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Abstract: Ursolic acid is a pharmacologically active pentacyclic triterpenoid derived from medicinal
plants, fruit, and vegetables. The pharmacological activities of ursolic acid have been extensively
studied over the past few years and various reports have revealed that ursolic acid has multiple
biological activities, which include anti-inflammatory, antioxidant, anti-cancer, etc. In terms of cancer
treatment, ursolic acid interacts with a number of molecular targets that play an essential role in many
cell signaling pathways. It suppresses transformation, inhibits proliferation, and induces apoptosis of
tumor cells. Although ursolic acid has many benefits, its therapeutic applications in clinical medicine
are limited by its poor bioavailability and absorption. To overcome such disadvantages, researchers
around the globe have designed and developed synthetic ursolic acid derivatives with enhanced
therapeutic effects by structurally modifying the parent skeleton of ursolic acid. These structurally
modified compounds display enhanced therapeutic effects when compared to ursolic acid. This
present review summarizes various synthesized derivatives of ursolic acid with anti-cancer activity
which were reported from 2015 to date.
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1. Introduction

At present, cancer remains a significant health problem and is the second leading cause of death
worldwide. The Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN) recently reported
that in 2018 about 18.1 million people were diagnosed with cancer and more than 9.6 million deaths
were reported due to cancer [1]. Made et al. indicated that by 2025, the number of people living with
cancer will increase [2]. In general terms, cancer is defined as a tumor resulting from the abnormal
proliferation of cells that can spread to various organs of the body. Most of the currently used treatment
includes the combination of chemotherapeutic agents, surgery, radiotherapy, or hormone therapy.
Despite the above treatment strategies, there are still many limitations associated with cancer treatment
such as multi-drug resistance, unselective targeting of the cancer cells, drug toxicity, etc. [3].

The shortage of suitable cancer chemopreventive procedures suitable for improving the therapeutic
outcomes during an anticancer treatment has motivated researchers around the world to test the
anticancer effect of biomolecules obtained from natural sources. Natural products are one of the main
sources of pharmacologically active compounds, and they are potentially useful for the development of
drugs. Generally, natural products are more environmentally friendly for frequent use when compared
to synthesized drugs [4]. Extensive research has been performed to study the therapeutic effect of
drugs derived from plants against a number of cancers, and the outstanding results indicate that
most natural active compounds have potent anticancer effects [5]. Natural compounds can inhibit
the formation and development of cancer by specifically interacting with multiple cell-signaling
pathways [6]. These properties make it possible to affect multiple cancer hallmarks [7]. As a result,
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about 74% of FDA-approved drugs are either natural products or natural product-derived [8]. Active
chemical compounds originally isolated from natural products contain some dominant structures
which can be modified to form new effective drugs [9].

A class of natural products called triterpenoids is among the most important group of
phytochemicals originally derived from plants, with approximately 20,000 chemical structures
confirmed so far [10]. Triterpenoids comprise six isoprene units with a basic molecular formula
(C30H48). In terms of biological perspectives, the large group of pentacyclic triterpenoids with basic
molecular structures with five membered rings have attracted the attention of many researchers due to
their notable broad spectrum of pharmacological activities including anticancer, anti-inflammatory,
antioxidant, antiviral, antimicrobial, etc. [11,12].

Ursolic acid (UA) 3-(β-hydroxy-urs-12-en-28-oic acid) is a ubiquitous pentacyclic compound that
possesses functional groups such as a carboxylic moiety at C28, β-hydroxy function at C3, and an
alkene at C12-C13. UA was first identified in the 1920s from the epicuticular waxes of apples [13,14]
and it has been isolated in recent years from many other plant organs. Some plant species containing
UA as an active constituent are listed in Table 1.

Table 1. Several plant species with (ursolic acid) UA constituent.

Plant Species (Family) Plant Parts Used Bioactivities Bibliography

Arctostaphylos uva-ursi
(L.) Spreng (Ericaceae) Leaves Antitumor, antibacterial [15,16]

Argania spinosa (L.)
Skeels (Sapotaceae) Fruits, leaves Antibacterial, antifungal [17,18]

Bouvardia ternifolia (Cav.)
Schltdl.

(Rubiaceae)
Aerial parts Anti-Alzheimer [19]

Bursera cuneata (Schldl.)
Engl (Burseraceae)

Aerial parts (stems and
leaves)

Anti-inflammatory,
antihistaminic [20]

Catharanthus roseus (L.) G.
Don (Apocynaceae) Leaves Anticancer [21]

Cornus mas (L.)
(Cornaceae) Fruits Antitumor [22]

Eriobotrya japonica
(Thunb.) Lindl

(Rosaceae)
Leaves

Anti-cancer,
anti-osteoclastic, skin

disorder
anti-inflammatory, and

anti-arthritic

[23–27]

Eucalyptus globulus
(Labill.) (Myrtaceae) Leaves, bark Antioxidant,

neuroprotective [28,29]

Fragrae fragrans (Roxb.)
(Gentianaceae) Leaves, fruits, bark Antimycobacterial [30]

Ilex aquifolium (L.)
(Aquifoliaceae) Leaves Anticancer, antimalarial,

antibacterial [31]

Lamium album (L.)
(Lamiaceae) Flowers Antioxidant and

anti-inflammatory [32]

Lantana Camara (L.)
(Verbenaceae) Leaves

Antifungal,
antiproliferative,

anti-diabetes, anxiolytic
[33–35]

Lepidozia chordulifera
(Dumort.) (Porellaceae) Leaves Antibacterial [36]

Ligustrum lucidum (Ait.)
(Oleaceae) Fruits Coronary heart disease

and diabetes [37,38]
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Table 1. Cont.

Plant Species (Family) Plant Parts Used Bioactivities Bibliography

Malus domestica (sp.)
(Rosaceae) Fruits, leaves Antioxidant [39]

Malus pumila (Mill.)
(Rosaceae) fruits Antitumor [40]

Ocimum forskolei
(Benth.) (Lamiaceae)

Aerial parts (leaves and
stems) Antiulcer [41]

Ocimum sanctum (L.)
(Lamiaceae) leaves

Induced arthritis,
antiproliferative,

anti-stress
[42–44]

Panax ginseng (C.A. Mey.)
Baill. (Araliaceae) Roots and rhizomes Anticancer, antiviral [45]

Paulownia tomentosa
(Thunb.) Steud.

(Scrophulariaceae)
Leaves Anticancer [46]

Prunella vulgaris (L.)
(Lamiaceae) Aerial parts Antiviral, antiestrogenic [47,48]

Psidium guajava (L.)
(Myrtaceae) Leaves Hypoglycaemic,

antimicrobial [49]

Rabdosia rubescens (Linn.)
(Lamiaceae) Anti-tumour Antitumor [50]

Rosmarinus officinalis (L.)
(Lamiaceae) Stems and leaves Antidepressant [51]

Sambucus australis (Cham.
& Schltdl.) (Adoxaceae) Aerial parts Antibacterial and

Antioxidant [52]

Saurauja roxburghii (Wall.)
(Dilleniaceae) Leaves Anticancer [53]

Thymus vulgaris (L.)
(Lamiaceae)

Aerial parts (stems and
leaves)

Anticancer,
cardiovascular,

antihyperlipidemic,
antioxidant, antifungal

[54–56]

Tribulus arabicus (Hosni.)
(Zygophyllaceae) Aerial parts Antihyperuricemic,

antioxidant [57,58]

Paulownia tomentos
(Thunb.) Steud.

(Scrophulariaceae)
Fruits Anticancer [46]

Punica granatum (Linn.)
(Punicaceae) Flowers Antioxidant, antidiabetic [59,60]

Uncaria rhynchophylla
(Gouteng.) (Rubiaceae) Stems and hooks Anticancer [61,62]

Vitex negundo (L.)
(Lamiaceae) Leaves

Antibacterial,
antifeedant against the

larvae
[63]

Ziziphus jujuba (Mill.)
(Rhamnaceae) Leaves Anticancer, anti-obesity,

and antioxidant [64]

UA possesses various interesting biological activities including anticancer, anti-inflammatory,
antimicrobial, antidiabetic properties etc. [65–68]. Some reports have extensively explored the
pharmacological properties of UA, as shown in Table 2. In terms of the anticancer properties, studies
have demonstrated that UA can modulate the cellular transcription factor; growth factor receptors;



Int. J. Mol. Sci. 2020, 21, 5920 4 of 27

cytokines inflammatory; and many other molecular targets which regulate the cell proliferation,
metastasis, apoptosis, angiogenesis, and autophagy of cancer cell lines through different mechanisms
and signaling pathways [69,70] The anticancer effects of UA have been reported for various types of
cancers such as endometrial [71,72], pancreatic [73,74], lung [75–77], prostate [78–80], ovarian [81,82],
bladder [83], gastric [84,85], and liver cancers [86]. Other UA molecular targets reported for the treatment
of cancer include its effect on p53 pathways [87–90]; the canonical pathway (Wnt/β-catenin) [91,92]; Ras
signaling [93]; and transcription pathways like nuclear factor kappa light chain enhancer of activated
B cells (NF-Kb) [94], Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) [95], and
the Signal transducer and activator of transcription 3 (STAT3) family of transcription factors [96–98].
Figure 1 below depicts the various molecular targets regulated by UA.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 28 
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The biopharmaceutical classification system (BCS) classified UA as a class IV drug with limited
pharmacological effect due to its low water solubility and difficulty in permeating some biological
membranes. Drugs in this class not only have slow dissolution but also have limited gastrointestinal
mucosa penetration, which results in their low oral bioavailability [99,100]. Due to the aforementioned
reasons, most researchers have developed some new strategies to enhance the biopharmaceutical
effect of UA via loading in nanoformulations or the structural modification of its structure. Chen et
al. reported various derivatives of UA with potential anticancer activities until 2015 [101]. The main
contents of the present review provide an update on reported UA derivatives with potential anticancer
activities reported over the last five years (2015–2020).

Table 2. Reports of ursolic acid’s significant pharmacological activities.

Sr. No. Pharmacological Activities Bibliography

1 Antioxidant [102–104]

2 Antibacterial [52,67,105–110]

3 Antifungal [111–117]

4 Anticancer [13,118–123]

5 Antidiabetic [34,124–128]

6 Anti-inflammatory [129–133]

7 Antiviral [134–136]
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2. An overview of Pharmacokinetics of UA and Its Derivatives

As mentioned earlier, UA is among the most studied triterpenoids and possesses a wide range
of pharmacological activities, but its poor water solubility hinders its efficacy and potential as
an appropriate therapeutic drug [137,138]. To overcome its poor water solubility, a number of
structure–activity relationships (SARs) of the synthesized derivatives have been studied. The structural
modification of UA is a suitable approach to enhance its pharmacokinetic profiles. UA and its
derivatives have numerous pharmacological activities and most of them have been extensively
screened and reviewed in recent published articles and reviews [101,138]. In terms of toxicity, UA and
its derivatives are safe phytochemical compounds with low toxicity. In vitro studies have revealed
the cytotoxic activity of UA and its derivatives on tumor cell lines and low cytotoxic effects against
normal cell lines [139,140]. Additionally, the in vivo toxicity analysis of UA in animals showed no
sign of toxicity in Kunming mice (0.2 mL/10 g) [141]. UA displayed a significant anticancer activity
in animal models in vivo [142,143]. Several studies have reported the pharmacokinetics of UA and
its derivatives in different animal models. Alzate and colleagues used Phoenix WinNonlin software
to determine the pharmacokinetic profile of UA administered to Wistar rats at different doses and
routes (i.e., 1 mg/kg intravenously and 20 and 50 mg/kg orally). The results indicated that the oral
bioavailability of UA was significantly different between the two groups that were administered UA
orally at doses of 20 mg/kg (2.8%) and 50 mg/kg (1.55%) [144].

Liao et al. developed and validated a rapid, sensitive, and accurate liquid chromatography–mass
spectrometry (LC–MS) method for the determination of ursolic acid in rat plasma. In this
procedure, rat plasma was acidified with acetic acid and then extracted with a mixture of
hexane-dichloromethane-2-propanol (20:10:1, v/v/v). This LC-MS method was successfully used
for pharmacokinetic studies after the oral administration of a Lu-Ying extract containing 80.32 mg/kg
UA to the rats [145]. Furthermore, UA was established as an internal standard to determine the
glycyrrhetic acid and gambogic acid in human plasma to determine their pharmacokinetics using
sensitive liquid chromatography-electrospray ionization-mass spectrometry (LC–ESI-MS) [146,147].
However, a study showed that, after the administration of a UA solution, liposome-loaded UA, or
chitosan-coated UA liposome (CS-UA-L) to mice models via the intra-gastric route, the content of UA
was high in the liver, spleen, and kidney for the group administered the UA solution when compared
to those administered with the UA liposome and CS-UA-L groups. However, a significantly greater
amount of UA was accumulated at the tumors for the mice treated with CS-UA-L, which was 4.2-
and 1.7-fold higher than those administered the UA solution and UA liposome groups, respectively.
CS-UA-L significantly and selectively accumulated in the tumor tissues [148].

Interestingly, UA-medoxomil (NX-201), a UA prodrug (a derivative of UA with a structural
modification of C-28 position) showed an improved bioavailability about 200 times better than UA in
a rodent model. According to an in vivo test performed with a human pancreatic cancer (PANC-1)
xenograft Severe Combined Immunodeficient (SCID) mouse model, the tumor growth rate decreased
in a dose-dependent approach and a 100 mg/kg dose of NX-201 had an anticancer effect comparable to
gemcitabine [149]. Despite the various reports on the pharmacokinetics of UA and its derivatives, there
are currently few clinical trials. UA has been loaded into liposomes and there are few reports [150–153].

Clinical Trials of UA

A few clinical trials have been conducted to assess the pharmacokinetics of various UA formulations
using both healthy volunteers and patients with different types of cancers. UA is currently undergoing
phase I trials to investigate its safety and adverse effects in patients.

Wang et al. investigated liposomal ursolic acid (LUA) pharmacokinetics, maximum tolerated dose
(MTD), and dose-limiting toxicity (DLT) in healthy adult volunteers and patients with advanced solid
tumors. A total of 63 subjects (i.e., 35 healthy volunteers, 24 adults, and 4 patients) received a single dose
of LUA (11, 22, 37, 56, 74, 98, and 130 mg/m2) administered as a 4 h intravenous infusion. The clinical
data indicated that LUA had low toxicity with a MTD of 98 mg/m2 [152]. Other studies demonstrated
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that incorporating UA into liposomes can increase the ceramide content of the human subject’s skin,
with an increase in the hydroxyl-ceramides appearing after three treatments [153]. Zhu et al. also
investigated the single and multiple-dose pharmacokinetics and the safety of UA nanoliposomes
(UANL) in 24 healthy volunteers and 8 patients with advanced solid tumors. The 24 healthy volunteers
were divided into three groups which received a single dose of 37, 74, and 98 mg/m2 of UANL. Eight
patients received multiple doses of 74 mg/m2 of UANL daily for 14 days. Ultra-performance liquid
chromatograph-tandem mass spectrometry was used to determine the UA plasma concentrations [150].
The UANL was found to be safe and showed apparent linear pharmacokinetics (PK) behavior for a
dose level ranging from 37 mg/m2 to 98 mg/m2. The repeated UANL administration indicated no drug
accumulation even with 14 days of continuous IV infusion. Patients with solid tumors and healthy
volunteers tolerated the IV infusion of UANL very well [150]. These studies clearly suggest that UA
has tremendous potential to be developed into a potent anticancer drug.

3. Chemistry of UA

The structure of a pentacyclic triterpenoid UA comprises C-30 isoprenoid; it has a low water
solubility but is highly soluble in alcoholic NaOH and glacial acetic acid. It is a white crystalline solid
with a melting point and molecular weight of 284 ◦C and 456.70,032 g/mol, respectively. Its maximum
UV absorption wavelength is ~450 nm [154].

3.1. UA Derivatives as an Anticancer Agent

Many researchers have studied various strategies to modify the molecular structure of UA and
simultaneously enhance its therapeutic effect. The structure of UA has been broken down into
functional groups or pharmacophores to classify the major active sites for structural modification
(Compound 1, Figure 2). These sites are broadly categorized as the carboxylic moiety (C-28), β-hydroxy
function (C-3), and an alkene at C12–C13. The sites have been extensively studied for their potential
anti-cancer activity. Some derivatives that are not identified in any of the aforementioned three
pharmacophores are separately categorized into miscellaneous groups. The following reports further
detailed the literature previously reported under these active sites and their successfully enhanced
anticancer activity.
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3.1.1. Modification of the Carboxylic Moiety (C-28)

Tian et al. synthesized a series of UA derivatives bearing diamine moieties at C-28 and investigated
their antiproliferative potential against three human cancer cell lines (MCF-7, HeLa, and A549). This
study was performed as a comparative analysis against the conventional antitumor drug, gefitinib. The
derivatives were prepared by first protecting the C3-OH via acetylation, followed by esterification with
2-hydroxyacetic acid at the C-28 position and amidation reaction with amines including piperazine,
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N-methylpiperazine and alkane-1, 6-diamines and alkane-1, 4-diamines and alkane-1, and 2-diamines,
as shown in Schemes 1 and 2. The half maximal inhibitory concentration (IC50) values for most of these
derivatives were significantly higher when compared to gefitinib. The study revealed that derivatives
containing primary amine moieties were more effective when compared to those with secondary or
tertiary amine moieties. The antiproliferative activities all of the secondary amines were more active
than those of the tertiary amine compounds. Compound 9a (Scheme 2, Table 3) showed a more potent
antiproliferative activity than other derivatives [155].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 28 
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A series of new derivatives of UA bearing oxadiazole, piperazine, and triazolone moieties was
designed by Chi et al. and they were evaluated for their anticancer activity as Hypoxia-inducible
factor-1α (HIF-1α) inhibitors. The in vitro results revealed that these derivatives had a significantly
enhanced antitumor activity by inhibiting the expression of HIF-1α. Compound 13b (Table 3)
demonstrated the best potent inhibitory effect against HIF-1α activity but was not cytotoxic to cancer
cells. These results indicated that the simple esterification of the UA carboxyl moiety can result in a
significantly enhanced inhibitory effect on HIF-1α activity and decreased toxicity. The mechanism of
action suggested that 13b can also suppress cell proliferation and block cell cycle progression in the G1
phase (Scheme 3) [156].
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Liu et al. synthesized a number of novel UA derivatives and evaluated their antitumor activities
against two human cancer cell lines—gastric cancer cells (MGC-803) and breast cancer cells (Bcap-37)
using an MTT assay in vitro [157]. These derivatives were obtained by reacting UA at C-28 with
1,2-dibromoethane, 1,3-dibromoethane, 1,4-dibromoethane, and butyl bromide in a solution of DMF
and K2CO3, followed by reaction with corresponding amines. Most of the derivatives exhibited
moderate to high inhibitory activities when compared to UA. The results illustrated that compound 14
(Table 3) induced cell apoptosis in MGC-803 cells.
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3.1.2. Modification of both β-hydroxy (C-3) and Carboxylic Moiety (C-28)

Hua et al. synthesized a series of new UA derivatives by incorporating piperazine and
thiourea at the C28 position and evaluated their in vitro cytotoxicity against selected cancer cell
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lines—namely HCT-116, T24, MGC-803, HepG2, and A549 cells and a normal cell line, HL-7702,
using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) assay. The in vitro
antiproliferative results suggested that most of the derivatives exhibited a potent inhibitory effect.
However, one compound displayed an excellent in vitro cytotoxicity on HepG2 cells with an IC50 value
of 5.40 µM and significantly induced apoptosis in the HeG2 cell line (compound 15, Table 4) [139].
Wiemann et al. designed a class of ursolic and oleanolic acid-derived hydroxamates in an attempt to
investigate their cytotoxicity, using sulforhodamine B (SRB) assays against several human cancer cell
lines (518A2, A2780, A549, FaDu, HT29, MCF-7, and NIH 3T3). The ursolic acid-based derivatives
containing at least an OH and NH moiety in the hydroxamate part displayed good cytotoxicity
and were significantly less selective to the cancer cells when compared to the oleanolic acid-based
compounds. The results showed that compound 16 (Table 4) was the most potent compound, with
IC50 values ranging from 2.5 to 6.4 µM [158].

Nedopekina et al. synthesized conjugates of triterpenoids UA and betulinic acid with the
triphenylphosphonium (TPP+) group; evaluated their cytotoxic activity against two human cancer cell
lines; and also studied their ability to induce programmed cancer cell death by employing markers of
apoptosis, including the activation of caspase-3, permeabilization of the outer mitochondrial membrane,
PARP-1 cleavage, the release of cytochrome c, and the inhibition of the mitochondrial respiratory chain.
Two of the conjugates derived from ursolic acid and betulinic acid indicated a good range of IC50

values. Compound 17 (Table 4) derived from UA was obtained by the alkylation of the carboxyl group,
C-28 of UA, with triethylene glycol dibromide in dimethylformamide (DMF) using K2CO3 at 50 ◦C for
3 h [159]. Jiang et al. synthesized a series of UA derivatives as inhibitors of Nuclear factor kappa B
(NF-κB) by introducing long-chain amide moieties at the C-28 position, and the β-hydroxy group C-3
was protected by an acetyl group. Their in vitro anticancer properties and Tumor necrosis factor alpha
(TNF-α-induced) NF-κB activation were evaluated against four human cancer cell lines, such as human
ovarian cancer cells (SKOV3), lung cancer cells (A549), liver cancer cells (HepG2), and bladder cancer
cells (T24). Several compounds exhibited considerable anticancer effects against different cancer cell
lines. Compound 18 (Table 4) demonstrated the highest potency by inhibiting the growth of SKOV3,
A549, HepG2, and T24 cells with IC50 values of 8.95, 5.22, 6.82, and 6.01 µM, respectively. The IC50

values were five-fold to eight-fold lower than the parent UA, and the results showed that compounds
with longer diamide side chains showed relatively enhanced activity compared to compounds with
shorter diamide side chains. A related mechanism study indicated that compound 18 caused cell
cycle arrest at the G1 phase and triggered apoptosis in A549 cells by blocking the NF-κB signaling
pathway [94].

Zhang et al. designed and synthesized UA-based tetrazole derivatives and studied their potential
antitumor effects as HIF-1α transcriptional inhibitors. Compound 19 was the most potent with (IC50 =

0.8 µM) (Table 4). This compound was prepared by mixing the corresponding anhydrides with UA in
a solution of trimethylamine and 4-dimethylaminopyridine (DMAP) in ice and stirred overnight at
room temperature; the intermediate compound was reacted with SOCl2 in refluxing dichloromethane
(DCM). The results suggest that introducing tetrazole at C-28 of UA increased the HIF-1α inhibitory
effect; additionally, the introduction of large groups at C-3 is disadvantageous for the synthesis of
effective HIF-1α inhibitors [160]. Kahnt et al. studied the ethylenediamine-spaced carboxamides of
UA and betulinic acid and further analyzed their cytotoxicity effects against human tumor cells (8505C,
A2780, MCF-7, HT29, NIH 3T3, and 518A2). The UA derivatives that demonstrated good in vitro
cytotoxicity effects were compounds 20, 21, and 22) [161].

Wang et al. evaluated the antiproliferative activity of UA derivatives containing thiazole, triazole,
tetrazolepiperazine, or homopiperazine moiety against two cancer cells, Hela and MKN45. Compound
23 (Table 4) displayed a superior antiproliferative activity on both cell lines and induced apoptosis via
the intrinsic mitochondrial pathway [162]. Meng et al. designed UA derivatives through multiple
synthetic steps and evaluated the synthesized compounds in vitro using an MTT assay on two cancer
cell lines (BEL7402 and SGC7901). The results showed a higher inhibitory rate of the synthesized
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compounds on both cells when compared to the parent compound, UA. The results of molecular
docking studies indicated the role of the structural design and optimization of UA. The most promising
derivative was compound 24, as shown in Table 4 [163].

Wolfram et al. converted pentacyclic triterpenoic acids—namely oleanolic, betulinic glycyrrhetinic,
boswellic, and ursolic acids—into their acetylated piperazinyl amides by coupling them with rhodamine
B. To evaluate their in vitro cytotoxicity, all the triterpene-homopiperazinyl-rhodamine derivatives
were subjected to RB assays and most of them were highly toxic against numerous human cancer cell
lines (A2780, A375, HT29, NiH3T3, MCF7, and SW1736). The ursolic acid-homopiperazinyl-rhodamine
derivative (Compound 25, Table 4) was one of the compounds that showed a strong cytotoxicity
against the tumor cell lines, while it was less cytotoxic on SW1736 cells [164]. Kahnt et al. synthesized
amine-spaced conjugates of UA and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA).
Two conjugates (Compound 26, 27, Table 4) displayed the highest cytotoxicity on A375 melanoma and
A2780 ovarian carcinoma, with IC50 values of 1.5 µM and 1.7 µM, respectively. Compound 26 induced
the death of A375 cells by apoptosis [165]. Mang et al. synthesized UA derivatives with potential
anticancer properties by modifying C-2, C-3, and C-28 and evaluated their in vitro cytotoxicity against
HepG2, BGC-823, and HeLa cell lines using an MTT assay These derivatives were synthesized by
reacting UA with Jones reagents in acetone and then with NH2-OH·HCl; the obtained compounds
were then reacted with Ac2O in the presence of DMAP in THF. The intermediate compound was
condensed with the relevant amino or phenolic moieties in Et3N to afford the targeted compounds.
Among these derivatives, Compounds 28 and 29 were demonstrated to be more effective on the cell
lines when compared to the reference drug, gefitinib [166].

Table 4. Modification of C-3 and C-28 positions.
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[165] 
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T24(6.01 ± 0.87)
A549(5.22 ± 0.65)

HepG2(6.82 ± 1.07)
SKOV3(8.95± 1.26)

T24(UA)37.88 ± 1.12
A549(UA)

HepG2(UA)
SKOV3(UA)

[94]
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Biological 
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Cell Lines 
Tested(IC50µM) 

Reference Molecules 
(IC50µM) 

Bibliogr
aphy 

15 
H3C O

O

 
OCH3

OCH3
OCH3

NHN
N

S

 

Cytotoxicity 

MGC-803 (9.82 ± 
0.29) 

HCT-116 (18.97 ± 
0.53) 

T24 (19.60 ± 0.43) 
HepG2 (15.72 ± 

0.84) 
A549 (20.79 ± 0.54) 

HL-7702 (˃100) 

MGC-803(UA) 27.08 ± 
0.29 

HCT-116(UA) 
38.78 ± 0.16 

T24(UA) 29.29 ± 0.80 
HepG2(UA) 30.21± 

0.58 
A549(UA) 35.79 ± 0.37 

HL-7702(˃100) 

[139] 

16 
H3C O

O

 
N

OH

H

 
Cytotoxicity 

518A2 (3.6 ± 0.1) 
A2780 (2.7 ± 0.1) 
A549 (3.9 ± 0.1) 
FaDu (6.4 ± 0.4) 
HT29 (3.5 ± 0.3) 

MCF-7 (3.3 ± 0.2) 
NIH 3T3 (2.5 ± 

0.6) 

518A2 (UA) 14.7 ± 0.1 
A2780 (UA) 11.7 ± 0.6 

A549 (UA) 
15.5 ± 1.3 

FaDu (UA) 14.2 ± 2.0 
HT29 (UA) 10.6 ± 0.3 

MCF-7 (UA) 12.7 ± 0.1 
NIH 3T3 (UA)18.7 ± 

1.6 

[158] 

Compound R1 R2
Biological
Activities

Cell Lines
Tested(IC50µM)

Reference Molecules
(IC50µM) Bibliography
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A375(0.51 ± 0.05) 
A2780(0.45 ± 0.03) 
HT29(0.50 ± 0.07) 
MCF7(0.39 ± 0.04) 

NiH3T3(0.40 ± 
0.03) 
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HT29(BA) 
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N
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O
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O

O

N

X = tBu
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A375(1.5 ± 0.4) 
A2780(1.9 ± 0.3) 
HT29 (5.7 ± 0.5) 
MCF-7(4.4 ± 0.7) 
FaDu (3.7 ± 0.6) 

NIH 3T3(4.6 ± 1.0) 

A375(UA) n.d. 
A2780(UA) 11.7 ± 0.6 
HT29 (UA) 10.6 ± 0.7 
MCF-7(UA) 12.7 ± 0.1 

FaDu (UA) n.d 

[165] 
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Hela (Cisplatin) 15.1 ± 
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A2780(0.45 ± 0.03) 
HT29(0.50 ± 0.07) 
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MCF-7(4.4 ± 0.7) 
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HT29 (UA) 10.6 ± 0.7 
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8505C(UA) 13.5 ± 1.5

NIH 3T3(UA) 18.7 ± 1.6
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FaDu (UA) n.d 
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A2780(UA) 11.7 ± 0.6
HT29(UA) 10.6 ± 0.7

MCF-7(UA) 12.7 ± 0.1
8505C(UA) 13.5 ± 1.5

NIH 3T3(UA) 18.7 ± 1.6

22

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 28 

 

17 Cl
O

O

Cl  O
P

Br

 

Cytotoxicity 
TET21N (0.81 ± 

0.08) 
MCF-7(1.59 ± 0.11) 

TET21N (˃10) 
MCF-7(˃25) 

[159] 

18 
H3C O

O

 

H
N

(CH2)6NH
OAc

OAc
AcO

O

 
 

T24(6.01 ± 0.87) 
A549(5.22 ± 0.65) 

HepG2(6.82 ± 
1.07) 

SKOV3(8.95± 1.26) 

T24(UA)37.88 ± 1.12 
A549(UA) 

HepG2(UA) 
SKOV3(UA) 

[94] 

19 
O

O

 N N
N

H
N

H
N

 
Anti-cancer HRE(0.8 ± 0.2) HRE (UA) > 100 [160] 

20 
H3C O

O

 
H
N

NH2  

Cytotoxicity 

518A2(2.7 ± 0.10) 
A2780(2.3 ± 0.10) 
HT29(1.8 ± 0.10) 

MCF-7(2.0 ± 0.10) 
8505C(4.1 ± 0.40) 

NIH3T3(2.6 ± 
0.30) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

[161] 21 
H3C O

O

 

H
N

N
NH  

518A2(3.2 ± 0.10) 
A2780(2.4 ±0.10) 
HT29(1.8 ± 0.20) 

MCF-7(2.7 ± 0.30) 
8505C(5.4 ± 0.40) 

NIH 3T3(2.2 ± 
0.10) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

22 
H3C O

O

 
H
N NH2  

518A2(2.7 ± 0.10) 
A2780(2.6 ± 0.10) 
HT29(1.7 ± 0.10) 

MCF-7(1.7 ± 0.10) 
8505C(3.2 ± 0.01) 
NIH 3T3 (1.3 ± 

0.20) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

23 
H3C O

O

 
O

N
N

F

 Cytotoxicity 
Hela (2.6 ± 1.1) 

MKN45(2.1 ± 0.3) 

Hela (Cisplatin) 15.1 ± 
0.9 

MKN45(Cisplatin) 2.8 
± 0.1 

[162] 

24 

HNN

Cl  

 Cytotoxicity 
BEL-7402 (4.49) 
SGC-7901(7.01) 

BEL-7402 (UA) >50 
SGC-7901(UA) >50 [163] 

25 
H3C O

O

 NN
O

OCl

NEt2

Et2N

O

 

Cytotoxicity 

A375(0.51 ± 0.05) 
A2780(0.45 ± 0.03) 
HT29(0.50 ± 0.07) 
MCF7(0.39 ± 0.04) 

NiH3T3(0.40 ± 
0.03) 

SW1736 (n.d) 

A375(BA) 
A2780(BA) 
HT29(BA) 
MCF7(BA) 

NiH3T3(BA) 
SW1736(BA) 

[164] 

26 
H3C O

O

 

N

N

N
N

N

XO
O

OX

O

OX
O

O

N

X = tBu

 

Cytotoxicity 

A375(1.5 ± 0.4) 
A2780(1.9 ± 0.3) 
HT29 (5.7 ± 0.5) 
MCF-7(4.4 ± 0.7) 
FaDu (3.7 ± 0.6) 

NIH 3T3(4.6 ± 1.0) 

A375(UA) n.d. 
A2780(UA) 11.7 ± 0.6 
HT29 (UA) 10.6 ± 0.7 
MCF-7(UA) 12.7 ± 0.1 

FaDu (UA) n.d 

[165] 

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 28 

 

17 Cl
O

O

Cl  O
P

Br

 

Cytotoxicity 
TET21N (0.81 ± 

0.08) 
MCF-7(1.59 ± 0.11) 

TET21N (˃10) 
MCF-7(˃25) 

[159] 

18 
H3C O

O

 

H
N

(CH2)6NH
OAc

OAc
AcO

O

 
 

T24(6.01 ± 0.87) 
A549(5.22 ± 0.65) 

HepG2(6.82 ± 
1.07) 

SKOV3(8.95± 1.26) 

T24(UA)37.88 ± 1.12 
A549(UA) 

HepG2(UA) 
SKOV3(UA) 

[94] 

19 
O

O

 N N
N

H
N

H
N

 
Anti-cancer HRE(0.8 ± 0.2) HRE (UA) > 100 [160] 

20 
H3C O

O

 
H
N

NH2  

Cytotoxicity 

518A2(2.7 ± 0.10) 
A2780(2.3 ± 0.10) 
HT29(1.8 ± 0.10) 

MCF-7(2.0 ± 0.10) 
8505C(4.1 ± 0.40) 

NIH3T3(2.6 ± 
0.30) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

[161] 21 
H3C O

O

 

H
N

N
NH  

518A2(3.2 ± 0.10) 
A2780(2.4 ±0.10) 
HT29(1.8 ± 0.20) 

MCF-7(2.7 ± 0.30) 
8505C(5.4 ± 0.40) 

NIH 3T3(2.2 ± 
0.10) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

22 
H3C O

O

 
H
N NH2  

518A2(2.7 ± 0.10) 
A2780(2.6 ± 0.10) 
HT29(1.7 ± 0.10) 

MCF-7(1.7 ± 0.10) 
8505C(3.2 ± 0.01) 
NIH 3T3 (1.3 ± 

0.20) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

23 
H3C O

O

 
O

N
N

F

 Cytotoxicity 
Hela (2.6 ± 1.1) 

MKN45(2.1 ± 0.3) 

Hela (Cisplatin) 15.1 ± 
0.9 

MKN45(Cisplatin) 2.8 
± 0.1 

[162] 

24 

HNN

Cl  

 Cytotoxicity 
BEL-7402 (4.49) 
SGC-7901(7.01) 

BEL-7402 (UA) >50 
SGC-7901(UA) >50 [163] 

25 
H3C O

O

 NN
O

OCl

NEt2

Et2N

O

 

Cytotoxicity 

A375(0.51 ± 0.05) 
A2780(0.45 ± 0.03) 
HT29(0.50 ± 0.07) 
MCF7(0.39 ± 0.04) 

NiH3T3(0.40 ± 
0.03) 

SW1736 (n.d) 

A375(BA) 
A2780(BA) 
HT29(BA) 
MCF7(BA) 

NiH3T3(BA) 
SW1736(BA) 

[164] 

26 
H3C O

O

 

N

N

N
N

N

XO
O

OX

O

OX
O

O

N

X = tBu

 

Cytotoxicity 

A375(1.5 ± 0.4) 
A2780(1.9 ± 0.3) 
HT29 (5.7 ± 0.5) 
MCF-7(4.4 ± 0.7) 
FaDu (3.7 ± 0.6) 

NIH 3T3(4.6 ± 1.0) 

A375(UA) n.d. 
A2780(UA) 11.7 ± 0.6 
HT29 (UA) 10.6 ± 0.7 
MCF-7(UA) 12.7 ± 0.1 

FaDu (UA) n.d 

[165] 

518A2(2.7 ± 0.10)
A2780(2.6 ± 0.10)
HT29(1.7 ± 0.10)

MCF-7(1.7 ± 0.10)
8505C(3.2 ± 0.01)

NIH 3T3 (1.3 ± 0.20)

518A2(UA) 14.7 ± 0.1
A2780(UA) 11.7 ± 0.6
HT29(UA) 10.6 ± 0.7

MCF-7(UA) 12.7 ± 0.1
8505C(UA) 13.5 ± 1.5

NIH 3T3(UA) 18.7 ± 1.6

23
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17 Cl
O

O

Cl  O
P

Br

 

Cytotoxicity 
TET21N (0.81 ± 

0.08) 
MCF-7(1.59 ± 0.11) 

TET21N (˃10) 
MCF-7(˃25) 

[159] 

18 
H3C O

O

 

H
N

(CH2)6NH
OAc

OAc
AcO

O

 
 

T24(6.01 ± 0.87) 
A549(5.22 ± 0.65) 

HepG2(6.82 ± 
1.07) 

SKOV3(8.95± 1.26) 

T24(UA)37.88 ± 1.12 
A549(UA) 

HepG2(UA) 
SKOV3(UA) 

[94] 

19 
O

O

 N N
N

H
N

H
N

 
Anti-cancer HRE(0.8 ± 0.2) HRE (UA) > 100 [160] 

20 
H3C O

O

 
H
N

NH2  

Cytotoxicity 

518A2(2.7 ± 0.10) 
A2780(2.3 ± 0.10) 
HT29(1.8 ± 0.10) 

MCF-7(2.0 ± 0.10) 
8505C(4.1 ± 0.40) 

NIH3T3(2.6 ± 
0.30) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

[161] 21 
H3C O

O

 

H
N

N
NH  

518A2(3.2 ± 0.10) 
A2780(2.4 ±0.10) 
HT29(1.8 ± 0.20) 

MCF-7(2.7 ± 0.30) 
8505C(5.4 ± 0.40) 

NIH 3T3(2.2 ± 
0.10) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

22 
H3C O

O

 
H
N NH2  

518A2(2.7 ± 0.10) 
A2780(2.6 ± 0.10) 
HT29(1.7 ± 0.10) 

MCF-7(1.7 ± 0.10) 
8505C(3.2 ± 0.01) 
NIH 3T3 (1.3 ± 

0.20) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

23 
H3C O

O

 
O

N
N

F

 Cytotoxicity 
Hela (2.6 ± 1.1) 

MKN45(2.1 ± 0.3) 

Hela (Cisplatin) 15.1 ± 
0.9 

MKN45(Cisplatin) 2.8 
± 0.1 

[162] 

24 

HNN

Cl  

 Cytotoxicity 
BEL-7402 (4.49) 
SGC-7901(7.01) 

BEL-7402 (UA) >50 
SGC-7901(UA) >50 [163] 

25 
H3C O

O

 NN
O

OCl

NEt2

Et2N

O

 

Cytotoxicity 

A375(0.51 ± 0.05) 
A2780(0.45 ± 0.03) 
HT29(0.50 ± 0.07) 
MCF7(0.39 ± 0.04) 

NiH3T3(0.40 ± 
0.03) 

SW1736 (n.d) 

A375(BA) 
A2780(BA) 
HT29(BA) 
MCF7(BA) 

NiH3T3(BA) 
SW1736(BA) 

[164] 

26 
H3C O

O

 

N

N

N
N

N

XO
O

OX

O

OX
O

O

N

X = tBu

 

Cytotoxicity 

A375(1.5 ± 0.4) 
A2780(1.9 ± 0.3) 
HT29 (5.7 ± 0.5) 
MCF-7(4.4 ± 0.7) 
FaDu (3.7 ± 0.6) 

NIH 3T3(4.6 ± 1.0) 

A375(UA) n.d. 
A2780(UA) 11.7 ± 0.6 
HT29 (UA) 10.6 ± 0.7 
MCF-7(UA) 12.7 ± 0.1 

FaDu (UA) n.d 

[165] 
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17 Cl
O

O

Cl  O
P

Br

 

Cytotoxicity 
TET21N (0.81 ± 

0.08) 
MCF-7(1.59 ± 0.11) 

TET21N (˃10) 
MCF-7(˃25) 

[159] 

18 
H3C O

O

 

H
N

(CH2)6NH
OAc

OAc
AcO

O

 
 

T24(6.01 ± 0.87) 
A549(5.22 ± 0.65) 

HepG2(6.82 ± 
1.07) 

SKOV3(8.95± 1.26) 

T24(UA)37.88 ± 1.12 
A549(UA) 

HepG2(UA) 
SKOV3(UA) 

[94] 

19 
O

O

 N N
N

H
N

H
N

 
Anti-cancer HRE(0.8 ± 0.2) HRE (UA) > 100 [160] 

20 
H3C O

O

 
H
N

NH2  

Cytotoxicity 

518A2(2.7 ± 0.10) 
A2780(2.3 ± 0.10) 
HT29(1.8 ± 0.10) 

MCF-7(2.0 ± 0.10) 
8505C(4.1 ± 0.40) 

NIH3T3(2.6 ± 
0.30) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

[161] 21 
H3C O

O

 

H
N

N
NH  

518A2(3.2 ± 0.10) 
A2780(2.4 ±0.10) 
HT29(1.8 ± 0.20) 

MCF-7(2.7 ± 0.30) 
8505C(5.4 ± 0.40) 

NIH 3T3(2.2 ± 
0.10) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

22 
H3C O

O

 
H
N NH2  

518A2(2.7 ± 0.10) 
A2780(2.6 ± 0.10) 
HT29(1.7 ± 0.10) 

MCF-7(1.7 ± 0.10) 
8505C(3.2 ± 0.01) 
NIH 3T3 (1.3 ± 

0.20) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

23 
H3C O

O

 
O

N
N

F

 Cytotoxicity 
Hela (2.6 ± 1.1) 

MKN45(2.1 ± 0.3) 

Hela (Cisplatin) 15.1 ± 
0.9 

MKN45(Cisplatin) 2.8 
± 0.1 

[162] 

24 

HNN

Cl  

 Cytotoxicity 
BEL-7402 (4.49) 
SGC-7901(7.01) 

BEL-7402 (UA) >50 
SGC-7901(UA) >50 [163] 

25 
H3C O

O

 NN
O

OCl

NEt2

Et2N

O

 

Cytotoxicity 

A375(0.51 ± 0.05) 
A2780(0.45 ± 0.03) 
HT29(0.50 ± 0.07) 
MCF7(0.39 ± 0.04) 

NiH3T3(0.40 ± 
0.03) 

SW1736 (n.d) 

A375(BA) 
A2780(BA) 
HT29(BA) 
MCF7(BA) 

NiH3T3(BA) 
SW1736(BA) 

[164] 

26 
H3C O

O

 

N

N

N
N

N

XO
O

OX

O

OX
O

O

N

X = tBu

 

Cytotoxicity 

A375(1.5 ± 0.4) 
A2780(1.9 ± 0.3) 
HT29 (5.7 ± 0.5) 
MCF-7(4.4 ± 0.7) 
FaDu (3.7 ± 0.6) 

NIH 3T3(4.6 ± 1.0) 

A375(UA) n.d. 
A2780(UA) 11.7 ± 0.6 
HT29 (UA) 10.6 ± 0.7 
MCF-7(UA) 12.7 ± 0.1 

FaDu (UA) n.d 

[165] 

Cytotoxicity Hela (2.6 ± 1.1)
MKN45(2.1 ± 0.3)

Hela (Cisplatin) 15.1 ± 0.9
MKN45(Cisplatin) 2.8 ±

0.1
[162]
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17 Cl
O

O

Cl  O
P

Br

 

Cytotoxicity 
TET21N (0.81 ± 

0.08) 
MCF-7(1.59 ± 0.11) 

TET21N (˃10) 
MCF-7(˃25) 

[159] 

18 
H3C O

O

 

H
N

(CH2)6NH
OAc

OAc
AcO

O

 
 

T24(6.01 ± 0.87) 
A549(5.22 ± 0.65) 

HepG2(6.82 ± 
1.07) 

SKOV3(8.95± 1.26) 

T24(UA)37.88 ± 1.12 
A549(UA) 

HepG2(UA) 
SKOV3(UA) 

[94] 

19 
O

O

 N N
N

H
N

H
N

 
Anti-cancer HRE(0.8 ± 0.2) HRE (UA) > 100 [160] 

20 
H3C O

O

 
H
N

NH2  

Cytotoxicity 

518A2(2.7 ± 0.10) 
A2780(2.3 ± 0.10) 
HT29(1.8 ± 0.10) 

MCF-7(2.0 ± 0.10) 
8505C(4.1 ± 0.40) 

NIH3T3(2.6 ± 
0.30) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

[161] 21 
H3C O

O

 

H
N

N
NH  

518A2(3.2 ± 0.10) 
A2780(2.4 ±0.10) 
HT29(1.8 ± 0.20) 

MCF-7(2.7 ± 0.30) 
8505C(5.4 ± 0.40) 

NIH 3T3(2.2 ± 
0.10) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

22 
H3C O

O

 
H
N NH2  

518A2(2.7 ± 0.10) 
A2780(2.6 ± 0.10) 
HT29(1.7 ± 0.10) 

MCF-7(1.7 ± 0.10) 
8505C(3.2 ± 0.01) 
NIH 3T3 (1.3 ± 

0.20) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

23 
H3C O

O

 
O

N
N

F

 Cytotoxicity 
Hela (2.6 ± 1.1) 

MKN45(2.1 ± 0.3) 

Hela (Cisplatin) 15.1 ± 
0.9 

MKN45(Cisplatin) 2.8 
± 0.1 

[162] 

24 

HNN

Cl  

 Cytotoxicity 
BEL-7402 (4.49) 
SGC-7901(7.01) 

BEL-7402 (UA) >50 
SGC-7901(UA) >50 [163] 

25 
H3C O

O

 NN
O

OCl

NEt2

Et2N

O

 

Cytotoxicity 

A375(0.51 ± 0.05) 
A2780(0.45 ± 0.03) 
HT29(0.50 ± 0.07) 
MCF7(0.39 ± 0.04) 

NiH3T3(0.40 ± 
0.03) 

SW1736 (n.d) 

A375(BA) 
A2780(BA) 
HT29(BA) 
MCF7(BA) 

NiH3T3(BA) 
SW1736(BA) 

[164] 

26 
H3C O

O

 

N

N

N
N

N

XO
O

OX

O

OX
O

O

N

X = tBu

 

Cytotoxicity 

A375(1.5 ± 0.4) 
A2780(1.9 ± 0.3) 
HT29 (5.7 ± 0.5) 
MCF-7(4.4 ± 0.7) 
FaDu (3.7 ± 0.6) 

NIH 3T3(4.6 ± 1.0) 

A375(UA) n.d. 
A2780(UA) 11.7 ± 0.6 
HT29 (UA) 10.6 ± 0.7 
MCF-7(UA) 12.7 ± 0.1 

FaDu (UA) n.d 

[165] 
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17 Cl
O

O

Cl  O
P

Br

 

Cytotoxicity 
TET21N (0.81 ± 

0.08) 
MCF-7(1.59 ± 0.11) 

TET21N (˃10) 
MCF-7(˃25) 

[159] 

18 
H3C O

O

 

H
N

(CH2)6NH
OAc

OAc
AcO

O

 
 

T24(6.01 ± 0.87) 
A549(5.22 ± 0.65) 

HepG2(6.82 ± 
1.07) 

SKOV3(8.95± 1.26) 

T24(UA)37.88 ± 1.12 
A549(UA) 

HepG2(UA) 
SKOV3(UA) 

[94] 

19 
O

O

 N N
N

H
N

H
N

 
Anti-cancer HRE(0.8 ± 0.2) HRE (UA) > 100 [160] 

20 
H3C O

O

 
H
N

NH2  

Cytotoxicity 

518A2(2.7 ± 0.10) 
A2780(2.3 ± 0.10) 
HT29(1.8 ± 0.10) 

MCF-7(2.0 ± 0.10) 
8505C(4.1 ± 0.40) 

NIH3T3(2.6 ± 
0.30) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

[161] 21 
H3C O

O

 

H
N

N
NH  

518A2(3.2 ± 0.10) 
A2780(2.4 ±0.10) 
HT29(1.8 ± 0.20) 

MCF-7(2.7 ± 0.30) 
8505C(5.4 ± 0.40) 

NIH 3T3(2.2 ± 
0.10) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

22 
H3C O

O

 
H
N NH2  

518A2(2.7 ± 0.10) 
A2780(2.6 ± 0.10) 
HT29(1.7 ± 0.10) 

MCF-7(1.7 ± 0.10) 
8505C(3.2 ± 0.01) 
NIH 3T3 (1.3 ± 

0.20) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

23 
H3C O

O

 
O

N
N

F

 Cytotoxicity 
Hela (2.6 ± 1.1) 

MKN45(2.1 ± 0.3) 

Hela (Cisplatin) 15.1 ± 
0.9 

MKN45(Cisplatin) 2.8 
± 0.1 

[162] 

24 

HNN

Cl  

 Cytotoxicity 
BEL-7402 (4.49) 
SGC-7901(7.01) 

BEL-7402 (UA) >50 
SGC-7901(UA) >50 [163] 

25 
H3C O

O

 NN
O

OCl

NEt2

Et2N

O

 

Cytotoxicity 

A375(0.51 ± 0.05) 
A2780(0.45 ± 0.03) 
HT29(0.50 ± 0.07) 
MCF7(0.39 ± 0.04) 

NiH3T3(0.40 ± 
0.03) 

SW1736 (n.d) 

A375(BA) 
A2780(BA) 
HT29(BA) 
MCF7(BA) 

NiH3T3(BA) 
SW1736(BA) 

[164] 

26 
H3C O

O

 

N

N

N
N

N

XO
O

OX

O

OX
O

O

N

X = tBu

 

Cytotoxicity 

A375(1.5 ± 0.4) 
A2780(1.9 ± 0.3) 
HT29 (5.7 ± 0.5) 
MCF-7(4.4 ± 0.7) 
FaDu (3.7 ± 0.6) 

NIH 3T3(4.6 ± 1.0) 

A375(UA) n.d. 
A2780(UA) 11.7 ± 0.6 
HT29 (UA) 10.6 ± 0.7 
MCF-7(UA) 12.7 ± 0.1 

FaDu (UA) n.d 

[165] 

Cytotoxicity BEL-7402 (4.49)
SGC-7901(7.01)

BEL-7402 (UA) >50
SGC-7901(UA) >50 [163]

25
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17 Cl
O

O

Cl  O
P

Br

 

Cytotoxicity 
TET21N (0.81 ± 

0.08) 
MCF-7(1.59 ± 0.11) 

TET21N (˃10) 
MCF-7(˃25) 

[159] 

18 
H3C O

O

 

H
N

(CH2)6NH
OAc

OAc
AcO

O

 
 

T24(6.01 ± 0.87) 
A549(5.22 ± 0.65) 

HepG2(6.82 ± 
1.07) 

SKOV3(8.95± 1.26) 

T24(UA)37.88 ± 1.12 
A549(UA) 

HepG2(UA) 
SKOV3(UA) 

[94] 

19 
O

O

 N N
N

H
N

H
N

 
Anti-cancer HRE(0.8 ± 0.2) HRE (UA) > 100 [160] 

20 
H3C O

O

 
H
N

NH2  

Cytotoxicity 

518A2(2.7 ± 0.10) 
A2780(2.3 ± 0.10) 
HT29(1.8 ± 0.10) 

MCF-7(2.0 ± 0.10) 
8505C(4.1 ± 0.40) 

NIH3T3(2.6 ± 
0.30) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

[161] 21 
H3C O

O

 

H
N

N
NH  

518A2(3.2 ± 0.10) 
A2780(2.4 ±0.10) 
HT29(1.8 ± 0.20) 

MCF-7(2.7 ± 0.30) 
8505C(5.4 ± 0.40) 

NIH 3T3(2.2 ± 
0.10) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

22 
H3C O

O

 
H
N NH2  

518A2(2.7 ± 0.10) 
A2780(2.6 ± 0.10) 
HT29(1.7 ± 0.10) 

MCF-7(1.7 ± 0.10) 
8505C(3.2 ± 0.01) 
NIH 3T3 (1.3 ± 

0.20) 

518A2(UA) 14.7 ± 0.1 
A2780(UA) 11.7 ± 0.6 
HT29(UA) 10.6 ± 0.7 

MCF-7(UA) 12.7 ± 0.1 
8505C(UA) 13.5 ± 1.5 
NIH 3T3(UA) 18.7 ± 

1.6 

23 
H3C O

O

 
O

N
N

F

 Cytotoxicity 
Hela (2.6 ± 1.1) 

MKN45(2.1 ± 0.3) 

Hela (Cisplatin) 15.1 ± 
0.9 

MKN45(Cisplatin) 2.8 
± 0.1 

[162] 

24 

HNN

Cl  

 Cytotoxicity 
BEL-7402 (4.49) 
SGC-7901(7.01) 

BEL-7402 (UA) >50 
SGC-7901(UA) >50 [163] 

25 
H3C O

O

 NN
O

OCl

NEt2

Et2N

O

 

Cytotoxicity 

A375(0.51 ± 0.05) 
A2780(0.45 ± 0.03) 
HT29(0.50 ± 0.07) 
MCF7(0.39 ± 0.04) 

NiH3T3(0.40 ± 
0.03) 

SW1736 (n.d) 

A375(BA) 
A2780(BA) 
HT29(BA) 
MCF7(BA) 

NiH3T3(BA) 
SW1736(BA) 

[164] 

26 
H3C O

O

 

N

N

N
N

N

XO
O

OX

O

OX
O

O

N

X = tBu

 

Cytotoxicity 

A375(1.5 ± 0.4) 
A2780(1.9 ± 0.3) 
HT29 (5.7 ± 0.5) 
MCF-7(4.4 ± 0.7) 
FaDu (3.7 ± 0.6) 

NIH 3T3(4.6 ± 1.0) 

A375(UA) n.d. 
A2780(UA) 11.7 ± 0.6 
HT29 (UA) 10.6 ± 0.7 
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HeLa(13.8) 
HepG2(23.7) 

BGC-823(9.15) 

n.d = not determined. BA = Betulinic acid. 

3.1.3. Modification of β-Hydroxy (C-3 Position) 

Fontana et al. synthesized derivatives of UA and oleanolic acid with a modified oxidation state 
and lipophilicity at C-3 and C-28 positions which were screened in vitro on hepatocarcinoma cell 
lines—namely HepG2, HA22T/VGH, and Hep3B. UA derivatives containing three carbons as the side 
chain at the C-3 position of UA were synthesized in stereoisomeric forms using the Barbier–Grignard 
method and (Compounds 30 and 31, Table 5) were found to be effective against all three cancer cell 
lines; these compounds inhibited cell growth and induced the inhibition of NF-κB activation in the 
cell lines [167]. 

Xu et al. isolated triterpenoids from the acorn-starch/licorice and reacted them with 3,4,5-
methoxybenzoic acid under dicyclohexyl carbodiimide (DCC)/DMAP conditions and evaluated their 
cytotoxicity in four cells, including A-549, MCF-7, H1975, and BGC-823. Most of the synthesized 
compounds indicated a significant cytotoxic activity in all the four cell lines and a lower toxicity in 
the normal cells, Human Hair Dermal Papilla Cells (HHDPC) when compared to the positive control, 
mitomycin C. The UA derivative containing 3,4,5-methoxy-phenacyl at the C-3 position (compound 
32, Figure 3, Table 5) was the derivative with a significant antiproliferative effect, with IC50 values in 
the range of 6.07–22.27 µM [140]. 
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3.1.3. Modification of β-Hydroxy (C-3 Position)

Fontana et al. synthesized derivatives of UA and oleanolic acid with a modified oxidation state
and lipophilicity at C-3 and C-28 positions which were screened in vitro on hepatocarcinoma cell
lines—namely HepG2, HA22T/VGH, and Hep3B. UA derivatives containing three carbons as the side
chain at the C-3 position of UA were synthesized in stereoisomeric forms using the Barbier–Grignard
method and (Compounds 30 and 31, Table 5) were found to be effective against all three cancer cell
lines; these compounds inhibited cell growth and induced the inhibition of NF-κB activation in the cell
lines [167].

Xu et al. isolated triterpenoids from the acorn-starch/licorice and reacted them with
3,4,5-methoxybenzoic acid under dicyclohexyl carbodiimide (DCC)/DMAP conditions and evaluated
their cytotoxicity in four cells, including A-549, MCF-7, H1975, and BGC-823. Most of the synthesized
compounds indicated a significant cytotoxic activity in all the four cell lines and a lower toxicity in
the normal cells, Human Hair Dermal Papilla Cells (HHDPC) when compared to the positive control,
mitomycin C. The UA derivative containing 3,4,5-methoxy-phenacyl at the C-3 position (compound 32,
Figure 3, Table 5) was the derivative with a significant antiproliferative effect, with IC50 values in the
range of 6.07–22.27 µM [140].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 13 of 28 
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Table 5. Modification of β-hydroxy (C-3).

Compound Biological
Activity Cell Lines Tested (IC50µM) Reference Molecules (IC50µM) Bibliography

30 Cytotoxicity
HA22T/VGH(31.0 ± 1.5)

HepG2(28.0 ± 2.0)
Hep3B(32.5 ± 2.5)

HA22T/VGH(UA) > 100
HepG2(UA) > 100
Hep3B(UA) > 100

[167]

31 Cytotoxicity
HA22T/VGH(31.0 ±1.5)

HepG2(28.0 ± 2.0)
Hep3B(32.5 ± 2.5)

HA22T/VGH(UA) >100
HepG2(UA) > 100
Hep3B(UA) > 100

[167]

n.d = not determined.



Int. J. Mol. Sci. 2020, 21, 5920 13 of 27

Table 5. Cont.

Compound Biological
Activity Cell Lines Tested (IC50µM) Reference Molecules (IC50µM) Bibliography

32 Cytotoxicity

A549 (6.07 ± 0.91)
H1975(10.64 ± 1.94)
MCF-7(22.27± 3.51)

BGC-823 (17.10 ± 1.04)
t-HSC/Cl-6 (29.12 ± 3.71)

A549 (mitomycin C) 28.14 ± 3.41
H1975(mitomycin C) 34.51 ± 3.06
MCF-7(mitomycin C) 44.08 ± 4.01

BGC-823 (mitomycin C) 37.94 ± 2.88
t-HSC/Cl-6 (mitomycin C) n.d

[140]

n.d = not determined.

3.1.4. Modification of Miscellaneous Groups

Wu et al. synthesized UA derivatives bearing an aminoguanidine moiety and investigated them as
HIF-1α inhibitors and anticancer agents in human cancer cell lines. The majority of these compounds
showed a potent inhibition of the HIF-1α transcriptional effect; among these derivatives, compound
35b (Scheme 4) was found to be the most potent inhibitor of HIF-1α expression in hypoxic conditions
(IC50 4.0 µM), with no significant cytotoxicity noted against any cell lines tested [168].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 14 of 28 
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Mendes et al. synthesized ring-A-cleaved UA derivatives and evaluated their antiproliferative 
activity against three lung cancer cell lines—namely H460, H322, and H460+/+—using 2D or 3D culture 
models. Three of these newly designed UA derivatives bearing a cleaved ring-A with a secondary 
amide at C-3 (compounds 43a–c, Scheme 6) demonstrated significantly enhanced antiproliferative 
effects in the 2D systems. These compounds possessed a potent anticancer activity and the 

Scheme 4. Synthesis of compounds 33–35. Reagents and conditions: (a) Jones reagent acetone, 0 ◦C, 5
h, 90%; (b) Aldehydes, 5% NaOH, absolute EtOH, r.t 2 h, 30–75%; (c) 37% HCl, absolute EtOH, reflux, 8
h, 34–65%.

Gu et al. designed and synthesized a series of new ursolic acid-based derivatives through the
conjugation of UA with quinolone and oxadiazole motifs and investigated their anticancer activity.
These compounds were investigated in vitro on human cancer cell lines-namely MDA-MB-231, Hela,
and SMMC-7721, and the results indicated that compounds 36–38 exhibited a strong growth inhibitory
effect against the three cancer cell lines. Among these derivatives, compound 38b exhibited the most
potent antitumor activity, with IC50 values of 0.61 ± 0.07 (MDA-MB-231), 0.36 ± 0.05 (HeLa), and 12.49
± 0.08 µM (SMMC-7721) when compared to the positive control, etoposide [169] (Scheme 5).
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Scheme 5. Synthesis of compounds 36–38. Reagents and conditions: (a) Jones reagent acetone, 0 ◦C, 5
h; (b) EtOH, substituted o-amino benzaldehyde, KOH, reflux under N2 atmosphere for 24 h.

Mendes et al. synthesized ring-A-cleaved UA derivatives and evaluated their antiproliferative
activity against three lung cancer cell lines—namely H460, H322, and H460+/+—using 2D or 3D culture
models. Three of these newly designed UA derivatives bearing a cleaved ring-A with a secondary
amide at C-3 (compounds 43a–c, Scheme 6) demonstrated significantly enhanced antiproliferative
effects in the 2D systems. These compounds possessed a potent anticancer activity and the preliminary
mechanism of action showed that compound 43c induced apoptosis through the activation of caspase-7
and caspase-8 and the decrease in Bcl-2 [170].
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Scheme 6. Reagents and conditions: (a) Selectfluor®, dioxane, nitromethane, 80 ◦C, 24 h; (b) Jones
reagent, acetone, ice; (c) m-CPBA 77%, CHCl3, r.t., 120 h; (d) p-toluenesulfonic acid monohydrate,
CH2Cl2, r.t., 24 h; (e) R2NH2, dry THF, Et3N, T3P (50 wt% in THF), ice.

Borkoa et al. synthesized the novel triterpenic derivatives of dihydrobetulonic, betulonic, and
ursonic acid. All of these compounds were tested for their in vitro cytotoxic activity against human
cancer cell lines—namely CCRF-CEM, CEM-DNR, HCT116, HCT116 p53−/−, K562, K562-TAX, A549,
U2OS, and two noncancerous fibroblasts such as BJ and MRC-5. Compounds 45 and 46 were the most
effective on the CCRF-CEM cell lines and less toxic in non-cancerous fibroblasts. These derivatives
triggered apoptosis via the intrinsic pathways. The ursonic acid derivative 45 was synthesized by the
bromination of UA using copper (II) bromide in a solution of ethyl acetate (EtOAc) and methanol
(MeOH) at room temperature. Compound 46 was obtained by the nucleophilic substitution of
bromoketone 43 by potassium thiocyanate (KSCN) in DMSO at 90 ◦C, as shown in Scheme 7 [171].
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Fan and colleagues synthesized UA hybrid compound 49 (Scheme 8) by reacting UA with Jones
reagent at 0 ◦C in dimethyl ketone to obtain a C-3 oxidized derivative. The oxidized compound
was then reacted with benzaldehyde using ethanolic potassium hydroxide (KOH) via the Claisen
Schmidt condensation reaction at room temperature to achieve a benzylidine hybrid compound. The
benzylidine compound was then reacted with an indole and substituted with a benzaldehyde in EtOAc
at room temperature for 2 h to achieve compound 49. The anticancer potential of the compound against
glioma cells was studied. The compound demonstrated a good inhibition of cell proliferation and
induced apoptosis when compared to the parent compound, UA [172].

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 16 of 28 

 

compound against glioma cells was studied. The compound demonstrated a good inhibition of cell 
proliferation and induced apoptosis when compared to the parent compound, UA [172]. 

O

R

O

O

R

O

O

R

R
CrO3,HOSO4

Ace,98%

CHO
R

R

KOH,MeOH,rt, 92%

R

OHC

Br

H
N

L-proline

O

O

R

N
H

R

R
Br

R = OH

UA
47 48

49  

Scheme 8. Synthesis of UA hybrid compounds. 

An aromatic heterocyclic compound containing carbazole has attracted attention due its 
potential anticancer activity [173]. Gu et al. synthesized a series of carbazole derivatives of UA. 
Among these derivatives, compound 50 (Figure 4) showed a significant cytotoxic activity against the 
hepatocarcinoma cell line, HepG2, with an IC50 value of 1.26 ± 0.17 µM [174]. Zhang et al. employed 
the biotransformation of UA by Mucor spinosus AS 3.3450, and three novel compounds were isolated. 
Compound 51 (Figure 4), identified as 3β, 7β-dihydroxy-ursolic acid-28-etha-none indicated a 
stronger cytotoxic activity against the tumor cell lines (Hela, K562, and KB) when compared to the 
parent compound UA [175]. A number of NO-donating ursolic acid-based benzylidene derivatives 
with various substitutions were synthesized by Zhang et al. They were further analyzed for their in 
vitro cytotoxicity against the HepG-2, MCF-7, HT-29, and A549 cancer cell lines. Most of these 
derivatives revealed a weaker inhibitory effect when compared to UA; compound 52 (Figure 4) 
showed the most potent activity against HT-29 (IC50 = 4.28 µM). The further investigation of its 
anticancer mode of action revealed that it induced the apoptosis of HT-29 cell lines in a dose-
dependent manner and indicated cell cycle arrest at the G1 phase, which led to cell apoptosis and 
also induced apoptosis via the mitochondria-mediated pathways [176]. 

Scheme 8. Synthesis of UA hybrid compounds.

An aromatic heterocyclic compound containing carbazole has attracted attention due its potential
anticancer activity [173]. Gu et al. synthesized a series of carbazole derivatives of UA. Among these
derivatives, compound 50 (Figure 4) showed a significant cytotoxic activity against the hepatocarcinoma
cell line, HepG2, with an IC50 value of 1.26± 0.17µM [174]. Zhang et al. employed the biotransformation
of UA by Mucor spinosus AS 3.3450, and three novel compounds were isolated. Compound 51 (Figure 4),
identified as 3β, 7β-dihydroxy-ursolic acid-28-etha-none indicated a stronger cytotoxic activity against
the tumor cell lines (Hela, K562, and KB) when compared to the parent compound UA [175]. A
number of NO-donating ursolic acid-based benzylidene derivatives with various substitutions were
synthesized by Zhang et al. They were further analyzed for their in vitro cytotoxicity against the
HepG-2, MCF-7, HT-29, and A549 cancer cell lines. Most of these derivatives revealed a weaker
inhibitory effect when compared to UA; compound 52 (Figure 4) showed the most potent activity
against HT-29 (IC50 = 4.28 µM). The further investigation of its anticancer mode of action revealed that
it induced the apoptosis of HT-29 cell lines in a dose-dependent manner and indicated cell cycle arrest
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at the G1 phase, which led to cell apoptosis and also induced apoptosis via the mitochondria-mediated
pathways [176].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 17 of 28 
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Jin et al. synthesized UA-based quinoline derivatives bearing thiadiazole, hydrazide, or oxadiazole
moieties. The in vitro antiproliferative activity on tumor cells such as SMMC-7721, MDA-MB-231,
and HeLa revealed that quinoline-based derivatives bearing carboxyl moieties or hydrazide moieties
exhibited a significant anticancer activity against all the cancer cell lines when compared to the
positive control, etoposide. Furthermore, a pharmacological in vitro analysis revealed that compound
53 (Figure 4) exhibited an antiproliferative activity against HeLa cell lines by cell cycle arrest at
the G0/G1 phase, decreasing the mitochondrial membrane potential, inducing intracellular ROS
generation, intervening with the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular
signal-regulated kinase (ERK) signaling pathways as MEK kinase inhibitors, and finally inducing the
apoptosis of HeLa cell lines. The molecular docking analysis also revealed compound 53 capability to
effectively bind with the active site of MEK [177].

The 1C50 values of compound 35b, 38b, 43a–b, 45, 46 and 50–53 on different cancer cell lines are
shown in Table 6.

Table 6. Modification of miscellaneous groups.

Compound Activity Cell Lines Tested (IC50µM) Reference Molecules (IC50µM) Bibliography

35b Cytotoxicity HRE (4.0) HRE(UA) >100 [168]

38b Cytotoxicity

MDA-MB-231 (0.61 ± 0.07)
HeLa (0.36 ± 0.05)

SMMC-7721(12.49± 0.08)
QSG-7701( > 40)

MDA-MB-231(UA) > 40
HeLa (UA) >40

SMMC-7721(UA) >40
QSG-7701(UA) n.d

[169]
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Table 6. Cont.

Compound Activity Cell Lines Tested (IC50µM) Reference Molecules (IC50µM) Bibliography

43a

Cytotoxicity

H460(4.5 ± 0.4)
H322(6.8 ± 1.5)
H460(6.7 ± 0.5)

H460(UA) 14.8 ± 0.6
H322(UA) 15.3 ± 2.8

H460 LKB1+/+(UA) 21.1 ± 1.6
[170]

43b
H460(5.3 ± 0.3)
H322(7.3 ± 1.0)

H460 LKB1+/+(7.8 ± 1.1)

43c
H460(2.6 ± 0.9)
H322(3.3 ± 0.9)

H460 LKB1+/+(4.4 ± 0.6)

45

Cytotoxicity

CCRF-CEM (3.6)
CEM-DNR (21.8)

HCT116 (28.4)
HCT116 p53−/−(29.8)

K562 (38.8)
K562-TAX (25.1)

A549 (27.6)
U2OS (20.7)

BJ (49.5)
MRC-5(29.3)

CCRF-CEM14 (44) 10.4
CEM-DNR (44) 34.0

HCT116(44) 34.0
HCT116 p53−/−(44) 49.7

K562 (44) >50
K562-TAX (44) 35.5

A549 (44) >50
U2OS (44) >50

BJ (44) >50
MRC-5(44) >50

[171]

46

CCRF-CEM (4.7)
CEM-DNR (28.2)

HCT116 (32.1)
HCT116 p53−/−(32.3)

K562 (34.7)
K562-TAX (29.0)

A549 (42.5)
U2OS (33.1)

BJ (> 50)
MRC-5(39.8)

50 Cytotoxicity SMMC-7721 (1.08 ± 0.22)
HepG2 (1.26 ± 0.17)

SMMC-7721(Doxorubicin) 0.62 ± 0.16
HepG2 (Doxorubicin) 0.77 ± 0.12) [174]

51 Cytotoxicity
Hela (1.06)
K562 (28.7)

KB(35.6)

Hela (UA) 14.2
K562 (UA) 52.7
KB 3(UA) 42.9

[175]

52 Cytotoxicity

HepG-2(65.8 ± 6.3)
MCF-7(> 100)

HT-29(4.28 ± 3.5)
A549(78.39 ± 5.6)

HepG-2 (UA) 44.35 ± 4.9
MCF-7 (UA) > 100
HT-29 (UA) > 100
A549 (UA) > 100

[176]

53 MEK
inhibitors

MDA-MB-231 (1.84 ± 0.13)
HeLa (1.18 ± 0.03)

SMMC-7721 (17.48 ± 0.10)
QSG-7701(40.59 ± 2.89)

MDA-MB-231 (Etoposide) 5.26 ± 1.21
HeLa (Etoposide) 2.98 ± 0.42

SMMC-7721 (Etoposide) 3.48 ± 0.35
QSG-7701(Etoposide) 28.75 ± 3.28

[177]

n.d = not determined.

4. Insights and Future Directions

This review reports various strategies that have been used to design UA-based derivatives with
enhanced anticancer activity when compared to UA or conventional drugs used as controls in most of
the studies reported over the past five years. Many studies on pentacyclic triterpenoids have shown
that the C-2 position, β-hydroxyl (C-3), and carboxylic moieties (C-28) of UA were the major sites for
the modification of its structure. Most researchers modified the molecular structure of UA around the
three sites, resulting in the improvement in the chemical or physical activities of the UA molecule.

The derivatives were grouped according to their active sites of modifications. Their corresponding
IC50 values are listed in the tables against reference compounds, usually UA or a conventional
drug. The derivatives were tested against various cancer cell lines in vitro using different cell lines
of colon, prostate, gastric, leukaemia, lung, breast, pancreas, skin, glioblastoma, and renal cells.
Most of the derivatives demonstrated an improved antiproliferative activity when compared to their
respective reference molecules, revealing that UA structural modification significantly enhanced their
antiproliferative activity.
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Despite the great progress which has been made, there are still a lot of research gaps, such as the
synthesis of ursolic acid-based hybrid compounds via hybridization with known chemotherapeutic
scaffolds, bioavailability studies, and toxicological studies. Furthermore, more evaluation in vivo is
lacking and there is a pressing need to evaluate the synthesized compounds in vivo.
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Abbreviations

FDA Food and Drug Administration
UA Ursolic acid
P53 Tumor protein p53
Wnt Wnt/β-catenin pathways
Ras Retrovirus-associated DNA sequences
TRAIL TNF-related apoptosis-inducing ligand
STAT3 Signal transducers and activators of transcription
PK Pharmacokinetic
UV Ultraviolet
HIF-1α Hypoxia-inducible factor 1-alpha
DMF Dimethylformamide
MTT Dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay
SRB sulforhodamine B assay
PARP-1 Poly [ADP-ribose] polymerase 1
NF-kB Nuclear factor kappa-B
DMAP 4-Dimethylaminopyridine
DCM Dichloromethane
THF Tetrahydrofuran
DCC N,N′-Dicyclohexylcarbodiimide
DMSO Dimethyl sulfoxide
FROS Reactive oxygen species
MEK Mitogen-activated extracellular signal-regulated kinase
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