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Abstract
Connecting the dots among the amino acid sequence of a protein, its structure,
and its function remains a central theme in molecular biology, as it would have
many applications in the treatment of illnesses related to misfolding or protein
instability. As a result of high-throughput sequencing methods, biologists
currently live in a protein sequence-rich world. However, our knowledge of
protein structure based on experimental data remains comparatively limited. As
a consequence, protein structure prediction has established itself as a very
active field of research to fill in this gap. This field, once thought to be reserved
for theoretical biophysicists, is constantly reinventing itself, borrowing ideas
informed by an ever-increasing assembly of scientific domains, from biology,
chemistry, (statistical) physics, mathematics, computer science, statistics,
bioinformatics, and more recently data sciences. We review the recent
progress arising from this integration of knowledge, from the development of
specific computer architecture to allow for longer timescales in physics-based
simulations of protein folding to the recent advances in predicting contacts in
proteins based on detection of coevolution using very large data sets of aligned
protein sequences.
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Introduction
Proteins are essential macromolecular biomolecules to all  
organisms, as they participate in nearly all processes within cells, 
thereby sustaining life. They catalyze most biochemical reac-
tions and are involved in maintaining the integrity of the genomic  
information. They control and perform self-replication, trans-
port molecules (including nutrients) in and out of the cell, play 
a role in immune responses, and control cell cycles; those are  
only a small subset of the activities associated with proteins within 
a cell. The amino acid sequence of a protein is defined by the 
nucleotide sequence of its gene. This relationship is well known  
and captured by the genetic code. The function of a protein then 
is defined by the geometry adopted by the corresponding chain 
of amino acids, the so-called tertiary structure of the protein.  
However, understanding the relationships between the sequence  
and structure of a protein, the second piece in the puzzle of  
understanding how proteins function, remains elusive. This  
review is focused on the computational approaches developed  
to unravel these relationships.

Although much progress has been achieved in connecting  
protein sequence to their function, there remains a high propor-
tion of genes with unknown function, especially in bacteriophages  
and, even more dramatically, in archaeal viruses, in which  
75 to 90% of their genomes remain largely unknown1.  
Determination of the function of a protein experimentally is 
a highly resource-intensive process. As a consequence, much 
hope is put into alternate approaches based on computational  
methods. Sequence analysis is usually the first step, as signifi-
cant sequence similarity is still the most reliable way of inferring  
function. There are, however, some exceptions to this infer-
ence, from proteins with nearly identical sequences but different  
functions2 to proteins with different sequences but similar  
functions3. When sequence is uninformative when it comes  
to predicting function or when there are no detectable homo-
logues in the databases of annotated protein sequences, structure  
can often provide further insight. Therefore, significant  
efforts are put into predicting function from structure4. These  
efforts rely obviously on the availability of structural information.

Our current knowledge of protein structure comes mostly  
from decades of experimental studies, using X-ray crystallogra-
phy, nuclear magnetic resonance spectroscopy, or more recently  
cryo-electron microscopy. The first protein structures to be  
solved were those of hemoglobin and myoglobin more than  
50 years ago5–7. As of April 2018, there are close to 140,000 pro-
tein structures in the database of biological macromolecular  
structures (http://www.rcsb.org). However, this number drops to 
about 50,000 if one keeps sequences with less than 90% sequence 
identity (http://www.rcsb.org/pdb/statistics/clusterStatistics.
do). This number is obviously small compared with the number  
of existing proteins. Although the incentive to significantly 
increase the number of experimentally defined protein structures 
is evident (for instance, for drug-design purposes), how to achieve  
such a drastic increase is less clear, as the cost (mostly in  
man-months) to solve a new protein structure is very high.  
Unfortunately, this high cost led to the ending of the Protein  
Structure Initiative by the National Institutes of Health in 2015, 

long before it had reached its goal. As a reminder, the main  
ideas behind this initiative were to progressively document  
a full library of possible natural protein folds and to use the  
structure of new proteins to annotate them functionally4,8.

There is hope for an alternate solution to complement the  
experimental efforts to characterize the protein structure space. 
From the seminal work of Anfinsen9, we know that the sequence 
fully determines the three-dimensional structure of a protein. 
In addition, the information on protein sequences is growing  
exponentially: as of April 2018, there were more than 557,000  
protein sequences deposited in SwissProt-Uniprot version  
2018-03, the fully annotated repository of protein sequences 
(note that these form a small subset of all known proteins; the 
RefSeq database of non-redundant proteins currently contains  
more than 110 million sequences). As a consequence, there is a 
lot of effort put into predicting the structure of a protein directly 
from the knowledge of its sequence (and its relatives). This has 
been referred to as one of the “holy grails” in molecular biology, 
also called the protein structure prediction problem. This problem  
has been around for decades10,11 but clearly remains a very  
active area of research. This is illustrated, for example, by  
the following: (i) a PubMed search with the keywords “pro-
tein structure prediction” finds more than 4,000 hits since 2014;  
(ii) this field has its own dedicated biannual conference, the  
Critical Assessment of Structure Prediction (CASP) meetings12–14; 
(iii) it has its own section in F1000; and (iv) it is even the topic 
of a popular video game15,16. In this article, we review the latest 
advances related to solving this problem and put a special focus  
on highlighting the specific scientific fields that are involved  
in those advances.

Protein structure prediction is in fact part of a larger problem,  
the protein-folding problem. The latter can be seen as an  
investigation over two questions: (i) understanding the kinetic 
folding mechanism, namely unraveling the temporal sequence of 
events describing how a polypeptide chain finds its way from an  
unfolded structure into a compact, globular conformation in a 
seemingly unreasonably fast time given the number of possible  
conformations it may adopt (the Levinthal paradox17,18), and  
(ii) understanding the physical folding code, namely decipher-
ing how the physicochemical properties of the amino acids  
along the polypeptide chain that form a protein sequence are 
uniquely responsible for the tertiary structure of a protein 
and its stability. We focus on the second question and recent  
computer-based solutions to this problem. We note first that most 
successful structure prediction algorithms rely on the assumption 
that similar sequences lead to similar structures19. This has led 
to the development of comparative modeling techniques, which  
have seen considerable improvements over the years, as reported  
in the overview of the most recent CASP meeting14,20. Based on  
those reports, homology modeling methods are estimated to pro-
duce reasonable atomic models provided that the alignment  
has a sequence identity above 50%, with high coverage (>80%). 
We will not cover this topic that has been reviewed exten-
sively elsewhere21–23. Instead, we review results in the more  
challenging problem of template-free (ab initio) modeling.  
More specifically, we limit our presentation to recent techniques 
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that have been developed with physics-based and machine- 
learning perspectives. We focus on free energy-based methods, sec-
ondary structure prediction, and contact predictions. We provide  
our own perspective on recent progress in each of these  
topics; recent technical reviews can be found elsewhere10,24–35.

Physics-based approaches to protein structure 
prediction
The stability of a protein structure is defined by an interplay  
of multiple factors, from the local geometry imposed by struc-
tural chemistry (bond lengths, bond angles, and dihedral angle 
preferences) to close-range physical interactions that govern 
the structures of all liquids and solids. Among those, van der  
Waals interactions lead to tight packing in the protein core, and 
electrostatic interactions, such as salt bridges and hydrogen bonds, 
define short- or long-range couplings that underlie, for exam-
ple, allostery36,37 and active transport38,39. In addition, a protein  
interacts with its environment, namely water, which creates  
a polar environment, forcing hydrophobic residues to pack into a 
hydrophobic core, and ions (Na+, Cl−, Mg2+, etc.), which interact 
with charged residues at the surface of the protein. All of those  
interactions are captured by semi-empirical “force fields”, with 
different levels of approximation, from implicit or explicit sol-
vent, presence or absence of terms accounting for polarization,  
to complete treatment of classic electrostatics40,41. Combined with 
sampling methods such as molecular dynamics (MD) or Monte 
Carlo (MC) simulations, these force fields can be used to gener-
ate ensembles of conformations for any protein structure, from  
which the native tertiary structure hopefully can be selected42. 
The input to such sampling techniques can be an initial guess  
for the conformation of the protein, obtained, for example, from 
comparative modeling; this procedure is referred to as model  
refinement. Although progress associated with this problem is 
always optimistically conveyed in the reports from the successive 
CASP meetings (for example,43), there is a growing consensus  
that the current techniques have reached a plateau and that  
a combination of better force fields and improved sampling is 
needed for further improvements44,45.

The real challenge is to start from any random conformation  
for the protein and hopefully induce, through in silico molecu-
lar simulation in the computer, the folding to the native structure 
of the protein. These simulations have the advantage of directly  
sampling the free energy surface spanned by the protein. In addi-
tion, if successful, they solve the structure prediction problem and 
provide kinetic and thermodynamic information about folding. 
As the size of the conformation space is overwhelmingly large,  
the general understanding in the structure prediction community 
for a long time was that such an approach would be limited to  
predicting the structure and folding of small peptides46 unless 
it could be supplemented with additional experimental47–49 or  
data-based50–52 information. This limited optimism was fortunately 
proven wrong on at least a few occasions, mostly as a conse-
quence of changes in computing power and in how computing is  
performed. One example is Folding@home53,54, developed by  
Vijay Pande at Stanford University, in which computer users all 
over the world donate their idle computer time to perform the  
physical molecular simulations required for protein folding. Using 

this form of “social distributed computing”, the Pande group  
demonstrated that molecular dynamics can generate accurate 
protein-folding rates55. More recent results with this distributed  
computing approach include the analyses over “long” (over the 
millisecond) time ranges of the transitions between inactive and  
active forms of G-protein-coupled receptors (GPCRs) (proteins 
with 500 amino acids)56 and modeling of the activation pathways 
of Src kinases (250 residues included in the simulations)57. The  
success of Folding@home has led the computational biology 
community nowadays to expect “routine” simulations of pro-
tein dynamics in the millisecond timescale and longer. We also 
note an interesting trend within the field of MD simulations in  
terms of methods development. Such simulations request con-
stant development of the algorithms implemented for performing  
the dynamics; the community has responded well to this need, 
and new versions of the software packages appear regularly; see, 
for example, the recent developments around OpenMM58, the  
software package behind Folding@home. These new software 
packages push the limits of what can be achieved with those  
simulations, enabling the study of larger and more complex sys-
tems, which in turn foster the development of new methods for 
analyzing the results. Indeed, these large simulations gener-
ate massive amounts of data, raising new challenges in data sci-
ences. Sophisticated statistical machineries have been proposed to  
analyze those data, such as the Markov state models59–61, which 
are constantly updated62, to the point of switching “from [being]  
an Art to [becoming] a Science”, paraphrasing a recent review  
by Husic and Pande63. Interestingly, the specificity of the data  
generated by molecular simulations has led to the natural adap-
tation of machine-learning techniques to support their analyses;  
for a recent review on this topic, see Mittal and Shukla64.

An alternate approach to distributing computing is to adapt the 
computing hardware to the equations and the force field imple-
mented in molecular simulations. The Anton computer from  
DE Shaw Research, which was custom-designed for molecu-
lar simulations65,66, gives at least one order of magnitude better  
performance than conventional computers67. Using this new tech-
nology, this group was able to study, for example, the dynam-
ics in human ubiquitin in the picosecond to millisecond time  
range using unbiased dynamics, revealing that conformations 
visited in the simulations are very similar to those found in  
crystal structures of ubiquitin and detecting correlated motions in 
the protein that are consistent with experimental observations68.  
Of equal significance, simulations performed on Anton are help-
ing to identify the structural origins of slow diffusion during  
protein folding69,70.

Finally, it should be mentioned that advances in computing  
models (either cloud-based or with a specific architecture) are 
not the only options to improve simulations of protein folding.  
Dill et al. recently illustrated that the addition of some semi- 
reliable external information to the potential that steers the 
molecular simulation enables accurate prediction of the native  
conformations for small protein structures within the context 
of CASP52,71. This information is provided in the form of binary  
residue contacts deduced from the protein sequence itself. This  
will be discussed in more detail below.
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Secondary structure prediction: significant 
improvements from machine learning
Ultimately, the structure of a protein is defined by the laws  
of chemistry and physics. In the section above, we described 
attempts to derive a physics-based solution to the structure predic-
tion problem; our tone was meant to be positive and optimistic,  
but we cannot deny that those attempts have their limitations.  
At the same time, the structure prediction community is explor-
ing methods outside the realm of physics-based first-principles  
equations. Secondary structure prediction, a subproblem 
of protein structure prediction, is a good example of how  
methodologies in this whole field have evolved over the last  
50 years.

Here, we are concerned with the prediction of the local  
conformation of the backbone of a protein, namely its organiza-
tion into helices, strands, and coils (that is, loosely structured  
regions). As discussed in recent reviews of secondary struc-
ture prediction, this problem is important in its own right, as it 
impacts many areas of structural bioinformatics and functional  
genomics25,28. Linus Pauling can be considered the father of this 
field, as he correctly predicted the presence of helices and strands 
as stable substructures in proteins72,73. In the nearly 80 years  
that followed his intuition, secondary structure prediction has 
struggled to come up with a definite solution through at least three  
phases, which Burkhard Rost referred to as generations74.  
Briefly, the starting idea was to derive statistical preferences for 
amino acids to be within a specific secondary structure based on 
known protein structures and use those preferences for predictions. 
This inference, also called the inverse problem, proved harder 
than expected. Chou and Fasman, for example, derived empirical  
rules for both helices and strands75. However, refining those 
rules proved to be a game with moving targets, and the method  
remained limited in scope. The second generation of methods 
focused on either the definition of the propensities themselves, 
making them locally context-dependent to include neighbor-
hood effects76, or how to derive the rules for inference, relying  
more and more on learning those rules from the data instead of 
enforcing a specific model. The latter led to the introduction of 
neural networks in the field77. This second generation unfortu-
nately led to only modest improvement. However, once the door 
was open to learning from the data, it was then only natural to 
increase the amount and diversity of the data that are included 
to generate better models. The most obvious choice was to  
introduce information from homologous sequences78, which led 
to the third generation of secondary structure prediction meth-
ods, including the significantly improved neural network solu-
tions implemented in PhD79 and PSIPRED80. Those methods were  
introduced in the 1990s. Since then, we have seen the develop-
ment of more and more sophisticated machine-learning methods 
with more involved neural networks, such as the recent use of deep  
neural networks81 and deep convolutional neural fields82 for  
secondary structure prediction (for a comprehensive review of 
the different types of networks and machine-learning techniques  
that have been applied to solve the secondary structure predic-
tion problem, see 28). This recently led Yang et al. to ask whether 
we are in “the final stretch” for protein structure prediction25. 
Although we appreciate their optimism, we raise a small word 
of caution. The goal of machine-learning methods is to identify  

recurrent patterns in data that can be used to solve the infer-
ence problem: that is, connecting features (here amino acid  
sequences) to underlying variables (here secondary structure 
conformation). Optimizing a model to a generalized inference  
model usually prevents prediction of atypical behavior. However, 
we note that this is a problem for machine learning in general.

Predicting contacts in proteins: (statistical) physics 
or machine learning?
Protein structures are more conserved than their sequences.  
It is therefore legitimate to expect that correlated mutations 
occur between contacting residues: in the event that one residue  
of such an interacting pair mutates, the effect of this mutation 
is likely to be accommodated by a corresponding mutation of  
the contacting residue. This was discussed in detail in the  
recent analysis of coevolution between residues by Baker  
et al.83. This basic idea implies that if we can detect co-variation  
in sequences, we should be able to predict contacts in protein.

The possibility to detect co-variations has significantly increased 
with the increase in the number of protein sequences that are  
available. The related search for an inference between those  
co-variations and actual contacts in protein has been the focus 
of decades of research, and recent breakthroughs are high-
lighted below. We will limit our presentation to general concepts  
(especially the mean-field approach) and refer readers to  
excellent recent reviews for more technical presentations34,35,84.

Let us consider a multiple sequence alignment (MSA) for a  
protein family P. This MSA can be considered as a table T, con-
sisting of L rows corresponding to the L proteins included in the  
MSA and of M columns, where M is the length of the proteins. 
The value T(l,m) at row l and column m is the type of amino  
acid observed at the m-th position of protein l. T(l,m) is assumed 
to be represented by an integer number in [1,q], where q = 21,  
representing the 20 amino acids and a gap. The information in  
this MSA is first summarized in terms of frequencies,

      
δ δ δ

= =
= =∑ ∑, ( , ) , ( , ) , ( , )

1 1

1 1
( ) ( , )

,

L L

i ija T l i a T l i b T l j
l l

f a f a b
L L   (1)

with i and j in [1,M] and a and b in [1,q] and δ the Dirac  
function such that δ

xy
 = 1 if x = y, and 0 otherwise. In practice, 

weights and pseudo-counts are introduced to account for pos-
sible biases in the distribution of sequences in the MSA85; we  
ignore them here for the sake of simplicity. In these definitions, 
f
i
(a) is the frequency of the occurrence of amino acid a at  

column i in the MSA, and f
ij
(a,b) is the frequency of co-occurrence 

of amino acid types a and b at columns i and j. If the two columns  
i and j are independent, the joint distribution f

ij
(a,b) would  

simply be equal to the product f
i
(a) f

j
(b). Deviations from this  

independence can be either quantified by using a covariance

                         
( , ) ( , ) ( ) ( )ij ij i jC a b f a b f a f b= −

                     (2)

or summarized by computing the mutual information between  
columns i and j86
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= ∑
( , )

( , )ln
( ) ( ).

ij
ij ij

i j

f a b
M f a b

f a f b
                   (3)

It is tempting to infer spatial proximity from those covariance  
or mutual information measures (or any variation of). This idea  
was pursued as early as in the 1980s for predicting virus functions87 
and in the 1990s to detect contacts in proteins88,89. However, it  
met with little success, for a reason that can be described as  
follows30,85: when a residue i is in contact with a residue j, and  
j is in contact with a residue k, then i and k will exhibit correla-
tion, even if they are not in contact. Correct analyses of the  
observed co-variations (computed by using equation 1 and  
equation 2) require that direct interactions be distinguished from 
possible indirect correlations. Currently, two approaches are being  
developed to disentangle those direct and indirect variations  
and infer contacts from observed co-variations: those that con-
struct a statistical model for full-length protein sequences by using  
methods from statistical physics and those that learn this  
model from the data by using machine-learning techniques.

Among the statistical methods developed for co-variation  
analyses, sequence-based probabilistic formalisms have been 
proposed as early as 200290, followed by message-passing  
algorithms91, mean-field methods85, and Gaussian92 or  
pseudo-likelihood93,94 approximations. More precise methods, 
based on adaptive cluster expansion95 or Boltzmann learning  
using MC sampling96,97, have been proposed recently. In the  
following, we briefly review the mean-field methods.

From a statistical physics point of view, the protein sequence  
space can be equipped with a spin-glass Hamiltonian model  
such that the Hamiltonian of a sequence S of length M is given by

                       

−

= = + =

= − −∑ ∑ ∑
1

1 1 1

( ) ( , ) ( )
,

M M M

ij i j i i
i j i i

H S J s s h s

                   (4)

where s
i
 is the amino acid type at position i in S, h

i
(s

i
) are  

single-site “fields”, and J
ij
(s

i
,s

j
) are pair-site “couplings” between  

i and j. When the size of the alphabet of amino acid types is 2,  
equation 4 corresponds to an Ising model. In the more general 
case of an alphabet of size 21, equation 4 is referred to as a Potts  
Hamiltonian model. Given this model, the probability of  
observing a sequence S follows a Boltzmann distribution,

                                       

β

β

−

−=
∑

( )

( )
( )

,

H S

H C

C

e
P S

e

                                (5)

where β = 1/kT is a normalization parameter, and the sum at the 
denominator runs over all sequences C of length M. Note that  
this denominator is the partition function Z over the sequence  
space, from which a free energy can be derived:

                                       β = − log( ).F Z                               (6)

The knowledge of Z (or F) is enough to fully describe the  
thermodynamics of the system. In particular, the mean state  

at position i and the correlation between positions i and j can  
be computed as

                          

< >= < >=
21 1

.
i i j

i i j

dZ d Z
s s s

Z dh Z dh dh
                 (7)

The parameters h
i
(s

i
) and J

ij
(s

i
,s

j
) need to be adjusted such  

that these model-based state and correlation values are consist-
ent with the observed values given in equation 1. This is the basic  
concept behind the direct coupling analysis (DCA)98,99. Several  
versions of DCA, differing in the method used to compute h

i
(s

i
)  

and J
ij
(s

i
,s

j
), have been proposed. In the mean-field approxima-

tion, there is a simple relationship between J
ij
 and the covariance  

C
ij
 defined in equation 2:

                                  
−= − 1( , ) ( ) ( , )

.ij ijJ a b C a b
                             (8)

Recent versions of DCA typically reach accurate prediction  
of about 85% true positives and only 15% false positives at the  
8 Å distance (typically used as the definition of “contact” in DCA 
studies)35. This success has led to DCA being used outside of the 
protein structure prediction problem, from the prediction of the 
structure of protein complexes34,100 and protein conformational 
transitions96,101, RNA structure prediction102–104, and prediction 
of ordered states for disordered proteins105 to the prediction of  
mutation effects in proteins106.

The Potts Hamiltonian model for defining the stability of  
a protein sequence summarizes all forms of interactions 
between residues into two simple sets of parameters: single-site  
and pair-sites. As the information content of an MSA goes beyond 
those simple interactions, it was natural to see attempts to com-
bine such additional information to co-variation measures by  
using machine-learning techniques, much akin to what has 
been done for secondary structure prediction (see above). In the  
popular MetaPSICOV107 approach, for example, a first-stage 
classifier is trained to predict whether residues are in contact by  
considering 672 input features for each pair of positions i and j 
in an MSA. Three windows are defined: one nine-residue win-
dow centered at i, one nine-residue window centered at j, and a 
central five-residue window centered at (i+j)/2. Each of those 23  
positions then is characterized by its amino acid composition in 
the MSA (21 values), followed by information on secondary struc-
tures and solvent accessibility, both predicted from the MSA itself.  
These position-specific features then are complemented with 
coevolution information, such as mutual information (computed  
with equation 3) and DCA-predicted contact information, as com-
puted with equation 8. The complete set of 672 features then is 
used to predict whether the positions i and j define a contact, using 
different cutoff values for defining such a contact. The outputs  
of the first-stage classifier then are used as input to a second-stage 
classifier, again combining information over windows around 
the residues under scrutiny. MetaPSICOV is a hybrid method: it 
uses both the results of the statistical physics DCA method and  
additional information derived from the MSA to predict con-
tact. It has been shown to achieve higher accuracy than DCA  
alone107. The success of MetaPSICOV is not isolated. It is inter-
esting, for example, that out of the 23 methods that have been 
used for contact predictions in CASP12, at least 21 are clearly 
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based on machine learning, using different versions of deep learn-
ing methods or combinations of such methods108. Those methods 
were reported to be strikingly successful, and precisions above  
90% were achieved by the best predictors in more than  
half the targets in CASP12, a result considered to be a highly 
significant improvement compared with the results obtained  
during CASP11108. In this respect, it will be particularly important 
to watch the result of CASP13 (2018), which will fully integrate 
mature contact prediction methods (http://predictioncenter.org).

Conclusions
Is the protein structure prediction problem “solved”? In the 
past, many have claimed that to be the case or have at least  
described progress and remaining challenges109,110. In line with a 
recent review by Dill and MacCallum10, it is unclear to us whether 
this question remains relevant, given the diversity associated 
with structure prediction, both in terms of the methods that have  
been developed as attempts to solve it and in terms of their 
applications, from predicting the structures of small globular  
proteins, of membrane proteins, and the conformational space 
accessible to intrinsically disordered proteins. We also note  
the difficulties that come with assessing what “success” means, 
and this is illustrated by the need to have a series of conferences  
dedicated to that problem, the CASP conferences12.

The prediction of contacts in proteins, described in this  
review, is a good example that highlights the constant evolution of 
the field of protein structure prediction. The concept of correlat-
ing co-variations between residues in sequence alignments to spa-
tial proximity was well known for RNA structure prediction. As  
highlighted above, its application to proteins was delayed because 
of the difficulties of dealing with indirect variations. Independent 
applications of statistical physics methods and machine-learning  
methods have, to some extent, solved those difficulties, open-
ing the door to predicting geometric contacts in proteins from 
sequence only. This progress leads, however, to the next challenge:  
using those contacts to predict the overall geometry, that is, the 
structure of a protein. This is by no means an easy problem, as  
those contacts are usually given as binary, noisy information.  
Significant methodological developments are expected to solve  
this new challenge, which in turn will lead to yet another  
challenge.

The protein structure prediction problem intrinsically relates to 
basic science. However, it has led to important methodologi-
cal and technical developments, from computer hardware for  
physics-based simulations to statistical methods and new machine-
learning technologies. In practice, in biology, it will have an  
impact on many diseases related to protein misfolding, from neu-
rodegenerative diseases to diabetes through the prediction of  
stability of mutants (EVmutation website: http://marks.hms. 
harvard.edu) and perhaps even to personalized medicine.

Attempts to solve the protein structure prediction problem  
have involved scientists from a large panel of disciplines, includ-
ing biology, physics, statistics, and computer science. Even if 
the divide between physics-based approaches and data-driven  
methods still exists, this divide has been constructive and not  
disruptive. Data scientists involved in structure prediction are 
regularly using results from physics-based models, and recipro-
cally physicists are adding more and more data coming from data  
mining in their simulations. Therefore, the question we have  
raised in the title of this review may be as irrelevant as the ques-
tion of whether the problem is solved: the future of protein  
structure prediction is interdisciplinary and will remain so.
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