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Many algorithms in probabilistic sampling-based motion planning have been proposed

to create a path for a robot in an environment with obstacles. Due to the randomness of

sampling, they can efficiently compute the collision-free paths made of segments lying

in the configuration space with probabilistic completeness. However, this property also

makes the trajectories have some unnecessary redundant or jerky motions, which need

to be optimized. For most robotics applications, the trajectories should be short, smooth

and keep away from obstacles. This paper proposes a new trajectory optimization

technique which transforms a polygon collision-free path into a smooth path, and can

deal with trajectories which contain various task constraints. The technique removes

redundant motions by quadratic programming in the parameter space of trajectory,

and converts collision avoidance conditions to linear constraints to ensure absolute

safety of trajectories. Furthermore, the technique uses a projection operator to realize

the optimization of trajectories which are subject to some hard kinematic constraints,

like keeping a glass of water upright or coordinating operation with dual robots. The

experimental results proved the feasibility and effectiveness of the proposed method,

when it is compared with other trajectory optimization methods.

Keywords: trajectory optimization, quadratic program, constrained motion planning, collision backtracking, robot

manipulation planning

1. INTRODUCTION

Sampling-based motion planners (SBMPs), such as Probabilistic Road Maps (Kavraki et al., 1996)
(PRMs) or Rapidly-exploring Random Trees (LaValle and Kuffner, 2001) (RRTs), have become the
mainstream methods for solving motion planning problems in high-dimensional space because
of their high efficiency and probabilistic completeness. Today, most of the cutting-edge motion
planning methods like RRT∗ (Karaman and Frazzoli, 2011), Fast Matching Tree (FMT) (Janson
et al., 2013) and Stable Sparse RRT* (SST*) (Bekris et al., 2016) are inspired by SBMPs, which
can ensure the final trajectory is collision-free. However, considering the service life and efficiency
of equipment in practice, there are higher requirements for the trajectory quality, that is, a good
trajectory should be short, smooth, dynamically feasible, and keepminimum clearance to obstacles.
Therefore, it is necessary to post-process the trajectory generated by SBMPs.
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The post-processing methods for high-dimensional space
trajectories can be roughly divided into two categories. One
category randomly selects two configurations along the trajectory
and attempts to replace the intervening sub-path with a better
path, like straight lines (Kallmann et al., 2010), Bezier curves
(Yang and Sukkarieh, 2010) or B-splines (Maekawa et al.,
2010), so called Short-cut. Short-cuts can shorten trajectory
efficiently and easily, but they cannot provide enough flexibility
in terms of generating collision-free smooth trajectories in some
complicated circumstances. The other category is gradient-based
optimization (GBO) methods (Ratliff et al., 2009; Kalakrishnan
et al., 2011). They treat a trajectory ξ as a point in a possibly
infinite-dimensional space, and use the weighted sum of the
smooth cost function fsmooth(ξ ) and the obstacle cost function
fobs(ξ ) to evaluate the path quality. Thus, a motion planning
problem is transformed into an iterative numerical optimization
problem. There are two key issues which need to be solved in
GBO: (1) Computing obstacle cost fobs(ξ ) in an inexpensive and
accurate way (2) Ensuring the trajectory is collision-free in case
of unavoidable local optimal, as shown in Figure 1.

The idea of our method is to find a good balance between
Short-cut and GBO. On the one hand, the method adopts
the gradient descent idea of GBO to avoid the blindness and
inflexibility of Short-cut, so as to obtain higher-order smoothness
or to handle narrow passages. On the other hand, the method
do not treat obstacle as a term of cost function, but as
linear constraints of quadratic programming which are added
incrementally. In this way, the local minimum problem of GBO
will not break the collision-free condition. Moreover, since there
is no need to quantify the collision cost, the method can avoid the
time-consuming distance or penetration computation and need
not perform any preprocessing of the robot or the environment.
Therefore, the proposed method retains the advantages of GBO
and avoids the above two difficult issues.

FIGURE 1 | When GBO falls into local optimal, the collision-free state of

trajectory may be broken. Because the weighted cost function may cause

GBO to ignore obstacles term fobs(ξ ) at the local optimal point. The blue dotted

line is the original trajectory produced by SBMPs, which is collision-free, while

the red line is the optimized trajectory processed by GBO.

Another important feature of our method is that it can
be used to optimize the trajectories which are subject to task
constraints. Task constraints are everywhere in motion planning.
For instance, a robot should keep the end-effector’s orientation
fixed when transferring a glass filled with water, or when multiple
robots form a closed kinetic chain to collaborate on a task.
Due to task constraints, the feasible configurations form a low
dimensional manifold in the original Configuration Space (C-
space) which is nonlinear and has zero measure (Qureshi et al.,
2020), as shown in Figure 2. The existing Short-cut and GBO
methods will destroy the task constraints which are already
satisfying. In other words, they will make the path on manifold
drift away from the constraint manifold. The proposed method
uses a stepwise projection technique to solve the optimization
problem under task constraints, and has been proven effective
with series of experiments.

The main contribution of this paper is: We propose a
novel robot trajectory post process algorithm for sampling-
based motion planners. (1) The method is realized by gradient-
based optimization method without any distance calculation
and environment models, which can effectively improving the
trajectory quality and ensure the final trajectory is totally
collision-free. (2) This method can effectively optimize the robot
trajectory under various task constraints.

The paper is organized as follows: section Related Work
summarizes the existing research related to the proposed
method; section Method introduces the implementation detail
and the quantitative evaluation of the proposed method; section
Experiments provides a series of experimental results and
analysis. In section Conclusion, conclusions are drawn and
directions for future work are provided.

2. RELATED WORK

Autonomous navigation and planning in complex environments
are fundamental problems faced by almost all robots. Although
neural network-based motion planning algorithms (Qureshi
et al., 2019; Li et al., 2020; Pandey et al., 2020) have
received extensive attention in recent years, SBMP still stays
as the mainstream motion planning method due to its
high reliability and efficiency. The trajectory generated by
SBMPs is accompanied by a lot of redundant motions, which
causes unnecessary jerk and detours during the operation of
equipment. For the purpose of a shortened path or higher-
order simplification, some methods for post-processing SBMPs
trajectories are widely used, including Short-cut and GBO.
The research work of the two categories will be reviewed
and summarized in this section. Besides, as another main
contribution of this paper, the motion planning and optimization
methods under task constraints will be briefly discussed.

2.1. Short-Cut
Short-cut techniques are light-weight methods which can
generate smooth motions in a heuristic way. Hauser and Ng-
Thow-Hing (2010) propose to use a combination of lines and
parabolas to replace the original segmentations, and the new
motions are strictly subject to collision constraint, velocity
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FIGURE 2 | (A) Three degree-of-freedom (DOF) robot; (B) Constraint manifold. The end effector of a three-DOF robot is constrained on the black line, which means

that the robot has only two-DOF in the workspace. The configurations satisfying the constraint form a two-dimensional manifold in the C-space which is shown in (B).

bounds, and acceleration bounds. Inspired by this, Ran and
Sidobre (2015) propose a Short-cut can satisfy higher-order
bounds. Geraerts and Overmars (2007) propose Partial Shortcut,
which only takes one degree-of-freedom (DOF) in consideration
in each optimization step to achieve a shorter path. Because the
baseline Short-cut cannot handle all redundant motions as all
DOFs are interpolated simultaneously. Pan et al. (2012b) present
a cubic B-splines based Short-cut which can produce an almost
C2 trajectory. Different from other Short-cuts which discretize
the new segments into small resolution and check each sample
for collision, Pan et al. realize a fast and reliable continuous
collision detection algorithm along spline trajectories. To reduce
the blindness of random Short-cuts, Lamiraux et al. (2016)
take trajectory length as the cost function and use quadratic
programming to provide optimal iteration direction for Short-
cuts. Base on this, Bogaerts et al. (2018) propose the multiple
gradient descent algorithm (MGDA) algorithm to decrease path
length while maintaining sensor coverage, which can be used to
handle inspection tasks for industrial robots. Similar research
includes (Bogaerts et al., 2019; Fu et al., 2019). However, the
above methods cannot meet the requirement of higher-order
smooth trajectory for real robots.

In addition to the typical Short-cut, the randomness of SBMPs
provides the possibility for another lightweight post-processing
method called Hybridization graphs (H-graph) (Raveh et al.,
2011). For randomly extended piecewise linear paths in different
runs, the quality of certain sub-paths within each path may be
higher than the quality of the entire path. H-graph hybridizes
the high quality sub-paths from a set of input paths to form
an improved output solution. H-graph can be regarded as a
generalized Short-cut, and the difference is that its shortcuts
come from other solutions under the same planning problem,
rather than artificially defined lines or curves. Similar research
includes (Jaillet and Simeon, 2008; Luna et al., 2013).

Generally speaking, Short-cuts tend to be simple and fast, and
generate high-quality collision-free trajectories in many cases.
However, they may not provide enough flexibility in terms of
generating collision-free smooth trajectories in the presence of
narrow passages. Gradient-based optimization approaches can
prevail in such cases.

2.2. Gradient-Based Optimization
A large number of gradient-based numerical optimization
techniques have been applied in this domain. The earlier stage
trajectory optimization is carried out directly in cartesian space
including the artificial potential field (Warren, 1989) and the
elastic band (Quinlan and Khatib, 2002). They treat the trajectory
as a physical system, and simulate obstacle areas as repulsion
or pressure to generate more natural trajectories. Optimization
under cartesian space has shown to be effective and fast in
simple scenarios. However, the approximation accuracy of the
physical field to the obstacle space is limited, making these
methods unreliable in slightly complicated scenarios. In order to
obtain more flexibility, scholars try to optimize trajectories in the
parameter space.

CHOMP (Covariant Hamiltonian Optimization for Motion
Planning) (Ratliff et al., 2009) laid the basic framework for
the recent GBO algorithms. The optimization objective U[ξ ]
is formulated as a function of the trajectory function ξ , which
makes the trajectory cost invariant to time parameterization of
the trajectory, so that the optimization process is performed in
the parameter space of the trajectory. CHOMP uses gradient
information to update the candidate trajectory, which makes
it easily get stuck in the local minima. To solve the problem,
Kalakrishnan et al. (2011) propose a stochastic optimization
framework called STOMP (Stochastic Trajectory Optimization
for Motion Planning). The algorithm uses a series of noisy
trajectories to explore the space around the original trajectory
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to avoid derivative, and uses a EM-like (Expectation Maximum)
method to generate a better trajectory. On the basis of
the above, Incremental Trajectory Optimization for Motion
Planning (ITOMP) (Park et al., 2012), Multigrid CHOMP
(He et al., 2013) and T-CHOMP (Byravan et al., 2014) make
various improvements for dynamic scenarios, path quality and
computational efficiency. However, these GBOs have a common
feature being that they use pre-computed signed distance field
for calculating obstacle term to reduce the online computational
overheads. On the one hand, it is difficult for the distance field to
accurately describe complex obstacles, which leads to trajectory
safety issues. On the other hand, robot or environment changes
will lead to failure of the distance field, which limits the flexibility
of the methods. Some other GBOs like Trajectory Optimizer
(TrajOpt) (Schulman et al., 2013) need not build a distance
field off-line, but calculate the nearest obstacle distances at each
discrete time of the trajectory vector. It is also a burden for
high-dimensional robots or complex scenarios.

The above GBOs can be used as post-process steps, but
they are essentially motion planning methods. Therefore, the
initial trajectory can be arbitrary in theory, although some
inappropriate initial trajectories may lead to bad performance of
themethod. In contrast, ourmethod requires the initial trajectory
to be totally collision-free. Besides, the proposed method need
not build any approximate model offline, or compute any
distance or penetration online.

2.3. Constrained Motion Planning and
Optimization
Same as obstacle avoidance, constraints involving the pose
of a robot’s end-effectors are common constraints in motion
planning, such as carrying a cup of water, opening a door
or kinematic loop-closure. The allowed configurations of the
robot form a lower-dimensional manifolds in the C-Space
which is nonlinear, zero measure and non-analytical description.
Effectively sampling and exploring on constrained manifolds is
the key to solving the problem.

The methods for solving above problem can be divided into
four categories: Relaxation (Bialkowski et al., 2013; Bonilla et al.,
2017), Tangent-space (Kim et al., 2016), Atlas (Bordalba et al.,
2017), and Projection (Stilman, 2007; Berenson et al., 2011).
Relaxation is to relax the manifold’s surface to transform the
constrained motion planning into a narrow passage problem.
Tangent-space and Atlas use the piecewise linear approximation
of manifolds to describe the constraints, but are easy to break
down in some highly curved regions. In contrast, Projection
uses Jacobian pseudo inverse based Gauss-Newton iteration
to find feasible configurations, which is accurate, stable and
easy to implement. Kingston’s review (Kingston et al., 2018)
summarizes and compares the four types of methods in detail.
Besides, Kingston et al. propose Implicit Manifold Configuration
Space (IMACS) (Kingston et al., 2019) recently which decouples
constraint satisfaction strategies like relaxation, projection and
Atlas from the choice of underlying motion planners. Their
framework allows a broad range of SBMPs to operate under
kinematic constraints.

Planning with neural network has became popular in recent
years. A most recent work called Constraint Motion Planning
Networks (CoMPNet) (Berenson et al., 2009), which is developed
from Motion Planning Network (MPNet) (Qureshi et al.,
2019), leverages past planning experience for learning a deep
neural model and generates samples on the implicit manifolds.
Except for sampling technique, CoMPNet performs same path
search process on manifolds as Constrained Bi-direction Rapidly
Exploring Tree (CBiRRT) (Berenson et al., 2011). Equality
Constraint Manifold Neural Network (ECoMaNN) (Fernández
et al., 2020) shares similar ideas with CoMPNet, which uses
Variational Auto Encoders (VAE) (Kingma and Welling, 2014)
to learn implicit constraint manifolds from data and generates
feasible samples for SBMPs’ framework. Reinforcement learning
based motion planning is another fast-growing method (Bing
et al., 2019). Bing et al. (2020) proposed an IRL-based controller
based on the adversarial inverse reinforcement learning (AIRL)
algorithm to realize the energy-efficient and damage-recovery
slithering gait of a snake-like robot. What’s more, some neuro-
based motion planning methods inspired by the biological
intelligence of living creatures have also been proved to be
feasible and efficient (Bing et al., 2018).

The above methods can solve the problem of local planning
and sampling on the manifold, but the path still needs to be
optimized. Dragan et al. (2011) extend CHOMP to constrained
CHOMP, which uses the method of Lagrange multipliers to
set up a gradient descent problem to optimize trajectories
under constraints. Based on this, He et al. (2013) propose
Multigrid CHOMP to improve the runtime of constrained
CHOMP without significantly reducing optimality. However, as
mentioned above, when the CHOMP-like methods inevitably
get stuck in local minima, the collision-free condition of the
trajectory will be broken, so will the task constraints. In our
framework, both obstacle avoidance and task constraints will be
strictly satisfied.

3. METHOD

In this section, we will deduce the mathematical principle
and updating law of the trajectory optimization strategy. As a
basis for collision-free optimization, the collision backtracking
mechanism will be introduced in detail. Then we explore the
feasibility of using stepwise projection technique to apply the
proposed method to constrained motion optimization. Finally,
to quantify the trajectory quality in subsequent experiments, two
evaluation indicators are briefly introduced.

3.1. Mathematical Principle
The nomenclature is shown in Table 1. Like most GBOs, the
method treats the trajectory as a point in an infinite dimensional
parameter space. The number of robot joints is n, which can
be expressed as (J1, J2, · · · , Jn). The configuration space of the
robot is Q ⊂ R

n. The subset of Q composed of collision-free
configurations is collision-free configuration space Qcol_free. The
path points number on the trajectory ism, so the robot trajectory
can be expressed as ξ ∈ R

mn:
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TABLE 1 | Nomenclature.

Q Robot configuration sapce

Qcol_free Collision-free configuration sapce

ξ Robot trajectory

U(ξ ) The optimization object funtion

gk The gradient of Optimization

αk The update rate

K The finite differential matrix

u The unit vector

J The Jacobian matrix

J+ The Jacobian pseudo inverse matrix

P The Points in cartesian space

q The Points in robot configuration sapce

C The linear equality constraints

S The linear inequality constraints

H The Hessian matrix

Bt The bounding box of task constraints

MC The constraint manifold

TE The execution time of trajectory

R The smoothness ratio

P+, L+,P−, L+ The motion primitives

ξ = (q01, q
1
1, . . . , q

m
1 ,

︸ ︷︷ ︸

J1

q02, q
1
2, . . . , q

m
2 ,

︸ ︷︷ ︸

J2

. . . , q0n, q
1
n, . . . , q

m
n ,

︸ ︷︷ ︸

Jn

) (1)

Because the method treats collision avoidance and task
constraints as hard constraints rather than optimization terms,
the cost function only contains the smooth term fsmooth(ξ ) to
measure dynamical quantities across the trajectory. fsmooth(ξ ) can
be precisely computed by a sum of squared derivatives.

For each joint’s trajectory ξi, i ∈ {1, 2, . . . , n}, a finite
differential matrix K can be constructed as:

K =














1 0 0 0 0 0
−2 1 0 · · · 0 0 0
1 −2 1 0 0 0

...
. . .

...
0 0 0 1 −2 1
0 0 0 · · · 0 1 −2
0 0 0 0 0 1














⊗ Im×m (2)

which will make:

ξ̈i = Kξi (3)

ξ̈i
T
ξ̈i = ξTi (K

TK)ξi = ξTi Rξi (4)

where R = KTK, and ξTi Rξi represents the sum of squared
accelerations along the ith joint’s trajectory.

In order to calculate the weighted sum of the smooth cost of
all joints’ trajectories, we construct a positive Hessian matrixH:

H =








w1R 0 · · · 0
0 w2R · · · 0
...

...
. . .

...
0 0 · · · wnR








(5)

where wi is the weight of the joint Ji.
In this way, the optimization object can be formulated as:

U(ξ ) =
1

2

n
∑

i=1

wi‖ξi‖
2
R =

1

2
ξTHξ (6)

Through a first order Taylor expansion, the optimization object
can be expressed as:

U(ξ ) ≈ U(ξk)+ gTk (ξ − ξk) (7)

where gk is the gradient of the optimization object at ξk:

gk = ∇(U(ξk)) = ∇(
1

2
ξk

THξk) = Hξk (8)

Further, the update rule after adding regular term can be
expressed as:

ξk+1 = argmin
ξ
{U(ξk)+ gTk (ξ − ξk)+

λ

2
‖ξ − ξk‖

2
M} (9)

Let 1ξ = ξ − ξk, then:

1ξ = argmin
1ξ
{U(ξk)+ gTk 1ξ +

λ

2
‖1ξ‖2M} (10)

where the notation ‖1ξ‖2M denotes the norm of displacement
between the current trajectory and the updated trajectory with
respect to the Riemannian metric M. λ is a normalizing factor
to balance the trajectory smoothness and the updating of
step length.

Therefore, the trajectory updating process without constraints
can be expressed as:

xik+1 = ξk + αk1ξk (11)

where αk is the update rate of the kth iteration.
So far, we have deduced the optimization process without

considering collision avoidance and task constraints.

3.2. Collision Backtrack
The initial trajectory ξ0 which needs to be post process is totally
collision-free, and most of SBMPs can guarantee this:

q ∈ Qcol_free, ∀q ∈ ξ0 (12)

But the changes to the trajectory caused by the optimization
process may lead to violation of the collision-free state. So
we propose the collision backtrack mechanism to convert
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FIGURE 3 | Diagram for collision backtrack.

the collision avoidance condition into linear constraints of
quadratic programming.

Assume that after i iteration, the trajectory is still collision-
free. In i + 1 iteration, a collision occurs at τ [τ ∈ (0, 1)]
moment, and the collision points on the two rigid bodies are
P1 and P2, respectively. We backtrack to the previous collision-
free trajectory ξi at τ moment, and the two states are shown in
Figure 3.

The unit vector between two points P1,P2 is defined as u:

u =
M1

2(ξi(τ ))P2 − P1

‖M1
2(ξi(τ ))P2 − P1‖

(13)

where M1
2(q) = M1(q)

−1M2(q), is the transformation matrix
between the two rigid bodies when the robot configuration is q,
which can be solved by positive kinematic.

In order to ensure there is no more collision at this position
in future optimization, we should forbid P1 and P2 to move
toward each other. Mathematically, the projection of the relative
position change vector 1x of the two points on u should be ≥0.
As shown in Figure 4, we discuss the two situations according to
the location of the collision points.

If one of the collision rigid bodies is on the robot, the other is
on a static obstacle:

uTJP21qτ = uTJP2Xτ (ξc+j − ξc) ≥ 0 (14)

where JP2 is a 3 × n Jacobian matrix, and 1qτ is the joints
increment of the robot between ξc(τ ) and ξc+j(τ ).

To extract the robot configuration at τ moment, a n × mn
sparse matrix Xτ is constructed. Since the path is a combination
of piecewise linear sub-paths, we can find the two path points
qk and qk+1 adjacent to τ in the time dimension. There exists a

β ∈ [0, 1] that enables ξ (τ ) to be written in linear combination
of two path points:

ξ (τ ) = qk+β(qk+1−qk) = (1−β)qk+βqk+1,β ∈ [0, 1] (15)

B =

[
0, · · · , 0, 1− β ,
︸ ︷︷ ︸

k

β , 0, · · · , 0
]

1×m

(16)

For every joint of the robot:

Xτ =








B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B








n×mn

(17)

Similarly, if the two collision rigid bodies are both on robot, the
linear constraint can be expressed as:

uT(JP2 − JP1 )1qτ = uT(JP2 − JP1 )Xτ (ξc+j − ξc) ≥ 0 (18)

Extract the known term of the Equation (14) and (18):

8 =

{

uT(JP2 − JP1 )Xτ , P1,P2 both on robot

uTJP2Xτ , P2 on robot
(19)

Then the linear constraints for quadratic programming can be
expressed as:

C =








81

82

...
8k







⇒ C1ξ ≥ 0 (20)
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FIGURE 4 | (A) One rigid body is on the robot, while the other is on a static obstacle; (B) Both rigid bodies are on the robot. Diagram for linear constraints

calculation.Diagram for linear constraints calculation. ξc(τ ) is the state after collision backtracking. ξc+j (τ ) is the state after c+ j iteration in the future. 1x is the relative

position change between the collision points, and the green line represents 1x projection on u.

In addition to collision avoidance constraints, the start and
ending points of the trajectory should be fixed. We use matrix
D to extract the start and ending points of the strajectory:

D =
[

1.0, 0, 0, · · · , 0, 0, 1.0
]

1×m
(21)

S =








D 0 · · · 0
0 D · · · 0
...

...
. . .

...
0 0 · · · D








n×mn

(22)

Then the constraint condition can be expressed as:

S1ξ = 0 (23)

Ignoring the constant terms of Equation (10), and combining
the constraints of Equations (20, 23), the linear constrained
Quadratic programming (QP) problem for trajectory
optimization can be formulated as following:

min
1ξ

λ

2
1ξTM1ξ + gT1ξ

C1ξ ≥ 0

S1ξ = 0.

(24)

3.3. Algorithm
In this section, the process of trajectory optimization by linear
constrained quadratic programming (LCQP) will be described in
the form of pseudo codes.

Algorithm 1: Quadratic Program-based motion trajectory
postprocess.

Input: Initial collision-free trajectory needs to be optimized
ξ0

Output: Optimized collision-free trajectory ξ0
1 ξ0 ← randomShortcut(ξ0);

2 initialConstraints(S);

3 while True do
4 1ξ ← QPIterate(ξ0,C, S);

5 if (‖1ξ‖ < 10−3 and !collosion) then
6 return ξ0;
7 end

8 ξ1 ← ξ0 + α1ξ ;

9 jointProjection(ξ1);

10 manifoldProjection(ξ1,Bt);

11 if (PathValidate(ξ1)) then
12 ξ0 ← ξ1;

13 collision← False;

14 end

15 else

16 collision← True;

17 8← computeCollisionConstraint(ξ0, ξ1);

18 C← addToLinearConstraints(8);

19 end

20 end

Frontiers in Neurorobotics | www.frontiersin.org 7 August 2021 | Volume 15 | Article 724116

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu et al. Better Collision-Free Trajectory for Robot

As shown in Algorithm 1, the input of the algorithm is a
collision-free trajectory generated by SBMPs. The output is the
optimized trajectory by LCQP.

Before the gradient-based optimization, We use
randomShortcut function to remove redundant motions,
which will reduce the dimensionality of the trajectory parameter
space and simplify the subsequent optimization problem. But for
the trajectories with task constraints, this will not be performed.
Because Short-cut will greatly reduce the resolution of the
trajectory, which makes the constraints unsatisfactory in some
local positions. Then the boundary conditions at both ends of
the trajectory are initialed to linear constraints S.

Lines 3 to 20 are the process of trajectory optimization. Based
on the current linear constraints C and S, the incremental of the
trajectory1ξ can be calculated by the LCQP which is formulated
as Equation (24). If the incremental of trajectory is small enough
and the previous trajectory ξ0 is totally collision-free, ξ0 will
be returned as the optimization result. Otherwise, the candidate
trajectory ξ1 will be updated according to Equation (11).

The robot’s configuration might be outside of hard joint limits
after the update. To ensure the trajectory satisfies the joint
limits, we use the CHOMP’s technique to handle joint limits by
smoothly projecting joint violations. These processes are realized
by jointProjection funtion at Line 9. To ensure the trajectory
satisfies the task constraints, we use manifoldProjection to
project the trajectory onto constraint manifold. This process will
be discussed in detail in see section Task Constraints.

Then we perform an overall collision check on ξ1. If ξ1 is
totally collision-free, ξ0 will be assigned to ξ1, and the collision
flag of ξ0 will be set to False. The collision check module
is realized by Flexible Collision Library (FCL) (Pan et al.,
2012a), which detect collision by calculating whether the two
model overlap.

If a collision occurs somewhere in ξ1,
computeCollisionConstraint function is used to calculate
the linear constraint 8 of the collision point. The function is
realized by the collision backtrackingmethod in section Collision
Backtrack. 8 is added into linear constraints C to ensure there is
no more collision at same position in future optimization.

3.4. Task Constraints
As mentioned before, the task constraints will make the
feasible configurations form a lower-dimensional manifold in
the ambient space. Short-cuts will cause direct damage to the
task constraints which have been met. Constrained CHOMP
also cannot strictly meet the task constraints. In our framework,
we project every candidate trajectory produced by optimization
iteration onto the constrained manifold before collision check,
as shown in Figure 5. This guarantees the task constraints are
strictly met from the source.

The projection onto constraint manifold is described in
Algorithm 2. In order to make the trajectory satisfy the task
constraint as much as possible, the original trajectory produced
by SBMPs has a short step length. The trajectory’s projection can
be discretized into path points’ projection.

The task constraints can be described as a bounding box Bt in
cartesian space to constrain the pose of the robot’s end-effector.

FIGURE 5 | The candidate trajectory is projected onto the constraint manifold.

MC is the constraint manifold. ξd is the candidate trajectory produced by

LCQP iteration which may slightly violate task constraints. After projection

operations, ξp returns to the manifold surface, which means the constraints

are strictly satisfied again.

Algorithm 2:Manifoldprojection(ξ , Bt).

Input: trajectory needs to be projected ξ ,
constraint bounding box Bt

Output: projected trajectory ξ

1 for i = 0 to Size(ξ ) do
2 qs ← ξ [i];
3 while True do
4 1x← DisplacementFromConstraint(qs,Bt);
5 if ‖1x‖ < ǫ then

6 break;
7 end

8 J← GetJacobian(qs);

9 1qerror ← JT(JJT)-11x

10 qs← (qs −1qerror);

11 end

12 ξ [i]← qs;

13 end

If the end-effector’s pose is in the bounding box or the distance to
Bt’s boundary is small enough, it can be considered that the task
constraints are satisfied. The detailed calculation process can be
found in our previous research work (Zha et al., 2018).

For configurations that do not satisfy the task constraints, we
use the Gauss-Newton process based on Jacobian pseudo inverse
to find nearby feasible configurations. As shown in lines 9 to 11,
Jacobian pseudo inverse J(q)+ is used to compute the increment
of joint displacement. This update can make qs move toward Bt,
until the distance to Bt is small enough.

The above projection technique for solving task constraints
has been proved to be reliable in many cases (Stilman, 2007;
Berenson et al., 2011; Zha et al., 2018). This ensures the optimized
trajectory always satisfies the task constraints.

3.5. Evaluation of Trajectory Quality
Quantitative evaluation of trajectory quality is necessary to
prove the effectiveness of optimization algorithm. In this
section, we will introduce two evaluation indicators to quantify
trajectory quality.
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Under the premise of bounded acceleration and bounded
speed, the shorter the execution time is, the higher the quality
of the trajectory will be. The interpolation method of line and
parabola combination proposed by Hauser and Ng-Thow-Hing
(2010) is used to calculate the execution time.

Assuming that each joint of the trajectory is independent,
the execution time between the two path points depends on the
slowest single-joint trajectory within the motion boundary. So
the execution time TE can be formulated as:

TE = max
k

f (xk1, x
k
2, v

k
1, v

k
2, v

k
max, a

k
max) k = 1, 2, · · · , n (25)

where x1 and x2 are two path points, and v1 and v2 are velocities
of the two points, respectively. Themax velocity limit is vmax. The
max acceleration limit is amax.

Then we define four motion primitives: P+, P−, L+, L−,
where P+ and P− represent parabolas with acceleration
amax and −amax, and L+ and L− represent a straight line
with velocity of vmax and −vmax, respectively. These motion
primitives can be combined into four feasible motion templates:
P+P−, P−P+, P+L+P−, P−L−P+. We calculate the execution
time of each motion template on each sub-path and take the
shortest one as the final execution time of the sub-path.

For P+P−, the inflection time tP when the trajectory stops
accelerating and starts decelerating can be solved by following
quadratic equation:

amaxt
2 + 2v1t + (v21 − v22)/(2amax)+ x1 − x2 = 0 (26)

The solution needs to meet the velocity boundary 0 ≤ t ≤
(v2 − v1)/amax. If the solution does not exist, the template is not
valid. Otherwise, the execution time is T = 2tP+ (v1− v2)/amax.
Besides, v1+ tPamax should be within the velocity boundary vmax

too. The case of the P−P+ template is similar by negating amax in
the above equations.

For P+L+P−, we calculate the time duration tL of the straight-
line phase by the following formula:

tL = (v22 + v21 − 2v2max)/(2vmaxamax)+ (x2 − x1)/vmax (27)

where tP1 = (vmax − v1)/amax is the time length of the first
parabola, and tP2 = (v2 − vmax)/amax is the time length of the
second parabola.

So the total execution time is given by

T = tP1 + tL + tP2 (28)

Similarly, solution for P+L+P− can be solved by negating amax

and vmax in the above equations.
Based on the execution time TE, we introduce smoothness

ratio R which is proposed by Lau and Byl (2015). This indictor
is the ratio of the execution time for resulting joint trajectories
calculated according to both velocity and acceleration constraints
to the execution time with only velocity limited. A smoother
trajectory has a smoothness ratio closer to 1, because it does not
require significant acceleration or deceleration and spends most

of the trajectory with at least one joint moving at its maximum
velocity. The smoothness ratio can be formulated as:

R =
TE

6i∈{0,1,...,N}
maxj|qi(j)−qi−1(j)|

vmax

(29)

where N is the number of waypoints in the trajectory, and
qi(j) corresponds to the value of joint j at the ith waypoint in
the trajectory.

Execution time and smoothness ratio will be used to qualify
the trajectory quality in the following experiments.

4. EXPERIMENTS

In this section, the experiment results of the proposed method
and of other trajectory optimization methods will be shown
and analyzed. The SBMP algorithms used in this paper are
called from OpenMotion Planning Library (OMPL 1.3.1) (Sucan
et al., 2012). The collision check module is supported by the
Flexible Collision Library (FCL) (Pan et al., 2012a). All the
experiments are implemented on an Intel Core i7–7,700 HQ 2.8
GHz laptop with 16 GB RAM. Robot Operating System (ROS)
kinetic and Gazebo are used to build the simulation platform. In
all experiments, we set the update ratio α = 0.2 and the task
constraint tolerance ǫ = 0.1.

4.1. 2D Experiments
The trajectory in the robot’s configuration space has high
dimension, which cannot be visually observed. Therefore, we
use a 2D experiment to visualize the optimization effect of the
algorithm, and this process will naturally extend to multiple
dimensions later.

As shown in Figure 6, we use a different step length λ for
the RRT algorithm, and use the proposed method to optimize
the trajectory produced by RRT. The size of the 2D maps are
1 × 1 rad2 which means the joint limit is set as 0 rad to 1 rad.
Velocity and acceleration limits used to calculate the execution
time are set to 1.2 rad/s and 1.5π rad/s2, respectively. These
values correspond to the velocity and acceleration constraints for
RoboSimian (Satzinger et al., 2015). The terminal condition of
the QP iteration is ‖1ξ‖ < 10−3.

Intuitively, the unnecessary jerk and motion are removed
from the trajectory by LCQP, which makes the trajectory
smoother and more natural. In the 2D maze-like environment
of Figures 6A–D, because of the random short-cut before
optimization, the trajectories with small λ have been simplified,
which greatly reduces the scale of solving QP problem, and
makes the optimization quality of different trajectories has
good consistency. In the environment with randomly-generated
obstacles, the short-cut can only remove a small amount of
redundant motions, but the optimized trajectory by LCQP still
has good smoothness. And it’s obvious that the execution time
and smoothness of the trajectories generated by the samemethod
showed similar trends. So we guess, trajectories with better
smoothness are more likely to take less execution time.

Then, We use the other two trajectory optimization
methods as comparisons to conduct quantitative experiments
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FIGURE 6 | (A)λ = 0.02; (B) λ = 0.05; (C) λ = 0.10; (D) λ = 0.15; (E) λ = 0.02; (F) λ = 0.05; (G) λ = 0.10; (H) λ = 0.15. 2D experiments on a maze-like map (A–D)

and a randomly-generated obstacles map (E–H) with different values of the step length λ. The red trajectory is the solution of RRT algorithm, which is a linear polygon

path. The blue trajectory is the solution optimized by LCQP.

FIGURE 7 | (A) Execution time of maze-like map; (B) Smoothness ratio of maze-like map; (C) Execution time of randomly-generated obstacles map; (D) Smoothness

ratio of randomly-generated obstacles map. The quantitative evaluation results of three post-trajectory methods in 2D experiments.

to verify the intuitive judgment. One of the comparison
methods is B-spline Short-cut (Maekawa et al., 2010),
which uses a B-spline curve to replace the redundant sub-
paths. Another method is TrajOpt (Schulman et al., 2013),
which uses sequential convex optimization to optimize the

trajectory from any state, which is essentially a motion
planning method. But it also can be used as a post-process
algorithm. The results of the three optimization methods
are represented by box-plots of Execution time TE and
Smoothness ratio R in Figure 7. For some items with great
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TABLE 2 | Results of the 2D-experiments.

Average planning time (ms) Average execution time (s) Average smoothness ratio

λ(rad) 0.02 0.05 0.10 0.15 0.02 0.05 0.10 0.15 0.02 0.05 0.10 0.15

Maze-like

RRT Only 27.16 10.33 7.789 8.354 37.65 25.40 14.91 11.80 18.39 14.47 8.247 6.321

RRT+Bspline-SC 39.37 22.15 15.32 13.27 7.375 7.900 7.410 8.026 3.810 4.026 3.742 4.014

RRT+TrajOpt 892.4 648.3 422.1 377.0 13.29 8.974 7.532 5.988 6.182 4.750 3.663 2.832

RRT+LCQP 306.5 282.2 230.0 197.6 6.406 6.263 6.133 5.690 3.213 3.081 3.013 2.798

Randomly-generated obstacles

RRT Only 6.070 3.540 4.063 5.556 19.34 14.96 12.45 9.722 13.32 9.954 7.244 4.983

RRT+Bspline-SC 22.15 18.27 16.52 16.03 5.664 5.627 5.624 5.546 4.353 4.446 4.358 4.136

RRT+TrajOpt 789.2 623.5 479.3 457.6 6.776 5.110 4.023 3.474 5.063 3.784 3.124 2.726

RRT+LCQP 195.1 132.8 105.1 98.89 4.947 4.132 3.887 3.576 3.931 3.348 3.048 2.743

FIGURE 8 | Planning scene of the robot experiment. A 6-DOF UR10 robot is

used to conducted the motion task. The red trajectory of the robot end

effector is the solution of RRT algorithm. The blue trajectory is the solution

optimized by LCQP.

disparity that are inconvenient to indicate in the box plots,
we display them in Table 2. Each item is obtained by 50
repeated tests.

The original trajectories generated by RRT have some
unnecessary redundant or jerky motions, which results in long
execution time and large smoothness ratio. B-spline Short-cut
is efficient and easy to implement. It can remove redundant
motions and improve trajectory quality in a short planning
time, making it a cost-effective method. But in the case of
a large step length (Figure 6D) and many narrow passages
(Figures 6E–H), the effectiveness of Short-cut is inferior to GBOs
because of its blindness and inflexibility. The optimization effect
of TrajOpt is similar to LCPQ when λ is large. But because of the
high dimension of the parameter space and necessary distance
calculation, the planning time of TrajOpt is much longer than
LCQP in all test items. LCQP combines the advantages of Short-
cuts and GBOs, simplifying the original trajectory before QP
optimization by random Short-cut, which makes the optimized
trajectory much better than TrajOpt in small λ cases and has less
computational overheads. Besides, compared with the B-spline

Short-cut, LCQP can make good use of gradient information to
converge at a lower cost to yield a better trajectory.

The above 2D experiments prove that LCQP is a cost-
effective GBO method. We will extend the methods to high
dimensional trajectories in the robot configuration space to verify
its effectiveness.

4.2. Robot Trajectory Optimization
The robot experiment is conducted on a 6-DOF Universal Robot
10 (UR10) robot in a common family scene as shown in Figure 8.
We use a λ value of 0.2 for the RRT algorithm, and a terminal
condition ‖1ξ‖ < 10−4 for LCQP. The joint limits of the robot
is −2π to 2π rad, and the velocity and acceleration boundaries
are the same as 4.1.

We test the three optimization methods 50 times in the
scenario of Figure 8. The high dimensional trajectories in C-
space cannot be intuitively displayed, so the trajectories of the end
effector which indirectly reflect the optimization effect are shown
in Figure 8. The quantitative experimental results of the planning
time TP, the execution time TE and the smoothness ratio R are
shown in Table 3.

The original trajectories without any post-process
have poor quality, and because of the randomness of
RRT algorithm, the standard deviation of the trajectory
quality is large. B-Spline Short-cut improves the original
trajectory to some extent, but still cannot achieve the
optimization effect of GBO methods. The proposed
method LCQP does not require any obstacle distance
calculations, making the planning time much shorter than
TrajOpt. Since LCQP and TrajOpt are essentially quadratic
programming methods, there is no big difference in the
optimization effect, which is consistent with the results in the
2D experiments.

4.3. Optimization of Task Constrained
Trajectories
Task constraints are common in robot operations, like keeping a
cup of water upright, opening a door or a drawer or coordinating
operation with other equipment. In this section, we will choose
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TABLE 3 | Results of the robot experiments.

TP (s) TE (s) R

µ σ µ σ µ σ

RRT Only 0.391 0.024 14.86 8.839 8.811 1.236

RRT + Bspline-SC 0.915 0.111 9.172 4.144 5.266 0.736

RRT + TrajOpt 4.629 0.277 4.324 1.307 3.064 0.505

RRT + LCQP 1.301 0.326 4.209 0.745 2.789 0.493

FIGURE 9 | (A) A single-arm robot transfers a cup of water in Scene 1; (B) A single-arm robot transfers a cup of water in Scene 2; (C) A dual-arm robot transfers a

pallet in Scene 3; (D) A dual-arm robot transfers a pallet in Scene 4. The snapshots of robots performing task constrained trajectories which are optimized by LCQP in

different family scenes.

two typical task constraints for the experiment. As mentioned
in section Related Work, Short-cuts and GBOs will destroy the
task constraints which are already satisfying by making the path
on manifold drift away from the constraint manifold. Therefore,
B-spline Short-cut and TrajOpt are no longer applicable in
this section.

A typical task constraint is a 6-DOF robot holding a
cup and keeping it upright during transfer, as shown in

Figures 9A,B. Pitch and roll are restricted in this task,
which makes the feasible configurations form a continuous
four-dimensional manifold in C-space. In Figures 9C,D,
two end-effectors controlled by one upper computer work
together to maintain a pallet’s levelness, and the upper
computer tries to optimize the trajectory of the pallet. In
this case, the dual-arm robot forms a kinematic closed chain.
The configurations that satisfy the constraint constitute a
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TABLE 4 | Experimental results of robot motion planning under task constraints.

TP (s) TE (s) R

µ σ µ σ µ σ

Scene 1 (Single-arm)

AG-CBiRRT Only 0.641 0.151 10.68 1.638 4.560 0.485

AG-CBiRRT + LCQP 4.310 1.061 6.505 1.235 3.307 0.319

Scene 2 (Single-arm)

AG-CBiRRT Only 0.675 0.161 12.89 2.106 4.578 0.427

AG-CBiRRT + LCQP 6.012 1.281 7.346 1.369 2.812 0.321

Scene 3 (Dual-arm)

AG-CBiRRT Only 17.34 5.786 10.92 3.527 4.283 0.475

AG-CBiRRT + LCQP 22.49 6.293 7.677 2.971 3.243 0.423

Scene 4 (Dual-arm)

AG-CBiRRT Only 0.655 0.124 11.65 1.370 4.411 0.346

AG-CBiRRT + LCQP 5.962 1.804 8.992 1.063 3.219 0.297

continuous four-dimensional manifold in a 12-dimensional
C-space.

To solve the above task constraints, we use Approximate
Graph-based Constrained Bi-direction Rapidly-Exploring Tree
(AG-CBiRRT) (Zha et al., 2018) which is also a SBMP to plan
the original trajectory. AG-CBiRRT improves upon Constrained
Bi-direction Rapidly-Exploring Tree (CBiRRT) (Berenson et al.,
2011) which can solve various task constraints stably and
quickly by manifold metric learning. The update rate α is
an empirical value obtained by multiple tests, which is set to
0.2 in all experiments. The step length λ is set to 0.2 and
0.4 rad for a single-arm scenario and a dual-arm scenario,
respectively. The terminal condition and robot parameters are
the same as 4.2, but the simplification process based on random
Short-cut (Line 1 of Algorithm 1) before QP iteration will be
not executed.

The snapshots of robots performing task constrained
trajectories which are optimized by LCQP are shown in Figure 9.
Since the trajectory of robots’ high-dimensional C-space cannot
be displayed, we use the trajectories of the operated object to
express the optimization effect. Intuitively, LCPQ optimization
removes a lot of redundant motions in the trajectories, andmakes
them smoother and more natural. Besides, LCQP optimization
enables the robot to meet the task constraints at any moment in
the motion process.

As shown in Table 4, the performance comparison between
the optimized trajectories and the original ones under the four
planning scenarios are obtained through 50 repeated tests. µ

and σ are the mean value and the standard deviation of each
variable, respectively. The execution time of the LCQP optimized
trajectory is significantly shorter than the original trajectory,
which can make up for the calculation time overheads for LCQP
to some extent. Besides, LCQP removes most of unnecessary
acceleration and deceleration, which makes the smoothness ratio
of the optimized trajectories closer to 1. TE and R have smaller
standard deviation, which means the optimized trajectory has
better quality consistency.

A series of experiments prove that LCQP can
significantly smooth the trajectories and improve the
quality consistency while ensuring that the task constraints
are met.

4.4. Optimization for Passive Chain
Constrained Tasks
When a robot manipulates objects with passive chain constraints
like doors, drawers or laptops, the actual trajectory of the end
effector needs to exactly match the movements of the moving
part, which is a stricter task constraint (The end effector and the
moving part of the object are considered to be rigidly connected
during manipulation). To solve this problem, we assume that
the robot and the object are connected by a virtual spring
damper, which is implemented by an admittance controller at the
algorithm level:

BẊ + K(X − Xr) = Fext (30)

where Fext is the external force on the end effector, which
can be obtained by a six-dimensional force/torque sensor
and some post-processing processes, such as filtering, gravity
compensation, dead zone and saturation. K is a stiffness matrix.
Xr is the reference position which is an interpolation of the
trajectory generated by the motion planner, and X is the target
position generated by the admittance controller.

We test the actual effect of AG-CBiRRT generated trajectories
and LCQP optimized trajectories on these passive chain
constrained tasks, respectively. As shown in Figure 10, because
of the admittance controller, the geometry of the two trajectories
is almost the same when they are actually executed, but the
force/torque sensor data can still reflect the difference of the
trajectories’ quality.

During the above manipulation processes, the force values
in X, Y, and Z directions under Force/Torque sensor frame are
shown in Figure 11. In order to avoid unnecessary vibration, the
admittance controller is used to compensate the end-effector’s
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FIGURE 10 | (A) Opening the drawer; (B) Opening the door. The robot performs the manipulation task under the passive chain constraints.

FIGURE 11 | (A) The force value of opening drawer process; (B) The force value of opening door process. The output force values in three directions of Force/Torque

sensor after gravity compensation.

position only when the force exceeds the dead zone threshold.
By observing the change of forces which are perpendicular
to the movement direction of the end-effector (X Force in
Figure 11A and Y Force in Figure 11B), the LCQP optimized

trajectories have less violation to the closed chain constraints,
which show a more stable force change. Besides, the forces
in the direction of the end-effector’s movement (Z Force in
Figures 11A,B) also reflect the optimized trajectory can be
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executed more smoothly than the original trajectory. The
above experiments show that LCQP optimization can not
only remove the unnecessary accelerations, but also make the
trajectories better meet the task constraints through repeated
manifold projections.

5. CONCLUSION

This paper introduces a trajectory post-process method that
uses linearly constrained quadratic programming to transform
a randomly polygonal collision-free trajectory produced by
SBMPs into a smoother one. This method combines the
advantages of GBO and Short-cut. Firstly, we use randomly
Short-cut to remove redundant motions in initial trajectory.
Then, quadratic programming is used to optimize the trajectory
in an infinite dimensional parameter space by a smooth
gradient function. We check the feasible state of the trajectory
after each optimization update. If a collision occurs, a linear
constraint will be added to ensure there is no more collision
at this position in future optimization, and the trajectory is
backtracked to the previous state. This mechanism ensures the
security of the optimized trajectory. Furthermore, we extend the
method to task constrained motion planning, which requires
the trajectory to be located on the surface of a nonlinear
low-dimensional manifold. The projection technique is used
to ensure the optimized trajectory always satisfies the task
constraints. Finally, we introduce two quantitative indicators
to evaluate path quality, and conduct a series of experiments
for comparison with the state-of-the-art trajectory post-process
methods. The experimental results show the proposed methods
can significantly improve the trajectory quality on the basis of
satisfying environment and task constraints.

However, LCQP is a gradient-based numerical optimization
method, which needs more time overheads compared with
SBMPs and Short-Cuts. This will be a bottleneck in practical
applications. So in the future, we will improve the LCQP

efficiency by parallel computation and GPU acceleration, and try
to reduce the time overheads to the same order of magnitude as
SBMPs. Besides, we will apply the LCQP tomore robot platforms,

especially legged robots, and test the robustness of the algorithm
in various complex scenarios.
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