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ABSTRACT
Background. Glioma is the most common brain neoplasm with a poor prognosis.
Circular RNA (circRNA) and their associated competing endogenous RNA (ceRNA)
network play critical roles in the pathogenesis of glioma. However, the alteration of the
circRNA-miRNA-mRNA regulatory network and its correlation with glioma therapy
haven’t been systematically analyzed.
Methods. With GEO, GEPIA2, circBank, CSCD, CircInteractome, mirWalk 2.0, and
mirDIP 4.1, we constructed a circRNA–miRNA–mRNA network in glioma. LASSO
regression and multivariate Cox regression analysis established a hub mRNA signature
to assess the prognosis. GSVA was used to estimate the immune infiltration level.
Potential anti-glioma drugs were forecasted using the cMap database and evaluated
with GSEA using GEO data.
Results. A ceRNA network of seven circRNAs (hsa_circ_0030788/0034182/0000227/
0018086/0000229/0036592/0002765), 15 miRNAs(hsa-miR-1200/1205/1248/
1303/3925-5p/5693/581/586/599/607/640/647/6867-5p/767-3p/935), and 46 mRNAs
(including 11 hub genes of ARHGAP11A, DRP2, HNRNPA3, IGFBP5, IP6K2,
KLF10, KPNA4, NRP2, PAIP1, RCN1, and SEMA5A) was constructed. Functional
enrichment showed they influenced majority of the hallmarks of tumors. Eleven hub
genes were proven to be decent prognostic signatures for glioma in both TCGA and
CGGA datasets. Forty-six LASSO regression significant genes were closely related to
immune infiltration. Finally, five compounds (fulvestrant, tanespimycin, mifepristone,
tretinoin, and harman) were predicted as potential treatments for glioma. Among
them, mifepristone and tretinoin were proven to inhibit the cell cycle and DNA repair
in glioma.
Conclusion. This study highlights the potential pathogenesis of the circRNA-miRNA-
mRNA regulatory network and identifies novel therapeutic options for glioma.
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INTRODUCTION
Gliomas comprise majority of primary intracranial neoplasms with high heterogeneity
and aggressiveness, resulting in a poor prognosis even after current standard combination
treatments (Ostrom et al., 2018b; Wesseling & Capper, 2018). The five-year survival rate
is only approximately 5% (Ostrom et al., 2018a; Ostrom et al., 2018b; Wesseling & Capper,
2018). Recent advances in precisionmedicine, genomics, immunology, andother disciplines
have uncovered multiple experimental therapies, such as targeted therapy, gene therapy,
immunotherapy, and novel drug-delivery technologies that could possibly shed light on
the treatment strategies for gliomas (Lapointe, Perry & Butowski, 2018). Therefore, it is of
great importance to explore the internal mechanisms of gliomas to identify new therapeutic
targets.

Circular RNA (circRNA) is a type of non-coding RNA derived from the exon or intron
region of a gene (Kristensen et al., 2019). Since there is no 5–3 polarity and polyA tail,
circRNAs are more stable than linear RNAs (Kristensen et al., 2019; Meng et al., 2017).
CircRNA regulates the expression of a series of genes by modulating every stage of mRNA
metabolism, including sequestration of microRNAs (miRNA) or proteins, modulation of
transcription, interference with splicing, and translation to produce polypeptides (Chen,
2020; Wu et al., 2020). During the sequestration of miRNAs, circRNAs act as molecular
sponges for miRNAs through their miRNA response elements (MREs), thereby de-
repressing all target genes of the respective miRNA family (Hansen et al., 2013). Recently,
circRNAs have been found to participate in multiple tumor phenotypes, including
proliferation, invasion, metabolism, and immune response, making them promising
diagnostic and prognostic markers as well as therapeutic targets for cancers (Chen, 2020).

Recent studies have shown that instead of pure malignant cells, the core tumors
are actually surrounded by a complex microenvironment, including the immune cells
(Binnewies et al., 2018). Immune cells infiltrating the tumor microenvironment have been
confirmed with the ability to predict the patients’ clinical outcomes and also the efficacy of
immunotherapy. Therefore, identifying immune cells infiltration, especially their pattern
correlated with specific genes and gene signatures, is of great significance for estimation of
the prognosis of GBM patients and the value of various therapies (Ali et al., 2016; Quail &
Joyce, 2013).

Here, by utilizing bioinformatics methods, we identified differentially expressed
circRNAs (DECs) in gliomas and studied their functions in gliomas as competing
endogenous RNAs (ceRNAs). The workflow diagram is shown in Fig. 1, where DECs
were first acquired from the circRNA-related microarray datasets of gliomas in the
GEO database. Then, we forecasted and collected their related miRNAs and their
corresponding target genes and built a circRNA-miRNA-mRNA regulatory network.
Functional enrichment analyses were performed to determine their potential roles in the
pathogenesis of gliomas. Furthermore, the hub genes were obtained through LASSO and
multivariate Cox regression analyses and evaluated with ROC curve analysis and K-M curve
analysis. Subsequently, GSVA analysis was performed to determine their correlation with
immune infiltration. Finally, a connectivitymap (CMap) was used to predict corresponding
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Figure 1 Workflow diagram of the construction of a circRNA-associated ceRNA network, identifi-
cation and evaluation of a hub gene signature, and the prediction of potential therapeutic options for
glioma.

Full-size DOI: 10.7717/peerj.11894/fig-1

bioactive compounds and potential drugs for treatment, which were further assessed with
GSEA in GEO database.

MATERIALS & METHODS
Data obtained and DECs acquired
Microarray circRNA expression profile data of gliomas and corresponding normal
tissues were screened and acquired from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) database, which is a public functional genomic
database that allows users to query, locate, review, as well as download research and gene
expression profiles (Barrett et al., 2013). DECs in the GSE109569 and GSE146463 datasets
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were analyzed and identified using GEO2R with the criteria of |log2 (fold change)|> 1 and
P value< 0.05. The circRNAs upregulated or downregulated in both datasets were selected
for further analysis.

Prediction of MREs
We employed three public databases to predict the MREs of the selected DECs: CircBank
(http://www.circbank.cn/index.html) is a comprehensive database with more than 140,000
human-annotated circRNAs from different sources, providing abundant information
on circRNAs, including their predicted binding miRNAs (Liu et al., 2019). The cancer-
specific circRNA database (CSCD, http://gb.whu.edu.cn/CSCD/) is a cancer-specific
circRNA database incorporating more than 272,000 cancer-specific circRNAs, with the
aim of predicting MRE sites, RNA binding protein (RBP) sites, and open reading frames
(ORFs) for each circRNA (Xia et al., 2018). Circular RNA Interactome (CircInteractome,
http://circinteractome.nia.nih.gov) is a web tool formapping RBP andMRE sites on human
circRNAs by searching public databases of circRNA, miRNA, and RBP. It has multiple
functions, including identifying potential circRNAs that can act as RBP sponges (Dudekula
et al., 2016). An overlap in at least two databases was the basis for considering candidate
target miRNAs of these DECs used for further mRNA prediction. The regulatory roles
of these miRNAs and related regulation pathways were assessed using DIANA-miRPath
v3.0 (http://snf-515788.vm.okeanos.grnet.gr/), which is a powerful online software for
functional analysis of miRNAs (Vlachos et al., 2015).

Forecasting miRNA–mRNA interactions
miRNA–mRNA interactions were predicted using two integrated miRNA databases.
MiRWalk 2.0 (http://zmf.umm.uni-heidelberg.de/mirwalk2) is a web tool that provides
information about validated or putative miRNA–mRNA interactions. For its prediction, 12
algorithms (miRWalk, Microt4, mirbridge Targetscan, RNAhybrid, RNA22, PITA, Pictar2,
miRNAMap,miRDB,miRanda, andmiRMap) were employed to ensure robustness (Dweep
& Gretz, 2015). Here, targeted genes forecasted by at least seven algorithms, along with the
validated genes, were selected as candidate genes from miRWalk 2.0. Meanwhile, mirDIP
v4.1 (http://ophid.utoronto.ca/mirDIP/) is amiRNA database integrated across 30 different
resources, capable of providing nearly 152 million human microRNA–target predictions
(Tokar et al., 2018). In the mirDIP v4.1 database, genes predicted by at least 11 algorithms
under the very high score class were selected as candidate genes from mirDIP v4.1.

Obtaining DEGs and overlapped target genes
The Gene Expression Profiling Interactive Analysis (GEPIA) web server is a valuable
resource for gene expression analysis based on tumor and normal samples from the TCGA
and GTEx databases. GEPIA2 is an updated and enhanced version with higher resolution
and more functionalities (Tang et al., 2019). Through GEPIA2, We identified differentially
expressed genes (DEGs) between glioblastoma (GBM) and normal tissues using the criteria
of |log2 (fold change)|> 1 and P value < 0.01. These DEGs were intersected with the
candidate gene sets from miRWalk 2.0 and mirDIP v4.1. Overlapped mRNAs showing up
in all three sets were taken as final target mRNAs and used for further analysis.
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Functional enrichment analysis of overlapped genes
The Search Tool for the Retrieval of Interacting Genes database (STRING) is a database
aimed at achieving a comprehensive and objective global network, including direct
(physical) and indirect (functional) interactions (Szklarczyk et al., 2019). It was utilized to
perform Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis for the overlapped mRNA, with a setting P < 0.05
and counts > 5.

Identification and assessment of hub genes
UsingmRNAexpression profiles and clinical information fromTCGA (https://www.cancer.
gov/tcga), the overlapping genes were consecutively analyzed with LASSO regression and
multivariate Cox regression analysis, and independent prognostic genes were identified as
hub genes. The total risk score of each sample was calculated as the sumof themultiplication
of the expression value and the correlation coefficient of each gene. Patients with higher
50% or lower 50% of risk score were defined as high-risk or low-risk groups respectively.
Their value as a prognostic signature for gliomas, as well as their corresponding sensitivity
and specificity, were evaluated using K-M curve analysis and ROC curve analysis both in the
TCGA training dataset and the external CGGA validation dataset (http://www.cgga.org.cn/)
(Zhao et al., 2021). Sample IDs of the CGGA samples used in this study was listed in Table
S4. The protein level expression differences of hub genes were further confirmed with
immunohistochemistry (IHC) images from The Human Protein Atlas (HPA) database
(Uhlen et al., 2015).

Construction of a circRNA–miRNA–mRNA network
Cytoscape is an open-source software for the integration of molecular interaction network
data and the establishment of powerful visualization (Shannon et al., 2003). Here, it was
used to construct a circRNA–miRNA–mRNA regulatory network.

Assessment of immune cell infiltration
Gene set variation analysis (GSVA) is a gene set enrichment method and an open source
software package for R, which can estimate the variation of pathway activity over a
sample population in an unsupervised manner (Hanzelmann, Castelo & Guinney, 2013).
To estimate the immune cell infiltration level, we applied single-sample gene-set enrichment
analysis (ssGSEA), which is a built-in algorithm of the GSVA package, using the RNA-seq
data and related clinical data from the TCGA-GBMLGG dataset. Gene expression features
of 24 immune cells were acquired from a previous study (Bindea et al., 2013), and the
correlation with immune cell infiltration was obtained for the genes that passed LASSO
regression analysis. Sample IDs of the TCGA-GBMLGG samples used in this study was
listed in Table S5.

Connectivity Map (CMap) analysis and assessment
The connectivity map (CMap) is a collection of genome-wide transcriptional expression
data from human cell lines treated with various drugs or compounds. Functional
connections between drugs, genes, and diseases were then uncovered using pattern-
matching algorithms and features of common gene expression changes (Lamb, 2007; Lamb
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et al., 2006). Using the hub genes from multivariate Cox regression analysis, candidate
compounds with negative connectivity scores were identified as promising candidate
therapeutic approaches. The available related RNA-seq data were acquired from GEO and
used for GSEA analysis to explore the effects of those drugs on gliomas.

Statistical analysis
R software (version 4.0.3) was used for all statistical analyses, and p-values <0.05 were
considered statistically significant. The Glmnet package and survival package were utilized
for LASSO regression and multivariate Cox regression analysis, respectively. GGally and
rms packages were used to evaluate and remove the co-linearity between samples. K-M
curve analysis was performed using the Survminer package. ROC curve analysis was
performed using the survival ROC package. Visualization was achieved using the ggplot2,
pheatmap, or plotROC packages.

RESULTS
Acquiring eight DECS in gliomas
To explore the potential function of circRNAs and the corresponding ceRNA network
in glioma, DECs from GSE109569 (three glioma samples vs. three normal samples) and
GSE146463 (eight glioma samples vs. three normal samples) datasets were obtained using
GEO2R from the GEO database. Genes with P < 0.05 and a |Log2(fold change)|> 1 were
considered significant DECs. Through the intersection of twoDEC datasets, six upregulated
and two downregulated circRNAs were identified and chosen as research objects in this
study. The differences in expression between gliomas and normal tissues are shown in Figs.
2A–2B. The basic features of these eight circRNAs are listed in Table 1. The circRNAs’
accurate expression values in the GEO datasets are summarized in Table S1.

Identification of circRNA–miRNA interactions
To explore the roles of these eight circRNAs as ceRNAs in glioma, three online
databases, namely circBank, CSCD, and CircInteractome, were utilized to collect
potential target miRNAs. Six out of eight circRNAs were recorded in the CSCD database,
and their structures of MRE, RBP, and ORF are shown in Fig. 2C. A total of 15
miRNAs and 18 circRNA–miRNA interactions were identified by at least two databases,
including hsa_circ_0030788-miR-5693/miR-6867-5p/miR-607/miR-1248/miR-586/miR-
599, hsa_circ_0034182-miR-1200, hsa_circ_0000227-miR-647/miR-1303/miR-767-3p,
hsa_circ_0018086-miR-1303/miR-3925-5p/miR-581, hsa_circ_0000229-miR-935/miR-
640, hsa_circ_0036592-miR-1205/miR-767-3p, and hsa_circ_0002765- miR-587/miR-
767-3p. The functions of these miRNAs in tumors reported in PubMed were summarized
in Table 2. Among them,miR-1303,miR-581,miR-586,miR-599,miR-607,miR-647,miR-
767-3p, miR-935, and miR-1248 have been extensively reported to regulate the progression
of various tumors as promoters or suppressors. DIANA-miRPath was then used to probe
signaling pathways involving 15 unique miRNAs. As shown in Fig. 3A, these miRNAs
are involved in multiple pathways of glioma, including the FoxO signaling pathway,
phosphatidylinositol signaling pathway, and TGFβ signaling pathway. Furthermore, given
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Figure 2 Expression profile heatmaps for 8 DECs in two GEO datasets (A, B) and basic structures of
the circRNAs (C). The different colors and shapes in the outer and inner ring represent the different exons
and the positions of MRE, RBP and ORF.

Full-size DOI: 10.7717/peerj.11894/fig-2

that the expression levels of the miRNAs are critical for their biological functions, we
checked the expression levels of those 15 miRNAs in glioma tissues with CGGA data
and GEO data, as shown in (Tables S2–S3) Different data sets showed slightly different
expression of those miRNAs. And their expression values vary quite a lot from sample
to sample. But in general, according to those two datasets, the miR607 and miR587 have
relatively lower expression levels.

Obtaining target mRNAs in the ceRNA network
To forecast the target genes of these miRNAs, miRWalk 2.0, mirDIP v4.1, and GEPIA2
were utilized in this study. A total of 7688 mRNAs were validated or predicted by at least
seven algorithms in miRWalk 2.0. A total of 3370 genes were forecasted by more than 10
algorithms in mirDIP v4.1 to be targets of those miRNAs. In GEPIA2, 7652 genes were
identified as significant DEGs with P < 0.01 and |Log2(fold change)|> 1. The chromosomal
distribution of DEGs is displayed in Fig. 3B. Thereafter, through the intersection of all
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Table 1 Basic features of Differentially expressed circRNAs.

circBase ID bestTranscript Position strand Length Host gene
Symbol

circRNA
type

Regulation

hsa_circ_0001156 NM_015568 chr20: 37547116-37547282 + 166 PPP1R16B exonic down
hsa_circ_0030788 NM_052867 chr13: 101997616-102031004 − 508 NALCN exonic down
hsa_circ_0034182 NM_000814 chr15: 26825465-26828561 − 221 GABRB3 exonic down
hsa_circ_0000227 NM_030751 chr10: 31644072-31676195 + 32123 ZEB1 intronic up
hsa_circ_0018086 NM_001128128 chr10: 31676052-31676195 + 143 ZEB1 intronic up
hsa_circ_0000229 NM_030751 chr10: 31661946-31709678 + 47732 ZEB1 intronic up
hsa_circ_0036592 NR_004859 chr15: 85180577-85181708 + 156 SCAND2 exonic up
hsa_circ_0002765 NM_001128128 chr10: 31644075-31676727 + 32652 ZEB1 intronic up

three gene sets, we obtained a total of 1076 target mRNAs involved in the ceRNA network
(Fig. 3C), whose overall expression levels were not significantly correlated with genders
(Fig. S1).

Function enrichment analyses
To explore the potential functions of the 1076 target genes, GO and KEGG signal pathway
enrichment analyses were performed using STRING. In terms of biological processes,
these target genes covered majority of the hallmark pathways of tumors, including cell
growth, cell cycle, proliferation, differentiation, migration, apoptosis, cell death, immune
response, angiogenesis, as well as some well-known cancer-related pathways such as the
Wnt and TGFβ signaling pathways, which were also exhibited in KEGG enrichment results.
In addition, KEGG also showed enrichment in some other essential pathways, such as the
cell cycle, p53, Hippo, MAPK, and stemness regulating pathways. The compositions of the
target genes encompassed a wide range of cellular components and molecular functions
from cytosol to synapse as well as from DNA binding to enzyme binding. Visualization of
the enrichment results is displayed in Fig. 4. Taken together, functional enrichment results
indicated that the ceRNA network is extensively involved in the pathogenesis of gliomas.

Identification and assessment of hub genes
Utilizing gene expression data and corresponding clinical data from the TCGA-GBMLGG
data set, we applied LASSO regression analysis to the 1076 target genes and obtained 46
significant candidate genes which were further used formultivariate Cox regression analysis
(Fig. 5). Eventually, 11 independent prognosis-related hub genes were identified, including
ARHGAP11A, DRP2, HNRNPA3, IGFBP5, IP6K2, KLF10, KPNA4, NRP2, PAIP1, RCN1,
and SEMA5A. Thereafter, we checked the human protein atlas database to confirm the
protein expression level changes of the 11 hub genes. Three of them (DRP2, IGFBP5,
KLF10) are not provided with protein expression information. Two (ARHGAP11A, NRP2)
of them showed no big difference between normal and glioma samples. The other six of
them (HNRNPA3, IP6K2, KPNA4, PAIP1, RCN1, SEMA5A) showed significantly increased
protein expression, consistent with our results (Fig. S2). The genes with supporting protein
level results could be of more importance for further future validation study. But given the
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Table 2 Functions of miRNAs identified for ceRNA network.

predicted
upstream
hsa_circ_#

has-miR- # Tumor type Regulation axis Role of
miRNA
in tumor

Ref.

Breast Cancer miR-1303/CDKN1B Promotor Chen et al. (2020b)
Breast Cancer HIF-1 α/lncRNA-BCRT1/miR-1303/PTBP3 Suppressor Liang et al. (2020)
Gastric Cancer miR-1303/CLDN18 Promotor Zhang et al. (2014)

0000227 1303

Neuroblastoma miR-1303/GSK3 β Promotor Li et al. (2016)
Colorectal Cancer miR-581/SMAD7 Promotor Zhao et al. (2020)

0018086 581
Hepatocellular Carcinoma miR-581/EDEM1 Promotor Wang et al. (2014)
Cervical Cancer, Colon Cancer, etc. lncRNA-MIF/miR-586 Promotor Zhang et al. (2016)

0030788 586
Osteosarcoma miR-586 Promotor Yang et al. (2015)
Anaplastic Thyroid Carcinoma lncRNA-NEAT1/miR-599 Suppressor Tan et al. (2020)
Esophageal Carcinoma circ_0030018/miR-599/ENAH Suppressor Wang et al. (2019b)
Esophageal Carcinoma HIPK3/miR-599/c-MYC Suppressor Ba et al. (2020)
Gastric Cancer circ_0008035/miR-599/EIF4A1 Suppressor Li et al. (2020)
Gastric Cancer miR-599/EIF5A2 Suppressor Wang et al. (2018)
Hepatocellular Carcinoma miR-599/MYC Suppressor Tian et al. (2016)
Hepatocellular Carcinoma circ_0006916/miR-599/SRSF2 Suppressor Zhu et al. (2020)
Osteosarcoma circ_0001721/miR-599 Suppressor Li et al. (2019)

0030788 599

Papillary Thyroid Carcinoma miR-599/Hey2 Suppressor Wang et al. (2020)
Cervical Cancer LncRNA-TP73-AS1/miR-607/CCND2 Suppressor Zhang et al. (2019)
Chronic Lymphocytic Leukemia circ-CBFB/miR-607 /FZD3 Suppressor Xia et al. (2018)
Lung Squamous Carcinoma Cells miR-607/CANT1 Suppressor Qiao et al. (2021)
Osteosarcoma LINC00607/miR-607/E2F6 Suppressor Zheng et al. (2020)
Pancreatic Cancer LINC01559/miR-607/YAP Suppressor Lou et al. (2020)

0030788 607

Prostate Cancer miR-607/BLM Suppressor Chen et al. (2019)

(continued on next page)
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Table 2 (continued)

predicted
upstream
hsa_circ_#

has-miR- # Tumor type Regulation axis Role of
miRNA
in tumor

Ref.

Cervical Cancer LncRNA-ZNFX1-AS1/miR-647 Suppressor Yang et al. (2020)
Colorectal Cancer miR-647/NFIX Promotor Liu et al. (2017a)
Gastric Cancer miR-647/TP73 Promotor Zhang et al. (2018a)
Gastric Cancer miR-647/ANK2, FAK, MMP2, MMP12, CD44, SNAIL1 Suppressor Cao et al. (2017)
Gastric Cancer miR-647/SRF/MYH9 Suppressor Ye et al. (2017)
Gastric Cancer LncRNA-PROX1-AS1 Suppressor Song, Bi & Guo (2019)
Gastric Cancer miR-647/ANK2 Suppressor Cao et al. (2018)
Glioma miR-647/HOXA9 Suppressor Qin et al. (2020)
Non-Small Cell Lung Cancer miR-647/IGF2 Suppressor Jiang, Zhao & Yang (2021)
Non-Small Cell Lung Cancer miR-647/TRAF2 Suppressor Zhang et al. (2018b)
Osteosarcoma circ_0001649/miR-647 Promotor Sun & Zhu (2020)
Ovarian Cancer circ-FAm53B/miR-647/MDM2 Suppressor Sun, Liu & Zhou (2019)

0000227 647

Prostate Cancer NF-KappaB/circNOLC1/miR-647/PAQR4 Suppressor Chen et al. (2020a)
Glioma miR-767-3p Suppressor Kreth et al. (2013)
Hepatocellular Carcinoma circ_0000673/miR-767-3p/SET Suppressor Jiang et al. (2018)
Lung Adenocarcinoma miR-767-3p/CLDN18 Suppressor Wan et al. (2018)

0000227,
0036592

767-
3p

Non-Small Cell Lung Cancer circ_0018818/miR-767-3p Suppressor Xu et al. (2020)
Gastric Cancer miR-935/SOX7 Promotor Yang et al. (2016)
Gastric Signet Ring Cell Carcinoma miR-935/Notch1 Suppressor Yan et al. (2016)
Glioblastoma miR-935/FZD6 Suppressor Zhang et al. (2021)
Glioma miR-935/HIF1 α Suppressor Huang et al. (2020)
Non-Small-Cell Lung Cancer miR-935/SOX7 Suppressor Peng et al. (2018)
Non-Small-Cell Lung Cancer miR-935/E2F7 Suppressor Wang et al. (2019a)
Osteosarcoma miR-935/HMGB1 Suppressor Liu et al. (2018)

0000229 935

Liver Cancer miR-935/SOX7 Promotor Liu et al. (2017b)
0030788 1248 Non-Small-Cell Lung Cancer miR-1248/TYMS Promotor Xu et al. (2014)
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Figure 3 MiRNA pathway enrichment and target genes identification. Significant signaling pathways of
the 15 miRNAs utilizing the DIANA-miRPath (A), chromosome distribution of DEGs from GEPIA2 (B),
and the Venn graph showing the 1076 overlapped target genes identified with intersection of three gene
sets (C).

Full-size DOI: 10.7717/peerj.11894/fig-3

limited sample size of this part of data, we still took all those 11 genes as our subjects of
analysis.
Based on the expression value and correlation coefficients, we integrated these 11 genes

as a whole signature and computed the total risk score of each sample to divide glioma
patients into high- and low-risk groups. The K-M curve analysis indicated that the overall
survival of the high-risk group was significantly shorter than that of the low-risk group
(Fig. 6A). ROC curve analysis further showed decent sensitivity and specificity of this
signature in predicting the prognosis of glioma patients (Fig. 6B). An external independent
CCGA dataset was introduced to validate the results of the K-M curve and ROC curve
analyses, and similar conclusions were obtained (Figs. 6C–6D).
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Figure 4 Functional enrichment analysis of target mRNAs in genes sets of biological process (A), cel-
lular component (B), molecular function (C), and KEGG pathways (D). The color intensity of the nodes
shows the degree of enrichment of this analysis. Strength is the ratio between observed counts and the ex-
pected matching counts for a random list of the same size. The dot size represents the count of genes in a
pathway.

Full-size DOI: 10.7717/peerj.11894/fig-4

Construction of a circRNA–miRNA–mRNA network
To present the relationship between circRNA, miRNA, and mRNA, a ceRNA network
consisting of seven circRNAs, 15miRNAs, and 46mRNAs was constructed using Cytoscape
as shown in Fig. 7. The five upregulated circRNAs influenced nine miRNAs and 13
mRNAs, while the two downregulated circRNAs targeted sevenmiRNAs and eight mRNAs.
Meanwhile, 25 mRNAs were under the two-way regulation of both groups of circRNAs.

Immune cell infiltration features of prognosis-related genes
Gene expression profiles from TCGA-GBMLGG dataset and immune cell signatures
from a previous study were used for immune infiltration analysis with the GSVA package
(Bindea et al., 2013;Hanzelmann, Castelo & Guinney, 2013). Spearman correlation between
infiltration levels of 24 immune cells and 46 prognosis-related genes demonstrated that
their expression levels were closely related to tumormicroenvironment immune infiltration
(Fig. 8).

Candidate compounds from CMap and assessment
Notably, in order to explore the practical value of this study, the candidate compounds
that might have effects on gliomas were predicted by CMap with the hub genes we
screened out (Table 3). Based on the enrichment correlation coefficient, drugs such as
fulvestrant, tanespimycin, mifepristone, tretinoin, and harman are the most promising
potential therapeutic options for gliomas. With GSEA analysis on RNA-seq data from
GEO (GSE59262 for mifepristone; GSE141789, GSE17227, and GSE61002 for tretinoin),
mifepristone and tretinoin were proven to inhibit cell cycle and DNA repair pathways
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Figure 5 Forest plot of the multivariate Cox regression analysis result of LASSO significant genes uti-
lizing gene expression data and corresponding clinical data from the TCGA-GBMLGG data set. Genes
with P< 0.05 were considered significant.

Full-size DOI: 10.7717/peerj.11894/fig-5

Table 3 Potential therapeutic options forecasted by CMap.

cmap name dose cell score up down instance_id

fulvestrant 10 nM PC3 −1 −0.212 0.661 4462
tanespimycin 1 µM PC3 −0.999 −0.407 0.465 1218
mifepristone 9 µM HL60 −0.983 −0.433 0.425 1569
tretinoin 1 µM PC3 −0.955 −0.276 0.558 1211
harman 18 µM PC3 −0.953 −0.495 0.337 4584
miconazole 10 µM HL60 −0.941 −0.453 0.368 1977
ifosfamide 15 µM PC3 −0.933 −0.26 0.554 5805
trimethylcolchicinic acid 12 µM PC3 −0.931 −0.457 0.356 4202
rifampicin 5 µM PC3 −0.909 −0.281 0.512 4008

(Fig. 9). These novel therapeutic options would require more preclinical and clinical
studies for further validation.

DISCUSSION
CircRNA can act as a molecular sponge for miRNAs to de-repress all target genes of these
miRNAs (Kristensen et al., 2019; Meng et al., 2017). Accumulating evidence has shown
that this circRNA-miRNA-mRNA network plays an important role in the pathogenesis
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Figure 6 Kaplan–Meier survival curves analysis and ROC curves analysis. Kaplan–Meier survival
curves of risk groups in the training dataset (A) and validation dataset (C), as well as the ROC curves of
the hub gene signature in the training set (B) and validation set (D).

Full-size DOI: 10.7717/peerj.11894/fig-6

Figure 7 A network of circRNA/miRNA/mRNA in glioma.Oval, arrow, diamond, and octagon repre-
sents circRNA, miRNA, mRNA, and hub mRNAs respectively. For circRNAs, red indicates upregulation
and blue means downregulation. Gradual color changes of mRNAs represent differences in the expression
levels.

Full-size DOI: 10.7717/peerj.11894/fig-7
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Figure 8 Correlation between 24 immune cells infiltration level and 46 LASSO regression analysis sig-
nificant genes.

Full-size DOI: 10.7717/peerj.11894/fig-8

Figure 9 The impact of candidate drugs on glioma cells.mRNA expression profiles of glioma cells
treated with drug(mifepristone/tretinoin) or vehicle were analyzed with GSEA. NES, normalized
enrichment score; FDR, false discovery rate. Negative value of NES means inhibition; positive value means
promotion. FDR<0.25 were considered as significant.

Full-size DOI: 10.7717/peerj.11894/fig-9

of gliomas, encompassing a wide range of phenotypes, such as proliferation, migration,
and invasion (Chen et al., 2019; Ding et al., 2020; Wang et al., 2018). Therefore, circRNAs
and miRNAs are increasingly regarded as promising therapeutic targets or diagnostic
biomarkers. GBM can be divided into different subsets with diverse responses to various
therapies as a group of heterogeneous intracranial neoplasmswith distinct histopathological
and molecular biological characteristics (Lapointe, Perry & Butowski, 2018). Thus, there is
an urgent need to establish reliable risk stratification methods to classify GBM patients into
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various risk groups to benefit from various treatment strategies.Many studies have explored
the prognostic signatures of gliomas in the context of epigenetic modifications or lncRNAs
(Niu et al., 2020; Pan et al., 2021). However, so far, there has been no comprehensive and
in-depth study of the molecular signatures of circRNA-related ceRNA networks in gliomas.
Therefore, in this study, we constructed a circRNA–miRNA–mRNA network in glioma
to help understand its pathogenesis as well as aid in risk stratification and therapeutic
decision-making.

In this study, eight DECs (hsa_circ_0001156, hsa_circ_0030788, hsa_circ_0034182,
hsa_circ_0000227, hsa_circ_0018086, hsa_circ_0000229, hsa_circ_0036592, and
hsa_circ_0002765) were identified as DECs in the first step. To the best of our knowledge,
all of them were found to be abnormally expressed in glioma for the first time and have not
been studied so far, which makes them potential novel biomarkers or therapeutic targets.

Seven out of eight circRNAs (except for hsa_circ_0001156) were identified as ceRNAs
to bind 15 miRNAs (hsa-miR-1200, hsa-miR-1205, hsa-miR-1248, hsa-miR-1303, hsa-
miR-3925-5p, hsa-miR-5693, hsa-miR-581, hsa-miR-586, hsa-miR-599, hsa-miR-607,
hsa-miR-640, hsa-miR-647, hsa-miR-6867-5p, hsa-miR-767-3p, and hsa-miR-935). As
for hsa_circ_0001156, it might still be involved in the pathogenesis of gliomas through
functions other than miRNA sponges, such as coding proteins, interacting with RNA
binding proteins, or modulating the stability of mRNAs.

As shown inTable 2, among the 15miRNAs identified,miR-581,miR-586, andmiR-1248
were reported to promote tumor progression, while miR-599, miR-607, and miR-767-
3p were shown to be tumor suppressors in various cancers. Some studies have shown
contradictory results regarding the effects of miR-1303, miR-647, and miR-935 on some
tumors. This could partly result from differences in the cell lines used, the phenotypes
selected, or the pathways studied. However, further research is needed to resolve these
discrepancies. Nevertheless, it is noteworthy that miR-647, miR-767-3p, and miR-935
reportedly suppress the progression of glioma through multiple regulatory axes, including
miR-647/HOXA9, miR-935/FZD6, miR-935/HIF1 α, or miR-767-3p itself, making them
promising biomarkers and therapeutic targets for glioma. In addition, the other sixmiRNAs
without previous studies on tumors (miR-1200, miR-1205, miR-3925-5p, miR-5693, miR-
640, and miR-6867-5p) could also be novel fields worth exploring, which could possibly
lead to unexpected discoveries.

Given the correlation between miRNAs expression levels and their biological functions,
we further checked their expression levels in glioma tissues with CGGA data and GEO
datasets, as shown in (Tables S2–S3). According to those two datasets, the miR607 and
miR587 have relatively lower expression levels, implying they could be less important in
glioma studies. And miR581 has relatively higher expression, giving it higher importance
for glioma. But it is noteworthy that different datasets showed considerably different
expression of those miRNAs, probably due to the different platforms used and various
samples chosen. And their expression values vary quite a lot from sample to sample even
for the same dataset. So, their actual expression levels still await to be examined.

CircRNAs fulfill their functions by de-repressing the target genes of miRNAs. Therefore,
to further explore the effects of circRNAs on glioma, 1076 overlapping target genes were

He et al. (2021), PeerJ, DOI 10.7717/peerj.11894 16/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.11894#supp-3
http://dx.doi.org/10.7717/peerj.11894#supp-4
http://dx.doi.org/10.7717/peerj.11894


collected and used for functional enrichment analyses. The ten major hallmarks of tumors
include sustaining proliferative signaling, evading growth suppressors, resisting cell death,
enabling replicative immortality, inducing angiogenesis, activating invasion andmetastasis,
reprogramming of energy metabolism, evading immune destruction, genome instability
and mutation, and dysregulating cellular energetics (Hanahan &Weinberg, 2011), most of
which were covered in our enrichment result of biological processes. This indicates that
the ceRNA network we built here is extensively involved in the initiation and progression
of gliomas.

The pathway enrichment results uncovered the involvement of many essential tumor-
related pathways such as the Wnt, TGFβ, cell cycle, p53, Hippo, MAPK, and stemness
regulating pathways. Wnt signaling, commonly divided into β-catenin-dependent
(canonical) and independent (non-canonical) signaling, is one of the key cascades
regulating development (Klaus & Birchmeier, 2008). Its role in carcinogenesis has mostly
been described in colorectal cancer, along with some other cancer entities (Zhan,
Rindtorff & Boutros, 2017). The transforming growth factor (TGF)-β signaling pathway
is deregulated in many diseases and has dual functions in cancers. It suppresses tumors
in healthy cells and early stage cancer cells but promotes tumorigenesis, metastasis,
and chemoresistance in late-stage cancer (Colak & Ten Dijke, 2017). p53 is a tumor
suppressor protein that regulates cell growth by promoting apoptosis and DNA repair
under stressful conditions (Kanapathipillai, 2018). The Hippo pathway largely consists of a
kinase cascade (MST1/2 and LATS1/2) and downstream transcriptional coactivators (YAP
and TAZ), controlling transcriptional programs involved in cell proliferation, survival,
mobility, stemness, and differentiation (Ma et al., 2019). The MAPK/ERK pathway is a
chain of proteins that communicate signals from a receptor on the cell surface to the
DNA in the nucleus of the cell (Orton et al., 2005). Alteration of this pathway is often a
necessary step in the development of many cancers (Drosten & Barbacid, 2020). Cancer
stem cells are capable of sustaining tumors by aiding metastasis, therapy resistance, and
tumor microenvironment maintenance, making the stemness regulation key traits and
mechanisms for tumor progression (Saygin et al., 2019). All of these pathways, which were
under the control of the ceRNA network we constructed in this study, have been shown
to participate in the initiation or progression of gliomas (He et al., 2019; Lan et al., 2019;
Lee et al., 2017; Ma et al., 2018; Masliantsev, Karayan-Tapon & Guichet, 2021; Zhao et al.,
2019). Altogether, these 1076 target genes, regulated indirectly by the circRNAs identified
in the present study, play essential roles in the pathogenesis of gliomas.

Thereafter, LASSO regression analysis and multivariate Cox regression analysis
were applied to the 1076 genes consecutively. Forty-six LASSO significant genes and
11 independent prognosis-related hub genes were identified (ARHGAP11A, DRP2,
HNRNPA3, IGFBP5, IP6K2, KLF10, KPNA4, NRP2, PAIP1, RCN1, and SEMA5A).
Among them, ARHGAP11A, DRP2, HNRNPA3, KLF10, PAIP1, and RCN1 have not yet
been studied in gliomas. Three mRNAs were identified as oncogenes in gliomas, which
was consistent with our multivariate Cox regression analysis result: IGFBP5 can increase
cell invasion and inhibit cell proliferation via the EMT and Akt signaling pathways in
GBM (Dong et al., 2020); IP6K2 was reported to promote cell proliferation and inhibit
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cell apoptosis under the regulation of the LINC00467/miR-339-3p axis (Liang & Tang,
2020); and KPNA4 is capable of facilitating epithelial-mesenchymal transition in glioma,
which can be suppressed by miR-181b, a tumor-suppressive miRNA (Wang et al., 2015).
Surprisingly, the roles of the other two mRNAs in glioma were shown to be different
from our analysis result: NRP2 promoted glioma cell growth, invasion, and angiogenesis
(Zheng et al., 2013); and SEMA5A, whose expression is markedly reduced in higher grades
of glioma, can impede motility and promote differentiation of human gliomas (Li & Lee,
2010). This discrepancy might result from the fact that we used survival data for analysis,
and those genes were studied only in vitro for some specific phenotypes, while the in vivo
result of survival might be influenced by multiple other conditions and phenotypes (such
as immune response and therapy sensitivity). However, the functions of these genes require
further experimental verification. Nevertheless, the K-M curve analysis and ROC curve
analysis in both training and external validation datasets proved that these genes together
are a competent signature for predicting the prognosis of gliomas.

In addition, we checked the human protein atlas database to confirm the protein
expression level changes of the 11 hub genes. Three of them (DRP2, IGFBP5, KLF10) are
not provided with protein expression information. Two (ARHGAP11A, NRP2) of them
showed no big difference between normal and glioma samples. The other six of them
(HNRNPA3, IP6K2, KPNA4, PAIP1, RCN1, SEMA5A) showed significantly increased
protein expression, consistent with our results (Fig. S2). This does not mean that DRP2,
IGFBP5, KLF10, ARHGAP11A and NRP2 are not essential genes for glioma pathogenesis,
given the missing data and limited sample size we found. But still this could give us some
hints that those genes with supporting HPA results (namely HNRNPA3, IP6K2, KPNA4,
PAIP1, RCN1, SEMA5A) could be more promising targets for future further validation
studies.

Recently, circRNAs were reported to play a significant role in multiple immune-related
biological processes, including innate and adaptive immune responses, immune cell
homeostasis, immune recognition, and anti-tumor immunity (Yan & Chen, 2020; Zhang
et al., 2020). Comprehensive recognition of circRNA-mediated immune cell infiltration
in glioma can provide novel insights into risk stratification and clinical therapeutic
strategies. Hence, we profiled tumor microenvironment immune cell infiltration utilizing
46 prognosis-related genes from the LASSO regression analysis as shown in Fig. 8. The
current consensus is that the anti-tumor immune response in glioma is largely suppressed
by brain-resident microglial cells and bone marrow-derived macrophages, and is mainly
promoted by CD8+ T cells (Pinton et al., 2019). However, the roles of other immune
cells, such as B cells, are still debatable (Pinton et al., 2019; VonRoemeling et al., 2020). Our
results showed that generally the genes that were positively related to macrophages were
negatively correlatedwithCD8+T cells, and vice versa. This indicated that these genes could
play considerable roles in immune infiltration switch of the tumor microenvironment.
However, it should be noted that there is still a lack of systemic immune cell markers
for gliomas. Existing immune markers are mostly constructed in other tumors, and some
glioma-specific immune cells (such asmicroglial cells) still lack convincing specificmarkers.
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Specific immune cell markers for gliomas are urgently needed for a robust assessment of
immune infiltration and understanding of immune response mechanisms in gliomas.

Glioma is one of the most drug-resistant malignancies with frequent recurrence after
chemotherapy, making it necessary to explore novel compounds or drugs that may have
a therapeutic effect. Here, with the hub genes identified, some potential drugs were
acquired from the CMap database. Although the prediction of CMap was mostly based
on experiments in prostate cancer and leukemia cell lines, the effects of these drugs
have also been verified in multiple other tumors. For instance, fulvestrant is a selective
estrogen receptor degrader that has been extensively studied for its therapeutic effects
in breast cancer (Slamon et al., 2020). Harmane is a tremorigenic β-carboline capable of
inhibiting mitochondrial viability and increasing reactive oxygen species levels (Khan,
Patel & Kamal, 2017). Its semi-synthetic derivative, B-9-3, showed an anti-proliferative
effect in lung cancer, breast cancer, and colorectal carcinoma cell lines via induction
of apoptosis and inhibition of cell migration (Daoud et al., 2014). Some of these drugs
have been proven to interfere with the progression of gliomas. Tanespimycin is a well-
characterized HSP90 inhibitor that can inhibit the growth of GBM and synergize with
radiation (Sauvageot et al., 2009). Mifepristone was reported to be a potential therapy
for reducing angiogenesis and TMZ resistance in GBM (Llaguno-Munive et al., 2020).
Tretinoin, an all-trans retinoic acid, was shown to significantly induce apoptosis and
suppress stemness in GBM (Chen et al., 2014; Hu et al., 2017). Importantly, mifepristone
and tretinoin were shown to inhibit cell cycle and DNA repair of glioma according to
our own GSEA analysis result (Fig. 9). Given that radiation and temozolomide, the major
non-surgical treatments for glioma, both work through inducing DNA damage, those novel
drugs could be promising supplementary therapeutic treatments which can be applied in
combination with radiotherapy or chemotherapy.

Several limitations of this study should be considered. The construction of
circRNA/miRNA/mRNA regulatory networks and the prediction of therapeutic drugs
largely relied on a series of bioinformatics algorithms and databases, whose authenticity
and accuracy still await the verification of numerous experiments. Therefore, we adopted
and integrated multiple databases for all predictions in the present study to improve
robustness. In addition, the retrospective research design could display some statistical
bias and the traditional bulk sequence transcriptome data would lack comprehensive
exploration of intra-tumoral heterogeneity. A prospective study design and utilization
of single-cell omics techniques will help address this issue and provide more accurate
and reliable results in the future. However, based on circRNA/miRNA/mRNA regulatory
networks, we established a superior predictive signature to assess the clinical outcomes of
patients with GBM and forecasted some promising candidate drugs.

CONCLUSIONS
Through the construction of a circRNA/miRNA/mRNA regulatory network in glioma and
the combination of survival analysis, this study successfully identified 11 circRNA-related
mRNA signatures to predict the prognosis of GBM patients. Additionally, we determined
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that circRNA-regulated hub genes were correlated with specific immune cell infiltration
levels and proposed some potential therapeutic options. Comprehensively exploring the
circRNA/miRNA/mRNA regulatory network in GBM will enhance our understanding of
the pathogenesis and immune infiltration features of glioma, promote treatment strategies,
and improve clinical outcomes.
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