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Abstract

Grassland birds are declining faster than any other avian guild in North America and are

increasingly a focus of conservation concern. Adaptive, outcome-based management of

rangelands could do much to mitigate declines. However, this approach relies on quantita-

tive, generalizable habitat targets that have been difficult to extrapolate from the literature.

Past work relies heavily on individual versus population response, and direct response to

management (e.g. grazing) versus response to outcomes. We compared individual and

population-level responses to vegetation conditions across scales to identify quantitative

targets of habitat quality for an imperiled grassland songbird, the chestnut-collared longspur

(Calcarius ornatus) in northern Montana, USA during 2017–2018. We estimated nest den-

sity and nest survival within 9-ha survey plots using open N-mixture and nest survival mod-

els, respectively, and evaluated relationships with plot- and nest-site vegetation conditions.

Plot-scale conditions influenced nest density, whereas nest survival was unaffected by any

measured condition. Nest-site and plot-scale vegetation measurements were only weakly

correlated, suggesting that management targets based on nest sites only would be incom-

plete. While nest survival is often assumed to be the key driver of bird productivity, our

results suggest that nest density and plot-scale conditions are more important for productiv-

ity of longspurs at the core of the breeding distribution. Habitat outcomes for grassland birds

should incorporate nest density and average conditions at scale(s) relevant to management

(e.g. paddock or pasture).

Introduction

The decline of grassland bird populations in North America during the past 40 years [1,2] has

increased interest in managing habitats for these species. However, practical guidelines for

rangeland management to benefit birds, such as grazing or burning regimes, has been difficult

to generalize because species response is highly dependent on local context. Somershoe et al.
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[3] reviewed the effects of grazing management on four priority grassland bird species of the

northern Great Plains. They found that each species was shown to respond positively, nega-

tively or not at all to grazing, depending on local context. For example, season-long grazing

was associated with increased abundance of chestnut-collared longspurs (Calcarius ornatus) in

Alberta [4,5], decreased abundance in North Dakota [6] and had no effect on birds in Montana

[7]. Lipsey and Naugle [8] showed that response to grazing across several grassland species was

highly dependent on past precipitation and soil productivity.

Due to the complexities of weather, soils, plant communities, topography and historical

land use, there is increasing support for a strategy of “adaptive management for outcomes” in

rangelands [9]. This approach leverages the skills and knowledge of local land managers to

produce quantifiable outcomes or targets which are then monitored adaptively. The methods

for achieving a given outcome might differ substantially in different contexts, but this becomes

less important because the outcome itself is the focus. Indeed, the U.S. Bureau of Land Man-

agement (BLM), one of the largest rangeland managers in North America, is moving towards

“outcome-based grazing” in several regions, with outcomes linked to reducing invasive annual

grass encroachment and fire risk [10].

The outcome-based approach holds great promise to unify rangeland management recom-

mendations for grassland birds in spite of contextual variability across the breeding range.

However, the task of quantifying specific outcomes associated with high habitat quality for

these species becomes critical. Habitat quality is highly scale-dependent and can differ depend-

ing on whether individual or population-scale responses are considered [11]. For example, an

area with a few rich concentrations of resources can be highly beneficial to certain individuals,

whereas an area with abundant, lower-quality resources might support a larger, more persis-

tent population [11]. One limitation of grassland bird-habitat research to date is that the scale

of variables quantified, in general, has not matched the scale of population response to man-

agement. Research has primarily focused on individual response to local-scale conditions (i.e.,

at a nest) whereas management affects large areas and is more likely to elicit population-level

response (e.g., at a pasture or ranch scale). Here, we compare individual and population-level

responses to vegetation conditions across scales to identify quantifiable components of habitat

quality (i.e., management outcomes) for an imperiled grassland songbird in Montana, the

chestnut-collared longspur (hereafter “longspur”).

Ecological theory emphasizes habitat quality for individuals over groups or populations

because natural selection acts on the individual [11]. By contrast, populations are often the

focus of conservation management. For songbirds, habitat quality has typically been inferred

from nest survival under the assumption that conditions associated with successful nests are

optimal for population productivity [12,13]. However, if factors influencing nest placement or

initiation decisions differ from those affecting nest survival, then management recommenda-

tions based on survival alone may be inadequate or even inappropriate. Conditions promoting

high nest densities could have greater influence on population-level productivity than condi-

tions associated with individual nest survival [14].

Scale mismatch between independent (habitat) variables and management actions repre-

sents another limitation to the development of effective management guidelines for grassland

birds. Previous research has typically measured vegetation conditions at nest-sites and com-

pared these to nearby random points or transects [15–17]. This body of work has identified

important conditions associated with nest survival. However, extrapolation of these findings

to the scale of management actions (e.g., paddock) relies on the assumption that conditions at

locations used by wildlife, such as nest-sites, are closely correlated to conditions at the broader

scale. If this assumption is violated, outcomes based on nest site vegetation parameters have

limited utility to land managers.
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We used longspurs as a model to separate and evaluate these components of population

productivity in an area of northern Montana representing the core of their extant distribution.

Chestnut-collared longspurs are of particular interest for conservation and management due

to their severe rates of population decline, estimated at 4.2% annually with an overall decline

of 87.3% since the 1960’s [1,3]. Declines are variously attributed to conversion, fragmentation,

and degradation of grasslands and the resulting loss of high-quality nesting habitat [3,16], but

mechanisms of population performance are generally unknown. Our objective was to define

management outcomes for this species that would be most closely linked to population pro-

ductivity. Specifically, we evaluate: 1) the relationship between nest density and nest survival,

2) the relationship between nest-site and plot-scale vegetation conditions, 3) the effect of plot-

scale conditions on nest density, and 4) the effects of nest-site and plot-scale conditions on

nest survival and overall population productivity.

Materials and methods

Study area

Our study area was located in northern Phillips County, Montana, ranging from 24 km south

of Malta, MT to eight km south of the Canadian border (see S1 Fig in supplementary materi-

als). This region contains one of the largest tracts of intact native mixed-grass prairie remain-

ing in the U.S. [18]. Range-wide models of breeding longspurs predict that Phillips County

contains some of the highest relative densities in North America [19]. The region is dominated

by gently rolling grassy hills. The climate is semi-arid with short, hot summers and long, cold

winters, average daily temperatures range from -14˚ C in January to 28˚ C in July [18]. Average

annual precipitation typically comes as rain in May–July [18], and ranges from 193–493 mm

per year (1981–2015; [20]). The dominant grasses are western wheatgrass (Pascopyrum
smithii), needle-and-thread (Hesperostipa comata), prairie junegrass (Koeleria macrantha),

green needlegrass (Stipa viridula), and Sandberg bluegrass (Poa secunda) [21]. Almost 75% of

the region is managed for livestock grazing; continuous season-long grazing and low to mod-

erate stocking rates (0.3–1.2 AUM ha-1) are the norm [19]. The exotic grass species observed

in the area included crested wheatgrass (Agropyron cristatum), smooth brome (Bromus iner-
mis), and Kentucky bluegrass (Poa pratensis).

Site selection

To select study plots, we used a stratified random sampling approach to minimize the effect of

unmeasured sources of variation, including soil characteristics, expected annual precipitation,

and distance to roads [8,22]. Soil survey data were downloaded from the Natural Resource Con-

servation Service (NRCS) web soil survey dataset [23] and used to select silty ecological sites

with 250–330 mm of average precipitation and at least 1,120 kg ha-1 of vegetation productivity

in a normal year. These site conditions have been previously identified to support longspurs [8].

We used ArcMap 10.4.1 [24] to randomly generate 152 potential survey plots measuring

300 × 300 m. We selected plots that were completely within one land ownership type and

were> 100 m from a road [22]. Only 28.4% of the study area met suitability criteria, resulting

in plots that were spatially clustered. On average, plots were 855 m from their nearest neighbors;

90% plots were>100 m from their nearest neighbor (S1 Fig in Supplementary Materials).

To ensure variability in management and vegetation conditions, we selected sites occurring

on private and public lands known to have diverse management histories. Ownership included

BLM, a U.S. Fish and Wildlife Service National Wildlife Refuge, Montana state trust, and pri-

vate lands. Because of our focus on management outcomes rather than treatments, we did not

collect site-specific information on stocking rates or grazing regimes. Most plots (88%) were
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grazed by livestock at stocking rates averaging 0.3 AUM ha-1 for those occurring on BLM

lands (range: 0.04–0.5 AUM ha-1; BLM Annual Operating Instructions) and 0.5–1 AUM ha-

1on state trust lands (M. Sather, person. commun). The predominant grazing system was rota-

tional grazing where cattle were stocked for periods of about a month per pasture between

April–November each year. Twelve of 100 plots occurred on ungrazed lands managed by the

U.S. Fish and Wildlife Service.

We inspected all plots in 2017 prior to sampling to ensure they did not contain interior

fences, roads, or excessive shrub cover which would negatively impact use by our focal species

[22]. When possible, we moved plots� 100 m from roads, gas wells, fences, and power lines

[25]. Plots that contained� 50% shrub cover were moved to a nearby area with <50% shrub

cover when possible [19,26]. Plots were removed from the study when there was no suitable

location within 300 m of the randomly selected site. We identified 100 suitable study plots

using these methods. We randomly selected 50 of these to survey during the 2017 season and

50 to survey during 2018. In 2018, we repeated field inspections of all plots to ensure plot suit-

ability had not changed during the year.

Nest surveys

We conducted rope dragging surveys during May and June of 2017 and 2018 to locate long-

spur nests within plots [27]. Rope dragging was conducted with a weighted 20-m rope and

occurred during morning (06:00–10:00 MDT) and evening (17:00–20:00 MDT) hours when

adults were more likely to be attending nests [28]. Typically two observers were present for

rope drag surveys but occasionally (11/274) three observers were present. To estimate the

probability of detecting nests, we surveyed each plot multiple times: 71 plots were surveyed 3

times and the remaining 29 were surveyed twice. To control for possible differences in nest

density as the breeding season progressed, we surveyed plots in a random order. However, all

replicated surveys were conducted within a 30-day period. To control for the possible diurnal

effects in nest detection, we alternated between morning and evening surveys.

For each nest, we recorded the geographic coordinates and marked the site with inconspic-

uous 25-cm bamboo stakes placed approximately 2 m north and east of the nest to aid in relo-

cating the nest during nest monitoring. Nests discovered incidentally within our study plots

were also marked and monitored. For each survey, we recorded the temperature, wind speed,

cloud cover, date and time.

We recorded the number of eggs or nestlings in nests at discovery. We conducted subse-

quent nest visits approximately every 3 days until the nest failed or fledged young. Nests were

considered successful if they fledged� 1 young bird, as evidenced from observations of fledg-

lings, parental feeding post-fledging, parental persistent alarm calling in the area of an empty

nest, or the presence of fledgling feces in or near nest [29,30]. Nests that did not fledge� 1

young were classified as failed. Nests fail because of abandonment, depredation, or parasitism.

Abandonment was identified when the total number of days we observed a nest exceeded the

maximum incubation period of the species. Depredation was identified if eggs were suddenly

absent from the nest with or without eggshells present, if the nestlings were absent from the

nest prior to the earliest possible fledge date, or if the nestlings were gone from the nest at an

age when they could have fledged but none of the above evidence of fledging was present. Para-

sitism was identified if brown-headed cowbirds laid an egg in the nest and the cowbird nestling

removed all the host eggs or chicks such that no host chicks fledged. The research protocol was

reviewed and exempted by Montana State University’s Institutional Animal Care and Use

Committee, as the field study did not involve the capture, handling, housing, transportation,

or materially alter the behavior of the animal under study (Animal Welfare Act 9CFR 1.1).
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Our protocol provides a conservative estimate of nest survival that may underestimate

actual nest success [31]. Accurate estimation is complicated by a wide window of potential

fledge dates in the case of our focal species [32]. Longspurs can fledge when their primaries are

only half unsheathed and they are unable to fly (J. Pulliam, personal observation). This possi-

bility prevented us from assuming successful fledging based solely on the nestlings age at last

check.

Vegetation surveys

We assessed vegetation conditions at both the plot-scale and the nest-scale. In plots, we sam-

pled random locations until adequate variability was captured to provide an overall estimate of

average conditions. We began by generating 15 random points within each of the 100 study

plots. We conducted vegetation surveys at five of these points, and calculated the mean and

standard deviation of grass cover, using the following equation to determine the sample size

needed to accurately represent variation in vegetation measurements within each plot:

n ¼ ðZaÞ
2
ðsÞ2 � ðBÞ2

where n = the uncorrected sample size, Zα is the standard normal coefficient calculated for a

confidence interval of 90% (1.64), s is the sample standard deviation and B is the sample mean

multiplied by the desired precision (0.15). With the mean and standard deviation along with

standard values for Zα and precision, we calculated the uncorrected sample size. This value

was then compared to the table given in Elzinga et al. [33] to get the corrected sample size of

vegetation survey points needed. If the corrected sample size was greater than the current

number surveyed, we continued to add additional random points until the necessary sample

size was reached. We elected to only evaluate appropriate sampling intensity for grass cover

because it was the most abundant cover type in each plot and has previously been shown to be

a primary habitat condition associated with longspur nests [34]. We acknowledge that it would

have been appropriate to apply the formula to each of the 13 vegetation covariates separately

and then use the highest number of surveys called for across all covariates, but time limitations

prevented us from doing so.

In addition to surveying vegetation at the plot scale we also conducted vegetation surveys at

nest sites within three days of fledging or expected fledge date for failed nests. These surveys

were identical to the plot scale vegetation surveys except that the point was centered on the

nest rather than on a randomly generated point. To account for changes in growth of vegeta-

tion between the time when a nest finishes and the time when we conducted plot scale vegeta-

tion surveys, each nest vegetation survey was paired with two parallel vegetation surveys at two

randomly selected locations within the same survey plot, and all three surveys occurred on the

same day.

At each plot-scale sampling site and each nest location, we estimated visual obstruction

(VOR), canopy cover, exotic grass cover, litter depth, vegetation height, and standing herba-

ceous biomass. We recorded VOR to the nearest cm from each of the four cardinal directions

at a distance and height of 4 m and 1 m, respectively [35]. We quantified overlapping canopy

coverage using 5, 20 × 50 cm Daubenmire frames [36], with one frame centered on the point

or nest, and the remaining four placed 0.5 m in each cardinal direction [15]. We estimated

overlapping coverages of current growing season grass, residual grass, forbs, shrubs, litter, bare

ground, and exotic grass to six percentage bins (0–5, 6–25, 26–50, 51–75, 76–95, and 96–100).

We made a distinction between current growing season grass and residual grass from the pre-

vious year because longspurs use residual grass in their nest construction. Residual grass cover

may also be useful to conceal nests from predators early in the breeding season. Residual grass
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and litter were distinguished by structure: residual grass maintained an upright stature, similar

to what it had when alive, whereas litter was no longer attached to the ground or was lying flat

against the ground. When evaluating live or residual grass cover both exotic and native grasses

were pooled, but when evaluating exotic grass cover only exotic grasses were included. We

measured slope in degrees using a clinometer. We recorded the litter depth, average height of

grass, forbs, and shrubs within the frame using a meter stick.

We visually estimated standing herbaceous biomass within each 20 × 50 cm Daubenmire

frame in grams. Prior to vegetation sampling each day, we calibrated our visual estimates by

clipping and taking the mass of 5–10 frames prior to conducting surveys [37]. To establish the

relationship between green and dry herbaceous biomass, we collected all the standing herba-

ceous vegetation within the northern Daubenmire frame at the first three plot-scale vegetation

points in each plot after other vegetation surveys had been completed. These samples were

placed in paper sacks and stored it in a shed to air dry. We measured the mass of all samples

weekly until they completely dried out, at which point we recorded the dry weight. After all

surveys were completed, we calculated a mean difference between estimated green weight and

measured green weight for each field observer and applied that calibration to all estimated

samples for that observer. We then calculated the mean difference between green weight and

dry weight for all samples to convert all estimated green weights to calibrated dry weight.

Analysis

Nest density. Because A) detection probability of nests is likely< 1, and B) the number of

nests per plot could have changed within the 30-d survey period due to failure and renesting,

we evaluated nest density (nest abundance per 9-ha plot) using the open population N-mixture

model of Dail and Madsen [38]. The open N-mixture model (hereafter “DM model”) is a gen-

eralization of the single season closed N-mixture mixture model [39] that allows for inference

about spatial variation in nest abundance when individual nests are imperfectly detected. The

DM model relaxes the closure assumption of Royle [39] and includes explicit parameters (γ =

“recruitment”, ω = “survival”) that collectively describe changes in a population over time

[38]. Open N-mixture models are often used to estimate local abundances and rates of popula-

tion change of unmarked animals (e.g., [40,41]), but have not been previously used to estimate

nest density. We review the assumptions and suitability of open N-mixture models relative to

the estimation of nest density in S1 Appendix in the supplemental materials. We applied all

open N-mixture models using the pcountOpen function available in the R package ‘unmarked’

[42]. We evaluated whether populations of nests were open during the survey period by esti-

mating average rates of γ and ω; estimated γ significantly greater than 0 or ω< 1 indicates that

the population of nests was not closed.

We evaluated potential overdispersion in the count data by comparing support for two

highly-parameterized DM models among two different distributions: the Poisson and negative

binomial [43]. The negative binomial distribution had more support (AICc weight = 0.9) and

yielded a dispersion estimate significantly greater than 0 (α = 2.16 ± 0.68SE, P< 0.01), indicat-

ing data were overdispersed and supporting the use of the negative bionomial mixture. How-

ever, diagnostic tests on the negative binomial model in which the tuning parameter K was

systematically increased yielded concurrent increases in estimates of slope coefficients and pre-

dicted nest abundance, indicating that some parameters were not identifiable using a negative

binomial distribution. Similar tests of the Poisson distribution resulted in stable estimates.

Therefore, we used the Poisson distribution for all subsequent models and adjusted inferences

for overdispersion by using quasi-Akaike’s Information Criterion for finite samples (QAICc)

to compare candidate models and adjusting the error of all model estimates using the variance
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inflation factor (̂c) estimated from a parametric bootstrap goodness of fit test calculated using

the AICmodavg package [44,45]. The goodness of fit test indicated mild overdispersion (χ2 =

316, ĉ = 1.23, P< 0.05).

Prior to fitting models, we first tested for multicollinearity among vegetation covariates at

both the plot and nest-site scales to ensure only uncorrelated variables were included in candi-

date models (see S2 and S3 Figs in supplemental materials). We calculated the Pearson’s corre-

lation coefficient (r) for each combination of vegetation covariates. We considered variables to

be correlated if r� 0.6. We found significant correlations between biomass and several other

vegetation covariates including: VOR (r = 0.93), heights of live grass (r = 0.87) and residual

grass (r = 0.80), and the proportional coverage of exotic grasses (r = 0.77). VOR is a commonly

used index of herbaceous biomass and an important determinant of grassland bird abundance

[34,46–48]. Because biomass is a more common condition informing rangeland management,

we retained biomass and removed VOR and the heights of live and residual grass from further

analyses [49]. Because we were particularly interested in the effects of exotic grasses on nest

density and nest survival, we retained its proportional cover as a covariate but never included

both biomass and proportion exotic grass in the same candidate model [50]. We evaluated two

candidate model sets, one set containing biomass and one set containing exotic cover with all

other uncorrelated variables. Shrub cover was correlated with shrub height (r = 0.85); we

retained shrub cover as a predictor variable and excluded shrub height due to previously

observed associations of grassland birds with shrub coverage [26,46–48,51]. Litter cover was

inversely correlated with bare ground cover (r = -0.71); litter cover and depth are often associ-

ated with bird abundance so we removed bare ground cover from analyses [34]. We also

included the within-plot standard deviation of biomass as a potential covariate because hetero-

geneity of vegetation structure has been demonstrated to be related to bird species diversity

[52,53]. Covariates for detection of nests included survey date and time; wind speed, tempera-

ture, and cloud cover during the survey, and plot averaged shrub cover. All covariate values

were standardized to improve model convergence and allow for direct comparison of covariate

effects; however slope coefficients are presented on the real scale unless otherwise noted.

To evaluate the relationships between nest density and plot-scale vegetation variables, we

built and evaluated a candidate set of DM models using QAICc. Supported models with large

model weights (wi) and QAICc values� 2 from the best-fit model were considered parsimoni-

ous [54]. Measured conditions were previously shown to influence grassland bird detection

probability or local abundance [34,55], and we used backward stepwise model selection to

identify parsimonious models beginning with submodels of detection probability. Uncorre-

lated vegetation variables considered in model sets included biomass, proportion forb cover,

proportion shrub cover, proportion litter cover, proportion residual grass cover, and slope.

Nest survival. We used the nest survival model in program MARK [56] to model the daily

nest survival rate (DSR) as a function of vegetation covariates collected at two spatial scales:

the nest site and the plot. Program MARK allowed us to use an information theoretic frame-

work to evaluate competing models based on a priori hypotheses about factors influencing

nest survival [57]. As we were interested in the effects of vegetation conditions at multiple spa-

tial scales on nest survival, we used a tiered approach for model evaluation. We built and evalu-

ated candidate sets using vegetation data collected at nest sites, a second candidate set using

vegetation data collected at the plot-scale, and a final multi-scale analyses including uncorre-

lated supported vegetation covariates from both spatial extents. Possible factors affecting nest

survival at the nest and plot scales included all non-collinear vegetation characteristics. We

included a term for survey year in models to account for possible differences in nest survival

between years. At the plot-scale we also included the standard deviation (SD) of each vegeta-

tion covariate across each plot to evaluate the effects of vegetation variation on nest survival.
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Similar to the nest density analysis, we first evaluated multi-collinearity of predictor vari-

ables within each spatial scale and only included uncorrelated variables in our candidate mod-

els of nest survival (supplementary materials). Because collinearity between biomass and

exotic grass cover (r = 0.77) prohibited including both terms in the same model, we built and

evaluated two sets of candidate models for each species in which one set contained biomass

and one set exotic cover. Exotic cover was not correlated with residual grass (r = 0.20), forb

(r = 0.16), shrub (r = 0.16), and litter covers (r = 0.28; S2 Fig in supplementary materials). For

bird species where an effect of exotic grass cover was supported, we used AICc to compare the

top model from the biomass model set and the top model from the exotic cover model set to

evaluate which effect had more relative support from the data. To estimate the probability of a

nest surviving the entire exposure period, we raised estimated daily survival rate to a power

equal to the maximum number of days for a nest to successfully fledge young. The standard

error of this estimate was derived using the delta method [58].

Nest site conditions vs. plot-scale conditions. We used a correlation analysis to evaluate

cross-scale relationships between vegetation conditions measured at local nest sites and aver-

age conditions at 9-ha study plots. For study plots that contained at least one longspur nest

(71/100), we calculated the average values of each vegetation metric previously identified as

having potential influence on longspur nest density or survival. We log- or logit-transformed

vegetation measurements if necessary and calculated Pearson’s correlation coefficient (r) to

assess the relationship between nest and plot-level measures. We deemed an association mean-

ingful if [r]> 0.6 and P< 0.05.

Plot-scale productivity of longspurs. We conducted an ad hoc analysis to evaluate the

relationships between 1) estimated nest survival and nest density and 2) relationship between

plot-level longspur productivity and average plot-level herbaceous biomass, deemed an impor-

tant habitat covariate (see Results and Pulliam et al. 2020). We applied the ranef() function in

R package umarked [42] to the most parsimonious model for nest density to estimate the true

number of nests, adjusted for detection probability, within each plot. Due to model uncer-

tainty, we used model averaged estimates from our nest survival analysis to predict the average

daily survival rate (DSR) of nests within each plot based on the same set of vegetation condi-

tions and calculated the average probability of nest survival within each plot as DSR^30 days.

Average plot-scale productivity of longspurs, defined as the expected number of successful

nests produced per 9-ha plot, was calculated by multiplying the estimated nest density and

average nest survival for each plot. After considering regression diagnostics (Supplemental

materials), we evaluated the relationship between estimated productivity and plot-scale bio-

mass using linear regression. The effect of biomass on productivity was considered predictive

if the 95% confidence intervals of the effect did not overlap 0 and adjusted r2 > 0.6.

Results

Nest density

We discovered a total of 237 longspur nests during 272 rope drag surveys conducted in 2017

and 2018. We also found an additional 28 nests opportunistically while conducting other activ-

ities. The average ± SD number of nests found per plot was 2.65 ± 2.72 and ranged from 0–6

nests. We conducted a total of 776 vegetation surveys at random points within the 100 study

plots in addition to the 265 vegetation surveys at each nest site. We found evidence that study

plots were not closed to changes in the number of nests during the survey period; although the

addition of new nests at plots was negligible (γ = 0.00002 ± 0.002SE), estimated survival was

significantly lower than 1.0 (ω = 0.87 ± 0.07SE), collectively indicating a 13% decrease in the

number of nests between subsequent surveys at a plot on average.
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The average probability of detecting a longspur nest was 0.16 ± 0.07SE. Two submodels for

detection received approximately equal support (Table 1); both included effects of shrub cover

and one also included temperature. However, the effect of temperature overlapped 0 (95%CI =

-0.084–0.021) and was considered non-informative. Detection probability declined 16% for

every 1% increase in shrub ground cover (βshrub = -0.20 ± 0.06) from 0.38 ± 0.13SE to

0.04 ± 0.02 when shrub cover increased from 0% to 10%. After accounting for spatially-vari-

able detection probability, we found substantial support (QAICcw = 0.87) for a single model of

longspur nest density that included the effects of plot-scale biomass and quadratic effects of

forb cover and slope (Table 1). Longspur nest density was negatively associated with herba-

ceous biomass within the plot (βscaled(biomass) = -1.65 ± 0.59), where nest density declined 12%

for every 100 kg increase in biomass (Fig 1). Nest density exhibited a quadratic relationship

with forb cover (βforb cover + βforb cover
2 = 0.49 (0.12SE) - 0.021 (0.006)) and was maximized

when forb cover was approximately 11% (Fig 1). Nest density was maximized when slope =

~3˚ and decreased sharply when slope increased past 3˚ (βslope + βslope
2 = 0.34 (0.17SE) - 0.07

(0.03); Fig 1).

A model set evaluating the effects of exotic cover instead of biomass supported effects of

exotic cover, forb cover2, and slope2 on nest density (Table 1). Longspur nest density declined

sharply with exotic cover (β = -0.97 ± 0.33 SE; Fig 1). Similar to models that included biomass,

nest density exhibited a quadratic relationship with forb cover (βforb cover + βforb cover
2 = 0.20

(0.13SE) - 0.35 (0.11)) and slope (βslope + βslope
2 = 0.06 (0.15SE) - 0.32 (0.13)). The effect of bio-

mass on nest density was more informative than exotic cover; the top model for the set includ-

ing biomass had virtually all the relative support (Table 1).

Estimated nest density was consistently greater than the observed density; a single search

yielded between 0–90% of the predicted number of nests after adjusting for imperfect detec-

tion. There was a weak correlation between the observed and estimated number of nests per

plot (r = 0.2, P = 0.044; Fig 2).

Table 1. Model selection table for nest detection probability and nest density of chestnut-collared longspurs from

272 rope drag surveys of 100 9-ha plots in Phillips County, MT during May–June of 2017 and 2018.

K QAICc ΔQAICc QAICc wt

Detection
Shrub Cover 6 581.05 0 0.57

Shrub Cover + Temp 7 581.80 0.75 0.39

Null 5 591.53 10.49 0

Density with Biomass
Biomass + Forb2 + Slope2 11 533.83 0 0.87

Null 6 691.17 44.21 0

Density with Exotic Cover
Exotic Cover +Forb2 + Slope2 11 535.47 0 0.83

Null 6 567.25 31.78 0

Biomass v. Exotic Cover
Biomass + Forb2 + Slope2 11 533.83 0 0.99

Exotic Cover +Forb2 + Slope2 11 543.53 9.71 0.01

The number of parameters (K),QAICc values, ΔQAICc values, and model weights (QAICc wt) are reported. Only

models with Akaike weights (ΔAICc)� 2.0 are presented except for the null model and the comparison of exotic

cover and biomass models.

https://doi.org/10.1371/journal.pone.0256346.t001
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Nest survival

Apparent nest success for longspurs was 29% (76 fledged/263 total nests). Average estimated

daily nest survival estimated from the constant (null) model was 0.93 ± 0.01SE, and estimated

nest survival for the entire 30-d nest exposure period (DSR^30) was 0.12 ± 0.02.When evaluat-

ing vegetation at the nest site, the null model had approximately equal support as the top

model (ΔAICc = 0.91; Table 2), indicating little support for vegetation characteristics at this

scale on the daily survival rate of longspur nests. Covariates in equally supported models

(ΔAICc < 2) included survey year, herbaceous biomass, forb cover, litter cover, and exotic

cover (Table 2; Fig 3). Notably, a univariate model using forb cover found a significant effect

Fig 1. Predicted effect of relevant habitat features on chestnut-collared longspur nest density. Predicted effects of plot-scale herbaceous biomass, forb cover, slope,

and exotic grass cover on the number of chestnut-collared longspur nests in Phillips County, Montana during May–June 2017–2018. Shaded areas represent 95%

confidence intervals adjusted for overdispersion.

https://doi.org/10.1371/journal.pone.0256346.g001
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(β = -0.13 ± 0.07 SE). However, this model and all models including forb cover did not have

significantly more support than the null model, so we considered the effect non-informative.

At the plot-scale, the null model shared similar amount of support as the top model on nest sur-

vival (ΔAICc = 0.78; Table 2). Equally supported models (ΔAICc< 2) included survey year, herba-

ceous biomass, litter cover, residual grass cover, shrub cover, and exotic cover, as well as the

standard deviations (SD) for biomass, litter cover and exotic cover (Table 2; Fig 4). As we found little

evidence of collinearity (r< 0.6) among supported covariates across the nest-site and plot-scale, the

multi-scale candidate set included all supported terms. In this model set, the null model was also

supported (ΔAICc = 0.78; Table 2) and 95% confidence intervals of covariate effects overlapped 0.

Nest site vs. plot-scale habitat conditions

We evaluated correlations for 15 vegetation measures collected at both nest sites and randomly

across 9-ha study plots. Residual grass height and litter depth were positively correlated across

spatial scales (r> 0.6, P< 0.05); we did not find significant correlations for other habitat con-

ditions (S1 Table).

Plot-scale productivity

The support for a null (i.e., constant) model of daily nest survival indicated no relationship

between plot-scale nest density and nest survival and suggested that nest density was the most

influential component of plot-scale productivity in this system. Longspur productivity

declined with herbaceous biomass (β = -0.0004 ± 0.00004; r2 = 0.53, P< 0.001), or 0.04 suc-

cessful nests per 9-ha plot for every 100 kg/ha increase in biomass (Fig 5). Thus, a management

Fig 2. Estimated and observed chestnut-collared longspur nests per study plot. Estimated and observed (raw counts) number of chestnut-collared longspur nests

at100, 9-ha plots in Phillips County, MT during May–July of 2017 and 2018. The Pearson’s correlation coefficient indicated a weak positive correlation (r = 0.2,

P = 0.044).

https://doi.org/10.1371/journal.pone.0256346.g002
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unit (e.g., pasture) 1000 ha in size with an average herbaceous biomass of 1000 kg/ha would be

expected to produce approximately 40 more successful nests than a unit of the same size where

biomass averages 2000 kg/ha.

Discussion

Components of productivity

Effective habitat outcomes must be linked to population productivity to mitigate grassland

bird declines. While bird productivity and associated breeding habitat quality are often

Table 2. Model selection table for daily survival rate of 263 chestnut-collared longspur nests in 100 9-ha plots in

Phillips County, MT, during May–July of 2017 and 2018.

Nest-site vegetation K AICc ΔAICc AICc Wt

Forb 2 929.16 0 0.13

Year 2 929.29 0.13 0.13

Year + Forb 3 929.35 0.18 0.12

Year + Exotic Cover 3 930.07 0.91 0.09

Null 1 930.08 0.91 0.09

Year + Litter 3 930.43 1.26 0.07

Year + Biomass 3 930.59 1.42 0.07

Exotic Cover 2 930.63 1.47 0.06

Plot scale vegetation
Year 2 929.29 0 0.09

Biomass 2 930.07 0.78 0.06

Null 1 930.08 0.78 0.06

Litter 2 930.27 0.98 0.06

Biomass + Year 3 930.78 1.49 0.04

Biomass + Litter 3 930.97 1.68 0.04

Biomass SD 2 931 1.71 0.04

Exotic + Year 3 931.01 1.71 0.04

Litter SD 2 931.03 1.74 0.04

Exotic SD 2 931.12 1.83 0.04

Plot scale vegetationb

Shrub Cover + Year 3 931.16 1.87 0.04

Residual Grass + Year 3 931.2 1.91 0.03

Litter + Year 3 931.2 1.91 0.03

Litter + Litter SD 3 931.28 1.98 0.03

Multi-scale Vegetationc

Year 2 929.29 0 0.20

Null 1 930.08 0.78 0.13

Nest Forb Cover + Plot Shrub Cover 3 930.79 1.49 0.09

Nest Biomass + Plot Biomass 3 930.85 1.56 0.09

Nest Forb Cover + Plot Residual Grass Cover 3 930.9 1.61 0.09

Nest Exotic Grass Cover + Plot Cover Litter 3 931.02 1.73 0.08

The number of parameters (K), AICc values, ΔAICc values, and model weights (AICcWt) are reported. Vegetation

characteristics are evaluated at both the nest-site and plot scalea.
a Only models with Akaike weights (ΔAICc � 2.0 are presented, for full model comparison see Supplementary

Materials S2 Table.
b Variables ending in SD indicate the standard deviation of that variable at the plot-scale.
c Variables at the nest-site are denoted with Nest and variables at the plot-scale are denoted with Plot.

https://doi.org/10.1371/journal.pone.0256346.t002
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inferred from nest survival alone, our results suggest that nest density may be a more impor-

tant driver of population productivity for longspurs, and likely other obligate grassland species.

If nest survival represents the population process associated with habitat quality, then habitat

predictors of nest density and nest survival should be similar and spatially-explicit estimates of

nest density and nest survival should be correlated; however this was not the case. We found

that plot-scale habitat conditions influenced nest density, whereas nest survival was unaffected

by any measured nest site or plot-scale habitat condition.

Van Horne [59] warned of potential biases that may result by inferring habitat quality from

the density of animals (or nests) rather than metrics of population performance, such as nest

survival. Disconnects between density and habitat quality may be due to a variety of animal

behaviors including site fidelity, maladaptive habitat selection, and social interactions. For

Fig 3. Estimated effect sizes of nest site features on survival of chestnut-collared longspur nests. Estimated effect sizes and 95% confidence intervals from

standardized covariates measured at the nest site on daily survival of 263 chestnut-collared longspur nests in 100 9-ha plots in Phillips County, MT, during May–July of

2017 and 2018.

https://doi.org/10.1371/journal.pone.0256346.g003
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example, relatively high densities of animals can occur in sub-optimal habitats when territori-

ality prevents subdominant individuals from using quality sites or when the historical cues of

habitat quality have changed due to human activity [60]. Areas characterized by the former sit-

uation are referred to as demographic sinks, whereas those characterized by the latter are

termed ecological traps [61,62]. Our results do not support interpretation that areas with high

nest density serve as sinks or traps for longspurs because nest survival was unaffected by habi-

tat conditions that varied across the study area. That is, we did not find evidence of maladapta-

tion where breeding densities are higher in areas with depressed reproductive success. Overall,

our results are consistent with a growing body of evidence illustrating the importance of fac-

tors other than nest survival in determining population productivity (e.g., [63,64]

Fig 4. Estimated effect sizes of habitat features on survival of chestnut-collared longspur nests. Estimated effect sizes and 95% confidence intervals from

standardized covariates measured at the plot scale on daily survival of 263 chestnut-collared longspur nests in 100 9-ha plots in Phillips County, MT, during May–July of

2017 and 2018. Covariates ending in SD represent the effect of the standard deviation of the covariate at the plot scale.

https://doi.org/10.1371/journal.pone.0256346.g004
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Scale mismatch with nest sites

In avian conservation, there are many examples of management recommendations derived

from data collected at nest sites as compared to nearby non-used (random) locations. Such

recommendations assume that management actions producing outcomes across a larger area

(e.g., pasture, patch) will increase the availability of potential nest sites at the fine scale. While

there is undoubtedly some relationship in conditions across scales (e.g., a pasture with no

shrubs cannot provide shrub-nesting sites), our results show that this relationship is neither

straightforward nor linear. Of the 14 vegetation variables we evaluated across plots and at nest

sites, only two showed meaningful correlations (r> 0.6) across scales, suggesting that average

conditions across a plot did not predict the quality of nest-sites in this system. Further, nest

survival did not vary with any measured vegetation attributes, suggesting consistent and effec-

tive selection of nest-sites, despite variable plot-scale conditions. Management recommenda-

tions based on nest-site and survival data only would have been uninformative in this study.

Defining habitat outcomes

Our study provides new information on habitat correlates of chestnut-collared longspur pro-

ductivity that will be useful to outcome-based land management. Specifically, an appropriate

amount of standing herbaceous biomass, minimal encroachment by exotic grass species, and

adequate availability of forbs were of primary importance for this species. Across the range of

variability measured, nest density and resulting population productivity declined sharply with

herbaceous biomass. Up to 40 fewer successful nests, or 120–160 fewer fledgling longspurs,

would be expected to be produced in a 1000-ha pasture if average standing biomass increased

Fig 5. Estimated productivity of chestnut-collared longspurs by plot-scale biomass. Estimated mean productivity (successful nests per 9 ha plot) in relation to

average plot-scale herbaceous biomass in Phillips County, MT during May–July of 2017 and 2018.

https://doi.org/10.1371/journal.pone.0256346.g005
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from 1000 to 2000 kg/ha. Our results add to previous work finding lower relative abundance

of adults in areas with denser vegetation ([32,49], and suggest that breeding bird densities

obtained from point counts occurring after settlement in the spring may adequately index pro-

ductivity and habitat quality. Interestingly, plot-scale preferences did not translate to improved

nest survival. Previous studies similarly found weak or insignificant effects of vegetation struc-

ture and composition on nest survival of other grassland birds in the northern Great Plains

[16,51]. Future studies aimed at developing habitat targets for management should consider

nest density as well as survival.

Exotic grasses have been intentionally introduced throughout the northern Great Plains

due to their perceived higher nutritive value to livestock and greater tolerance for drought and

cold [65]. Exotic vegetation in the pasture may negatively impact the reproductive output of

birds although studies on this effect have produced inconsistent results [13,17]. We found a

negative relationship between longspur nest density and cover of exotic grasses, although

exotic grass cover was correlated with biomass and effects could not be easily separated. Never-

theless, our results suggest that even low levels (<10% cover) of exotic grass can negatively

impact longspur nest density. Avoidance of exotic grasses may occur as a result of effects on

other, unstudied, life-history components. For example, a previous study suggested that long-

spur nestlings in monocultures of exotic crested wheatgrass grew more slowly and fledged at a

lower body weight than those in native prairie, likely resulting in lowered recruitment rates

[13].

The density of longspur nests was maximized when average forb cover was 10–15%. Forb

densities may influence longspur nest site selection via arthropod prey availability. Insects

associated with forbs in the orders Coleoptera, Lepidoptera, and especially Orthoptera make

up much of the diet of longspurs [32,66]. The selection of nesting areas is likely determined by

a tradeoff between security of adults and nests, and the potential to provision young. In addi-

tion, optimum values of habitat components are expected to result from niche partitioning

among grassland obligates (e.g., Thick-billed longspur, Sprauge’s pipit; [67].

Nest density was highest in areas with modest slopes between 1–3˚ but most longspurs

nested in plots characterized by <5˚ slope. Breeding habitats have previously been described

as ‘flat to rolling’ (e.g., [32,46]), but our results suggest a preference for slightly rolling land-

scapes. In eastern tallgrass prairies, Frey et al. [68] found a preference among some bird species

for certain topographies, but the specific effect that topography has on avian habitat use is not

fully understood. Nevertheless, topography can influence plant productivity and diversity

which would define available nest sites for grassland birds [69]. Topography may also impact

vegetation indirectly by influencing the relative grazing pressure exhibited by livestock in the

area [70].

While we found that shrub cover reduced the detection probability of nests, it did not affect

nest density. Davis [16] observed that some grassland birds in northern mixed-grass prairies,

while avoiding areas with tall dense shrubs, will sometimes place nests close to small shrubs.

Despite this observation, he found a positive association between longspur nest placement and

distance from the nest to nearest shrub, suggesting these birds avoided shrub cover around

their nest. A study of thick-billed longspurs (Rynchophanes mccownii) in Colorado, found that

half of all nests (14/28) in a moderately grazed pasture were placed beside shrubs and that

these nests were 2–3 times more likely to be depredated than those placed distant from shrubs

[26]. Only 18% (49/263) of our nests had a shrub within one meter of the nest and our results

did not support a negative effect of shrub cover on either nest density or nest survival. One

possible reason for this contrast could be the negative effect that shrub cover has on nest detec-

tion; it is possible that previous studies observed fewer nests in areas of moderate shrub cover

not because there were fewer nests in those areas but because the shrub cover made it more
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difficult to locate nests. Importantly, shrub cover was low overall across our study area

(mean = 3.8% ± 1.6% SD), and may be below thresholds related to nesting impacts on

longspurs.

Estimating nest density

Previously, researchers have addressed biases associated with estimating nest density from an

imperfectly-detected sample of nests using modified distance sampling or a time-to-event cap-

ture-recapture models [71,72]. Distance sampling has provided imprecise estimates of nest

density even for relatively abundant species [73], whereas the model of Péron et al. requires

information on the age of nests at time of discovery, which we did not collect due to permit

limitations. Additionally, Péron et al. [72] reported numerical instabilities of their model when

detection rates were <0.2 and significant bias in estimated nest abundance when nest survival

was<0.5; both issues applied to our longspur dataset. Therefore, we evaluated the use of an

open N-mixture model [38] applied to replicated independent nest surveys to estimate nest

density adjusted for imperfect and spatially-variable detectability of nests. Notably, our results

indicated that the probability of detecting a nest was significantly less than 1 and the number

of nests within a sampling plot changed even over a relatively short sampling period. Both

findings have major implications for research attempting to estimate nest densities for grass-

land songbirds. The average probability of detecting a longspur nest was 0.16, meaning that

naïve estimates of nest density based on raw nest counts were substantially downward biased.

While we observed a very weak positive relationship between raw nest counts and estimated

nest density, that relationship was significantly less than perfect (0.2:1) and indicated that the

bias associated with raw nest counts was spatially variable depending on site-specific habitat

conditions (i.e., shrub coverage). Similar to inferring avian abundance from simple counts of

birds [49,74], our results indicate that using raw nest counts to compare nest density across

sites may result in erroneous inferences about habitat associations with implications for out-

come-based management.

The population of longspur nests was not closed during our relatively short sampling

period, violating a primary assumption of most nest density analyses. Although recruitment

(γ) and survival (ω) parameters of the open N-mixture model may not correspond directly

with actual nest initiation rates or nest survival (L. Madsen, Oregon State University, personal

communication; Supporting information), they are useful in evaluating whether populations

are at equilibrium within a sampling period (i.e., population closure assumption; [38]). The

estimated γ within our study plots was near 0 while mean ω = 0.87, suggesting that the number

of nests available for detection within a plot declined by approximately 13% ((1 + 0–0.87)�100)

between survey events that were separated by 9 days on average. Taken together, analytical

methods that assume population closure, such as those based on raw nest counts or closed N-

mixture model [39] may be inappropriate for estimating nest abundance and therefore pro-

ductivity of songbirds. Nevertheless, researchers should ensure assumptions of N-mixture

models are adequately addressed through proper study design (see S1 Appendix in supporting

information).

Conclusions

We show that population productivity of longspurs was driven by variability in nest density

rather than nest survival. Although nest survival is an important vital rate in avian population

dynamics [64] and should not be ignored, our results illustrate the importance of including

both density and survival in definition of management outcomes. We caution against use of

raw nest counts as a biased index of true nest density, as detectability varies considerably across
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space and time. Open N-mixture models are a promising method to mitigate detection bias

but may have limitations when detection probabilities are low and there is unmodeled hetero-

geneity in the observation process [75,76].

Additionally, we found that it would be inappropriate in this system to extrapolate vegeta-

tion measurements taken at nest-sites to characterize outcomes across broader scales. We

encourage researchers to intentionally measure average plot or pasture-scale vegetation attri-

butes with an appropriate sampling method before making management interpretations or

designating outcomes at those scales.

We recommend habitat outcomes for breeding longspurs that include maintaining

expanses of gently rolling (1–3˚) native grassland with 1000–1200 kg/ha of standing herba-

ceous biomass, minimally invaded by exotic grasses and with high native forb cover of at least

10–15%. In an outcome-based framework, biologists should collaborate closely with rangeland

managers skilled in a local context to produce these conditions as possible and appropriate.

Although this study did not evaluate specific management actions, grazing is a widespread,

compatible land use and is likely to be a primary tool influencing habitat outcomes for long-

spurs. Grazing management can be designed in the local context to manipulate biomass (e.g.

[77,78]), reduce exotic species invasion (e.g. [77]) and increase forb cover (e.g. [79]).

Supporting information

S1 Fig. Study area. Study plots on Bureau of Land Management (BLM), National Wildlife Ref-

uge (NWR), Montana State Trust (ST) land, and private land in Phillips County, Montana.

Inserts show a closeup of some plots in the northern and southern parts of the county.

(TIF)

S2 Fig. Collinearity of plot-scale vegetation metrics. Results of pair-wise collinearity com-

parison for all vegetation metrics at the 9-ha plot scale. Metrics include visual obstruction read-

ing (VOR), slope, live grass cover (Grass_Cover), live grass height (Grass_Ht), residual grass

cover (Resid_Cover), residual grass height (Resid_Ht), bare ground cover (BG), litter cover

(Litter_Cover), forb cover (Forb_Cover), forb height (Forb_Ht), shrub cover (Shrub_Cover),

shrub height (Shrub_Ht), exotic grass cover (Exotic_Cover) litter depth (Litter_Depth), herba-

ceous standing biomass (Biomass), and the standard deviation of herbaceous standing biomass

(SD_Bio). Pearson’s correlation coefficient are given above the diagonal.

(TIF)

S3 Fig. Collinearity of nest site vegetation metrics. Results of pair-wise collinearity compari-

son for all vegetation metrics at the nest-site scale. Metrics include visual obstruction reading

(VOR), slope, live grass cover (Grass_Cover), live grass height (Grass_Ht), residual grass cover

(Resid_Cover), residual grass height (Resid_Ht), bare ground cover (BG), litter cover (Litter_-

Cover), forb cover (Forb_Cover), forb height (Forb_Ht), shrub cover (Shrub_Cover), shrub

height (Shrub_Ht), exotic grass cover (Exotic_Cover) litter depth (Litter_Depth), herbaceous

standing biomass (Biomass), and the standard deviation of herbaceous standing biomass

(SD_Bio). Pearson’s correlation coefficient are given above the diagonal.

(TIF)

S4 Fig. Collinearity of nest site vegetation metrics. Relationship between vegetation condi-

tions measured at the nest sites of 263 chestnut-collared longspur nests and across the study

plot (9 ha). Vegetation surveys took place May–July 2017 and 2018 in Phillips County, Mon-

tana.

(TIF)
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MT in May–July 2017 and 2018.
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S2 Table. Model selection for nest survival. AICc model selection table for daily survival rate
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conditions at 71, 9-ha study plots and at the nest sites of 263 Chestnut-collared Longspur nests
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P< 0.05.
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