZ12
(SUZ12(ZnB)), where disease mutations are found to specifically
disrupt PRC2.2 assembly (Figure 5C) (57, 141). Notably, AEBP2
binding induces a dimer-to-monomer transition of the PRC2
core complex by relocating the swapped C2 domain of SUZ12,
suggestive of drastically different structural architectures of
PRC2.1 and PRC2.2 (142).

JARID2 binding, mutual exclusivity, and oncogenic
chromosomal translocation. The Zn (zinc finger) domain and
ZnB helix of SUZ12 assemble into a binding platform for the TR
domain of JARID2 (JARID2(TR)) (Figure 5D) (141). An
overlapping surface may also mediate EPOP binding according
to biochemical data, underlying the mutual exclusivity between
JARID2 and EPOP in the assembly of PRC2.1 and PRC2.2 holo
complexes (141). The N-terminal half of the SUZ12(ZnB) helix is
Frontiers in Oncology | www.frontiersin.org 9
replaced by the zinc finger protein JAZF1 in a recurrent
oncogenic chromosomal translocation found in endometrial
stromal tumors (Figure 5D) (158). In line with the structural
finding that the SUZ12(ZnB) helix is essential for JARID2
binding, PRC2 containing the JAZF1-SUZ12 fusion protein
displays greatly impaired JARID2 association, which may at
least in part account for the global loss of the H3K27me3
histone mark in patient samples (141, 159).

6.2 Enzyme Catalysis
EZH1 and EZH2 represent a distinct lysine methyltransferase
family (160). The SET domains of EZH1 and EZH2 differ from
many other SET domains by requiring two binding partners,
EED and SUZ12, for the enzymatic activity (49). Structural data
indicate that EZH2 contains an unusual split catalytic domain:
the SAL (SET activation loop) from the N-terminal portion and
the SET domain at the C-terminus are folded together to enable
catalysis (Figure 6A) (138, 139). Structural comparison to the
inactive conformation of an isolated SET domain of EZH2
indicates that the SET domain undergoes structural
reorganization from the inactive to the active state, reshaping
the H3-binding groove and SAM-binding pocket for effective
substrate binding (138, 139, 161, 162). H3K27me3 is a major
mediator of PRC2 function in gene regulation in cells;
correspondingly, the enzymatic activity is a focal point of the
cellular regulation of PRC2 function. The catalytic mechanism,
enzyme regulation in normal cells, and enzyme dysregulation in
diseased states are summarized in the following paragraphs.

The catalytic mechanism, cancer mutations, and SAM-
competitive inhibitors. Histone substrate recognition and
methyl transfer reaction are two key steps for PRC2-mediated
A B

C

FIGURE 6 | Structural analyses of enzyme catalysis, chemical inhibition, and protein inhibition Enzyme active site is shown. (A) Structure of the catalytic module of
PRC2 in the stimulated state (from PDB 5HYN). The split catalytic domain consists of the EZH2(SET) and EZH2(SAL). The EZH2(SRM) bridges the stimulating signal
to the EZH2(SET). EED aromatic cage residues are labeled. H3K27M oncohistone occupies the lysine binding channel at the active site. The JARID2K116me3
peptide in the original structure was replaced by the H3K27me3 peptide from PDB 3IIW based on the structural alignment. (B) Close-up view of the active site.
SAM-competitive PRC2 inhibitor GSK126 from the aligned crystal structure PDB 5WG6 is represented by green sticks. (C) Close-up view of the EED aromatic cage.
The allosteric PRC2 inhibitor EED226 from the aligned crystal structure PDB 5GSA is represented by green sticks.
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H3K27 methylation. The A25-R26-K27-S28 core sequence
within the histone H3 tail and in particular residue R26 are
read by the SET domain directly; residue A25 also contributes to
the substrate specificity by the mechanism of steric exclusion
(139). Enzyme reactivity data on in vitro methylation of peptide
arrays have expanded the substrate specificity of PRC2 to a
preferred sequence of [A/C/V/P]24-[A/V/L]25-[R/K]26-[K]27-
[F/Y/H]28-[A/V/C/T/S]29 (96). Phosphorylation of residue S28
of histone H3 by cell signaling-dependent MSK kinases
diminishes H3K27 methylation, displaces PRC2 from
chromatin, and promotes H3K27 acetylation (96, 163). Based
on the structure of PRC2 bound to H3K27M (Figure 6A), the
substrate residue K27 is predicted to be hosted in the lysine-
binding channel lined by several aromatic residues such that its
nitrogen atom is placed close to SAM for the methyl transfer
reaction (138, 139). Compared to H3K27me1 and H3K27me2,
the production of H3K27me3 is naturally disfavored because of
spatial restriction at the active site (139). Residue Y641 of EZH2
at the enzyme active site is mutated to smaller residues, like F, N,
S, H, or C, in follicular and diffuse large B-cell lymphomas, which
results in an H3K27 hypertrimethylation disease phenotype,
possibly due to a relatively expanded active site (Figure 6B)
(61–63). Another gain-of-function active site mutation, A677G,
found in human B-cell lymphoma, causes hypertrimethylation
likely via a similar structural mechanism (Figure 6B) (64). A
family of SAM-competitive pyridone inhibitors of EZH2, like
GSK126, EPZ-6438, and CPI-1205, have been developed to treat
cancers with EZH2 gain-of-function mutations as well as other
EZH2-dependent cancers (164). These inhibitors exhibit high
potency and specificity and are mostly bound to a binding pocket
within a unique interface between the SAL and SET of EZH2,
with only a small set of atoms protruding into the SAM binding
pocket to block SAM binding (Figure 6B) (165–167).

Allosteric stimulation, Weaver syndrome mutations, and
H3K27me3-competitive inhibitors. H3K27me3 stimulates PRC2
through an allosteric mechanism, which involves H3K27me3
binding to EED and transmission of the stimulating signal to the
enzyme active site (Figure 6A). H3K27me3 is recognized by an
aromatic cage on the top face of the EED WD40 repeat
(Figure 6A) (52). EED provides limited sequence specificity
beyond the trimethylated lysine; in vitro binding assays
indicate the A-R-Kme3-S sequence content found for
H3K27me3, H3K9me3, and H1K26me3 is favored (52, 168).
Similar to H3K27me3, di- and trimethylation products of a lysine
residue from two accessory subunits of PRC2, JARID2 and
PALI1, can also bind EED and stimulate PRC2 enzymatic
activity. PRC2 stimulation by JARID2K116me3 and
PALI1K1241me3 may serve as a cellular mechanism
promoting H3K27me3 deposition at loci devoid of existing
H3K27me3 (169, 170). The SRM (stimulation-responsive
motif) of EZH2 bridges the stimulating signal to the enzyme
active site through simultaneous binding to the Kme3-containing
sequence positioned on the EED surface and to an otherwise
partially ordered helix from the SET domain (Figure 6A) (138,
139). The SRM itself is a mobile structural element, adopting an
ordered a-helix structure in the presence of H3K27me3 or
Frontiers in Oncology | www.frontiersin.org 10
JARID2K116me3 and becoming disordered in their absence
(138, 139). Structural stabilization of the SET domain and
change of structural dynamics of active site residues may both
contribute to the observed allosteric enzyme stimulation (138,
139). Mutational disruption of the EED aromatic cage in mESCs
compromises not only the formation of H3K27me3 chromatin
domains at nucleation sites, but also the spreading of H3K27me3
from nucleation sites (171). A class of chemical inhibitors, such
as A-395 and EED226, specifically targets the EED aromatic cage,
which blocks H3K27me3 binding and thereby abolishes the
allosteric stimulation of PRC2 (Figure 6C) (172, 173). These
inhibitors induce tumor regression in a xenograft model and
complement the anti-tumor activity of SAM-competitive
inhibitors of PRC2 when acquired resistance arises (172, 173).

Enzyme inhibition by H3K27M and EZHIP in pediatric brain
tumors. Expression of H3K27M oncohistone in diffuse midline
gliomas causes global loss of the H3K27me3 histone mark (71,
72). A crystal structure captures H3K27M bound to a minimally
active PRC2 (Figure 6A) (139). H3K27M is found to occupy the
lysine binding channel at the active site of PRC2, conferring
competitive enzyme inhibition by excluding the H3K27 substrate
(Figure 6A) (139). Compared to H3K27, H3K27M displays an
over 10-fold tighter binding to PRC2 (139), which also depends
on the SAM concentration (174, 175). H3K27M preferentially
associates with the H3K27me3-stimulated state of PRC2, leading
to defects in H3K27me3 spreading while retaining H3K27me3 at
PRC2 recruitment sites on selected CGIs (174–177). Remarkably,
EZHIP, a protein normally found in gonads, is abnormally
expressed in posterior fossa ependymoma, where it inhibits
PRC2 enzymatic activity through an H3K27M-like protein
sequence (73–77). Nucleosome binding to PRC2 surface helps
guide residue K27 of the histone H3 tail to the enzyme active site
(178, 179); likewise, additional binding sites may be needed to
provide similar structural guidance to the H3K27M-like
sequence of EZHIP (76).

6.3 Chromatin Recruitment
Whereas the core subunits of PRC2 provide critical binding
surfaces to nucleosome core particles, functional domains of
some accessory subunits of PRC2 are known to interact with
linker DNAs and histone marks, which together dictate
chromatin targeting of PRC2. Importantly, recent cryo-EM
work reveals how AEBP2 and JARID2-containing PRC2.2
engages with a mononucleosome harboring the H2AK119ub
histone mark (157), representing a relatively complete
structural view of PRC2.2 at a functional state. In comparison,
PRC2.1 in the nucleosome-bound state remains less structurally
understood. The current knowledge on structural features
conferring chromatin binding by PRC2 is discussed below.

H3K36me3 and linker DNA binding by PHF1, MTF2, and
PHF19. H3K36me3 is specifically recognized by PHF1, MTF2,
and PHF19, with the trimethylated lysine accommodated in an
aromatic cage of the Tudor domain, which links PRC2 to
chromatin to possibly mediate de novo silencing of active genes
(Figure 7A) (154, 180–182). Disruption of the H3K36me3-
Tudor interaction in PHF19 and PHF1 hampers PRC2
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A
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D

C

FIGURE 7 | Structural analysis of chromatin binding by PRC2. Structural elements of PRC2 responsible for chromatin binding are analyzed. (A) Structure of MTF2
(Tudor–PHD1–PHD2–EH/WH) bound to CpG DNA and H3K36me3 (PDB 5XFR). Aromatic cage residues of the Tudor domain are shown as sticks and labeled. Two
lysine residues of the W1 loop of the EH/WH domain inserted into the DNA major groove are shown as sticks and labeled. (B) Structure of PRC2 bound to a
dinucleosome (PDB not available). Only the catalytic module is visible. Substrate and allosteric nucleosomes are labeled. Two major docking sites for nucleosomes,
EZH2(SBD)–EZH2(SANT1) and EZH2(CXC), are indicated. Histone H3 tail bound to the active site is shown as surface representation. (C) Structure of dimeric EZH1-
containing PRC2 bound to a mononucleosome (PDBs 7KTQ, 7KSR, and 7KTP). Subunits of one of the two PRC2 protomers are color-coded. (D) Structure of
AEBP2 and JARID2-containing PRC2.2 bound to a mononucleosome with H2AK119ub (PDB 6WKR). Functional domains are color-coded and labeled. The entire
histone H3 tail is ordered and shown as surface representation.
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recruitment during mESC differentiation and PHF1-mediated
DNA damage response, respectively (154, 180–182). Residue
H3K36 is found close to the binding interface between EZH2
and nucleosomal DNAs in a recent cryo-EM structure, where
H3K36 methylation is predicted to impair PRC2 enzymatic
activity allosterically (179, 183). How the Tudor domain of
PHF1 may contribute to H3K36me3-mediated PRC2 inhibition
remains to be elucidated (181). The EH/WH (extended
homology/winged-helix) domain of PHF1, MTF2, and PHF19
bind DNAs containing CpG dinucleotides, which directly
facilitates PRC2 targeting to CGI chromatin in mESCs
(Figure 7A) (184). Specifically, two lysine residues from the
conserved W1 loop of the EH/WH domain of PHF1 and MTF2
are inserted into the major groove of DNA, reading the
unmethylated CpG sequence content (Figure 7A) (184). In
contrast, the EH/WH domain of Drosophila PCL does not
seem to display sequence specificity towards DNA binding (185).

PRC2 binding to dinucleosomes and mononucleosome
binding to the PRC2 dimer. Bifunctional dinucleosomes, in
which a ‘substrate nucleosome ’ i s connected to a
trimethyllysine analog-containing ‘allosteric nucleosome’ via
a 30 base pair (bp), 35 bp, or 40 bp linker DNA, are captured
mostly engaged with the catalytic module of PRC2 (Figure 7B)
(178, 185). Different linker DNA lengths are accommodated by
variations of the allosteric nucleosome conformation and linker
DNA path, whereas substrate nucleosomes stay relatively static
(178). In addition to EED aromatic cage, a major binding
surface for the allosteric nucleosome is the SBD–SANT1
intramolecular complex; the substrate nucleosome contacts
the CXC domain of EZH2 such that H3K27 is brought to the
substrate-binding groove at the active site (Figure 7B) (178,
185). The accessory subunit-binding module of PRC2 also
appears to loosely associate with nucleosomes (178), although
its structure is difficult to resolve (178, 185). In another cryo-
EM structure, an EZH1-containing PRC2 dimer is found to
engage with opposite sides of a mononucleosome via similar
interacting surfaces used by the substrate nucleosome
mentioned above (Figure 7C) (186). The linker DNA exiting
the mononucleosome also contacts the accessory subunit-
binding module, through which the PRC2 dimer is formed
(Figure 7C) (142, 186). In line with its important role in CGI
DNA binding (142), PRC2 dimerization is also required for
chromatin compaction by EZH1-containing PRC2 (186).
Interestingly, AEBP2 and JARID2 present in the reconstituted
holo complex are visible only in the structure of a monomeric
form of PRC2.2 but not in the structure of the PRC2 dimer
(186), which is consistent with the previous observation that
AEBP2 binding disrupts the intrinsic PRC2 dimer (142).

PRC2.2 binding to nucleosomes bearing H2AK119ub. In
contrast to the traditional hierarchical recruitment model, in
which H3K27me3 added by PRC2 helps recruit PRC1 (112),
recent studies indicate that H2AK119ub deposited by PRC1 can
be critical for PRC2 recruitment by associating with AEBP2 and
JARID2 (187–190). This model is directly supported by the cryo-
EM structure of a PRC2.2 holo complex bound to a
mononucleosome with chemically installed H2AK119ub
Frontiers in Oncology | www.frontiersin.org 12
(Figure 7D) (157). Notably, the ubiquitin interaction (UI)
motif of JARID2 [JARID2(UI)] and zinc finger (Zn) domain of
AEBP2 [AEBP2(Zn)] are shown to independently interact with
the two copies of ubiquitin on the nucleosome (Figure 7D)
(157). A basic bridge (Br) helix of EZH2 [EZH2(Br)] is induced
to form in this context, bridging nucleosomal DNA and histone
H3 tail to the SET domain (Figure 7D) (157). The bridge helix is
also known to be disordered in the absence of the nucleosome
and become automethylated in the presence of SAM, leading to
PRC2 activation (191, 192).
7 CONCLUDING REMARKS

Recent years have witnessed substantial progress in understanding
the molecular basis of gene regulation by PRC2, which also sheds
light on relevant disease mechanisms and facilitates the
development of mechanism-based therapeutics. The number of
accessory subunits of PRC2 holo complexes is growing, new
modes of action of PRC2 are constantly revealed, and general
principles on the role of PRC2 in gene regulation in distinct
cellular contexts have started to emerge. Some central mechanistic
questions remain largely unanswered, such as those concerning
the molecular interplay between PRC2 and active transcription
machineries on promoters and enhancers, the architectural or
orchestrating role of PRC2 in the formation of high-order
chromatin structure, and the molecular nature and functional
consequence of the widespread PRC2–RNA interaction in cells.
Some aspects of PRC2 research are only briefly mentioned here
due to limited space but are no less important, such as
posttranslational modification of PRC2 components and
metabolic regulation of PRC2 activity. Finally, the structural
biology of PRC2 captured in various functional states will
continue to make critical contributions to the field by
connecting molecular structure to function.
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