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Human and other primate genomes consist of many segmental duplications (SDs) due to fixation of copy number variations
(CNVs). Structure of these duplications within the human genome has been shown to be a complexmosaic composed of juxtaposed
subunits (called duplicons). These duplicons are difficult to be uncovered from the mosaic repeat structure. In addition, the
distribution and evolution of duplicons amongprimates are still poorly investigated. In this paper, we develop a statistical framework
for discovering duplicons via integration of a Hidden Markov Model (HMM) and a permutation test. Our comparative analysis
indicates that the mosaic structure of duplicons is common in CNV/SD regions of both human and chimpanzee genomes, and
a subset of core dupliconsis shared by the majority of CNVs/SDs. Phylogenetic analyses using duplicons suggested that most
CNVs/SDs share common duplication ancestry. Many human/chimpanzee duplicons flank both ends of CNVs, which may be
hotspots of nonallelic homologous recombination.

1. Introduction

Human genome and other primate genomes consist of many
repetitive sequences.Many of these are hotspots for nonallelic
homologous recombination (NAHR) [1] or genomic rear-
rangements. Current estimates suggest that approximately
4%–6% of our human genome is composed of segmental
duplication (SD) [1–3]. SD is a DNA segment ≥1 kb in
size that occurs greater than once within the genome and
typically shares ≥90% sequence identity [1, 4]. Genomic
regions of SDs have been shown to be hotspots of copy
number variations (CNVs), which is a DNA segment 1 kb or
larger in size and presents different number of copies in the
population. A number of SDs and CNVs have been known to
highly associate with several complex diseases such as HIV-
1 infection, glomerulonephritis, Parkinson, and Alzheimer
diseases [5–8].

The completion of several sequencing projects pro-
vided abundant resources for mapping SDs in mammalian
genomes. SDs are usually identified by self-comparison of

the entire genome or by coverage analysis of overcollapsed
shotgun sequences [2, 9]. For example, a genome-wide
map of chimpanzee SDs was built by self-comparison of
chimpanzee assembly and alignment of shotgun sequences
to the human genome [10]. Through comparison of clone-
ordered assemblies of human andmouse, She et al. [11] found
that the amount ofmouse SDs is comparable to that of human
SDs. Recently, with the advent of array comparative genomic
hybridization (aCGH), numerous CNVs have been discov-
ered in several mammalian populations [12–14]. For example,
Redon et al. [15] identified a total of 1,447 CNVs from 270
individuals across four populations, covering 360 megabases
of the human genome. Perry et al. [16, 17] characterized a
map of CNVs in chimpanzees and found that human and
chimpanzee CNVs occur in orthologous regions far more
than expected.

A number of statistical and combinatorial methods have
been developed to identify SDs/CNVson the basis of compar-
ative genomics, microarray, or high-throughput sequencing
platforms. For instance, comparative approaches aim to
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Figure 1: Ancestral duplicons are first aggregated into one seeding
block that subsequently produces secondary duplication blocks.

uncover genomic sequences with high similarity fromwhole-
genome sequence alignment [3, 10, 11]. Computational meth-
ods on top of microarray platforms often identify genomic
regions with high density of unusual intensity signals [18,
19]. On the other hand, algorithms for high-throughput
sequencing platforms search for genomic segments with
ultrahigh/low read depth or aberrantmapping distances [20].

Even thoughmanyduplications have been discovered and
studied in the last decade, the underlyingmechanism leading
to these large duplications is still notwell understood. To date,
NAHR and retrotransposition are twomechanisms known to
supportmany duplication events. NAHR, also termed ectopic
recombination or unequal crossover, is a recombination error
during meiosis in which the exchanged chromosomes were
misaligned, leading to gain or loss of DNA segments [1, 21,
22]. The misalignment of NAHR has been suspected due
to repetitive elements widespread in the genome. On the
other hand, the activation of retrotransposons, retrovirus,
and endogenous retrovirus (ERV) may also mediate retro-
transposition of a few genes via reversely transcribing RNAs
into DNAs and inserting them back to the genome [23].

In recent years, a few studies started to investigate the
sequence composition within large duplications and found
that the structure is a complex mosaic composed of smaller
subunits called duplicons (with a minimum length of
100 bp) [2, 24, 25]. A two-step model has been established
to explain this mosaic structure [26, 27] (see Figure 1). In
this model, ancestral duplicons are first transposed and
aggregated into one seeding block, which subsequently pro-
duces secondary duplication blocks. Duplicons within this
complexmosaic cannot be readily uncovered by conventional
multiple sequence alignment approaches.Thus, Pevzner et al.
[28] developed an A-Bruijn graph algorithm for identifying
duplicons from this mosaic structure. The A-Bruijn graph
algorithm was then revised to discover 4,692 ancestral dupli-
cons using human SDs and outgroup mammalian genomes
[24]. Subsequently, Jiang et al. [9] compiled a library of
known duplicon sequences and used this library to efficiently
annotate SDs in a new genome.

The discovery of duplicons was based on comparing
sequences of known SDs. In reality, due to the difficulty of
assembling shotgun sequences in duplicated regions, large
(>15 kb) and highly identical (>95%) SDs are often collapsed
[11]. Furthermore, because these shotgun sequences are
collected from only a few individuals in the population, SDs
of unsampled individuals would be missed in the assembled
genome [17]. Thus, a substantial amount of duplicons can
be lost. In fact, CNVs have been viewed as a drifting and

polymorphic form of SDs, and both are probably mediated
by similar mechanisms [29]. A few studies have reported
that only ∼24% of CNVs are overlapped with SDs [15, 22],
implying that CNVs may serve as alternative repository of
duplicons. Recently, analysis of a fosmid clone indicated that
a large segment of CNV is deleted owing to NAHRmediated
by flanking duplicons [9]. However, the distribution of
dupliconswithinCNVs and theirmosaic structures in human
and other primates remains poorly investigated.

In this paper, we develop a Hidden Markov Model
(HMM) for efficiently annotating duplicons within CNVs
and assess the statistical significance of each duplicon. Our
results indicate that the mosaic structure composed of dupli-
cons is common in CNVs and SDs of both human and chim-
panzee. Although our duplicons are annotated from a subset
of CNVs, other CNV regions are found to have significantly
higher density of these duplicons. Phylogenetic analyses
suggest that many CNVs/SDs share common duplicons and
ancestry, and these CNVs/SDs are usually centered around a
few core duplicons shared by majority of duplications with
common ancestry. In addition, a number of duplicons are
found to flank both ends of human and chimpanzee CNVs,
creating hotspots of nonallelic homologous recombination.
Compared with previous functional analysis on CNVs, these
duplicons are also enriched for regulation of immune process
and response to stimulus but underrepresented in cell adhe-
sion.

2. Method

2.1. Data Preprocess and Problem Formulation. We down-
loaded a total of 50,339 human SDs from the Univer-
sity of California Santa Cruz genome browser (http://www
.genome.ucsc.edu) [2]. 1,447 human CNVs screened by a
tiling array and an SNP genotyping array are obtained from
Redon et al. [15]. We used Megablast [30, 31] to align all
SDs against each CNV (The parameters of Megablast are
set as follows: −e 0.0001, −F F, −W 34, and −M 1000000).
We found that megablast is able to complete the alignment
task under this setting within one week, whereas the regular
blastn is unable to finish within a reasonable period of time.
Although the speed can be theoretically improved by using
word size larger than 34 bp, we did not observe significant
differences when further enlarging the word size. According
to the alignment result, we construct an “alignment matrix”
for each CNV (Figure 2). Denote 𝑛𝑘 as the length of the 𝑘th
CNV sequence and 𝑚 as the number of SDs which can be
aligned to the 𝑘th CNV. Let 𝐴𝑘 = (𝑎𝑖𝑗) be a binary 𝑚 × 𝑛𝑘

matrix. Each element in the matrix 𝐴𝑘 is defined as 𝑎𝑖𝑗 = 1 if
the 𝑖th SD is aligned to the 𝑗th position of the 𝑘th CNV and
𝑎𝑖𝑗 = 0 otherwise, where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛𝑘. Note
that gaps and mismatches are excluded in 𝐴𝑘. Theoretically,
real duplicons tend to produce segments of consecutive “1s”
with higher frequency and longer length in the matrix. On
the other hand, segments of 1s due to random or occasional
alignments are less frequent and relatively shorter. In the
following, we describe an HMM for identifying duplicon
regions with sufficient frequency and length.

http://www.genome.ucsc.edu
http://www.genome.ucsc.edu
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Figure 2:The left figure illustrates one alignment result. Fragments with the same color represent the subsequences on CNV1 and SDs having
high similarity. The right figure illustrates the alignment matrix corresponding to the alignment result. In this matrix, the two clusters of 1s
are potential duplicons, whereas the remaining parts are probably noise.
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Figure 3: An example of state transition probability of our HMM. We take the second and third columns as an instance and highlight the
transition probability for𝐷1 state. Note that 𝜔 = 1/6 and 𝛾 = 2/5. The expected Viterbi path in this instance is𝐷1, 𝐷1, 𝐷2, 𝐷2, 𝑁.

2.2. Hidden Markov Model. The HMM is specified by five
sets of parameters, 𝜆 = (𝑆, 𝑂, 𝜋, 𝑇, 𝐸), where 𝑆 is the set of
states, 𝑂 is the set of observation, 𝜋 is the initial state, 𝑇 is
the set of state transition probabilities, and 𝐸 is the set of
emission probabilities.We define 𝑆 = (𝐷1, 𝐷2, 𝑁) as our state
alphabet set, where𝐷1 and𝐷2 represent two duplicon states,
and𝑁 is the nonduplicon state.We use two duplicon states in
order for distinguishing adjacent duplicons. OurHMMstarts
at the initial state 𝜋 with equal transition probability to one
duplicon state and the nonduplicon state.

In our HMM, the state transition probabilities 𝑇 are
designed to approximate the length of known duplicons and
reflect the transition likelihood implied by 0/1 patterns of two
adjacent columns in the matrix. First, the average length of
known duplicons 𝐿 is computed from the duplicon library
[9]. The probability of transition from one duplicon state to
itself (e.g.,𝐷1 to𝐷1) is set to 𝑝 = 1 − 1/𝐿, which corresponds
to a geometric distribution with mean 𝐿. In addition, we also
compute the frequencies of three 0/1 patterns (𝑓1,1, 𝑓0,1, and
𝑓1,0) in two adjacent columns. For example (see Figure 3),
𝑓1,1, 𝑓0,1, and 𝑓1,0 in the first two columns of the matrix are 3,
0, and 1, respectively. Intuitively, 𝑓1,1, 𝑓0,1, and 𝑓1,0 imply the
likelihood of transition to the same duplicon state, the other
duplicon state, or nonduplicon state, respectively.

Let 𝜔 = 𝑓1,1/(𝑓1,1 + 𝑓0,1 + 𝑓1,0) and 𝛾 = 𝑓0,1/(𝑓0,1 +

𝑓1,0). For each duplicon state, we define three state transition
probabilities: (1) transition to the same duplicon state with
probability 𝑝𝜔; (2) transition to the other duplicon state with
probability (1−𝑝𝜔)𝛾; (3) transition to nonduplicon state with
probability (1 − 𝑝𝜔)(1 − 𝛾). The transition probability for the

nonduplicon state is set to be equally likely. Figure 3 illustrates
an example of our state transition probabilities.

Theoretically, the columns of a real duplicon should have
higher frequency of 1s than those of nonduplicon columns.
Thus, we define observation 𝑂 = (𝑜1, 𝑜2, . . . , 𝑜𝑛𝑘

) as the
number of 1s in each of the 𝑛𝑘 columns, respectively. The
emission probability 𝐸 of the 𝑖th duplicon state is designed
to reflect the probability of observing 𝑜𝑖 1s, assuming that this
position is a real duplicon. First, we estimate the probability
of observing a duplicon in one SD from the known duplicon
library [9]. That is, 𝑃𝑜 = 𝐶/𝑀, where 𝐶 is the average copy
number of one duplicon and 𝑀 is the number of total SDs
in the duplicon library. Let 𝑘 be the number of 1s in the
column and 𝑛 the number of SDs in the alignmentmatrix.The
emission probability on the duplicon state is defined as 𝑃𝑑 =
∑
𝑘

𝑖=0
(
𝑛

𝑖
)𝑃
𝑖

𝑜
(1−𝑃𝑜)

𝑛−𝑖, corresponding to a cumulative binomial
distribution. And the emission probability on nonduplicon
state is defined as 1 − 𝑃𝑑.

The maximum probability path in the HMM starting
from 𝜋 and ending at state 𝑆𝑜𝑛𝑘 [𝑥] is given by

𝑃 (𝑉 | 𝐴𝑘, 𝜆) = 𝑃 (𝑆 [𝑥] | 𝜋)

× 𝑃 (𝑆𝑜1
[𝑥])

𝑛𝑘

∏

𝑖=2

𝑃 (𝑆𝑜𝑖
[𝑥] | 𝑆𝑜𝑖−1

[𝑥])

× 𝑃 (𝑆𝑜𝑖
[𝑥]) .

(1)

This maximum probability path is found by the Viterbi
algorithm [32], and all positions are assigned to one of the
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three states. We identify segments with at least 100 𝐷1 or 𝐷2
duplicon states as potential duplicons.

2.3. Permutation Test. The statistical significance of each
potential duplicon is assessed by a permutation test. We
define “copy number” of a duplicon as the average number
of SDs aligned to each position of the duplicon (Figure 4(a)).
The permutation test computes the probability of observing
the copy number of a potential duplicon from permutated
data. Real duplicons tend to have sufficient number of
copies, which are less likely to be observed by chance only.
In the permutation test, each segment of consecutive 1s
in the alignment matrix is randomly relocated to create
an artificial matrix (Figure 4(b)). 100 artificial matrices are
created separately for each alignmentmatrix.Then, duplicons
of each artificial matrix are identified by applying our HMM.
The maximum copy number among all duplicons in each
artificial matrix is recorded. For each potential duplicon of
the original matrix, the 𝑃 value is defined as the fraction of
artificial matrices for which maximum copy number is larger
than that of the potential duplicon.Only those dupliconswith
𝑃 value <0.01 are retained as our final solution.

For instance, suppose we have 30 copies of a potential
duplicon observed in alignment matrix 𝐴1. After permu-
tation test, there are ten maximum copy numbers (from
artificial simulations) greater than 30 (𝑃 value = 0.1 >
0.01). This potential duplicon would be eliminated due to
its nonsignificant 𝑃 value. On the contrary, if there is no
maximum copy number of artificial duplicons in 𝐴1 greater
than 30, the duplicon (𝑃 value = 0 < 0.01) is assessed as a
potential true duplicon.

2.4. Gene Ontology Analysis. We retrieve known genes
annotated by Ensembl (http://www.ensembl.org). Duplicons
overlapped with these known genes are included in our

analysis. In order to investigate the functional bias of
these duplicons, we identified over- and underrepresented
functions defined by gene ontology (GO) term analysis
(http://www.geneontology.org). For each GO subcategory
(level 2 and level 3) of biological process, cellular component,
and molecular function, we compute the numbers of all
genes and all duplicons that fall into each subcategory. The
statistical significance of over- or underrepresentation in any
GO subcategory is computed by chi-square test. 𝑃 values are
corrected using Bonferroni correction for multiple testing.
The subcategories with 𝑃 < 0.05 are investigated in our
analysis.

2.5. Hierarchical Clustering and Phylogenetic Analysis of
Duplicons. A binary “phylogenetic profile” was constructed
based on the extent of shared duplicons for each duplication
segment composed of ten ormore duplicons.The duplication
segment is defined as the chimpanzee SDs and CNVs (chim-
panzee specific, human specific, and human/chimpanzee
shared) in which the segments are aligned by our dupli-
cons with sequence identities ≥95% and length ≥100 bp.
If a duplicon is present within a duplication segment,
we assigned “1” for that duplicon in duplication segment,
otherwise assigned “0,” generating a binary phylogenetic
profile for each duplication segment. If there is no shared
duplicon among two duplication segments, these two seg-
ments are considered to have no related evolutionary his-
tory. A duplication group is a cluster of duplication seg-
ments grouped based on the amount of shared duplicons.
Complex duplication segments were then clustered into
several duplication groups by hierarchical clustering on
the basis of the similarity of their phylogenetic profiles.
ClustalW is used to generate phylogenetic clusters of these
profiles (http://www.ebi.ac.uk/Tools/clustalw2/index.html).
Each clade in the phylogenetic tree stands for a duplication
group in our analysis.

http://www.ensembl.org
http://www.geneontology.org
http://www.ebi.ac.uk/Tools/clustalw2/index.html
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Figure 5: (a) The distribution of lengths of our duplicons. (b) The distribution of copy numbers of our duplicons.

3. Results and Discussion

3.1. Novel Duplicons Annotated by Our Pipeline. The bina-
ry and source code of the entire pipeline have been encap-
sulated via bash script and are available at http://www
.cs.ccu.edu.tw/∼ythuang/Tool/HMMDupFinder/. We down-
loaded a total of 50,339 human SDs from the Universi-
ty of California Santa Cruz genome browser (http://www
.genome.ucsc.edu) [2]. 1,447 human CNVs screened by a
tiling array and an SNP genotyping array are obtained from
Redon et al. [15]. We used Megablast [30, 31] to align all SDs
against each CNV and created 1,447 alignment matrices (see
Section 2). We design and implement a HMM and run the
HMM on alignment matrices for annotating duplicons. A
total of 102,405 initial duplicons were found by the HMM.
After filteration by a permutation test (𝑃 < 0.01) and
removal of identical duplicons, 56,377 unique duplicons were
retained. These duplicons are spread among 1,095 CNVs.
On average, each CNV contains approximately 54 unique
duplicons. There are 963 CNVs (88%) having two or more
identical duplicons within the genomic region, and 2,994
duplicons appear twice or more in the same CNV. ∼71% of
our duplicons are novel compared with known duplicons
in [9]. Table 1 lists numbers of duplicons on each chro-
mosome. Figure 5 illustrates the distribution of length and
copy number of all duplicons. The average length of our
duplicons is 425 bp, which is shorter than that of duplicons
annotated by A-Bruijn graph method (∼4,651 bp) [9, 24].
This is because A-Bruijn graph methods chain duplicons
in proximity or across repeats, whereas our HMM will
distinguish adjacent duplicons (see Method). On the other
hand, the average copy number of our duplicons is 644,
which is much larger than that of previous study (∼6 copies)
[24]. This is not unexpected since our method assessed the
statistical significance of each duplicon by a permutation test
on the copy number. Therefore, duplicons without sufficient
copy number are discarded. Nevertheless, even with a more

stringent criterion, we still identified many duplicons with
long length (>10,000 bp) and with high frequency of copies
(>2,000 copies).

3.2. Mosaic Structure is Common in Human and Chim-
panzee. Our duplicons were annotated by CNVs and SDs
in human. The distribution of these duplicons within CNVs
and SDs in other primates is still unclear. Therefore, we
downloaded chimpanzee and human SDs identified by self-
comparison of the chimpanzee assembly and alignment of
shotgun sequences [10]. These SDs were classified into three
categories: 219 chimpanzee specific SDs (i.e., chimpanzee SDs
that do not overlap with any human SDs), 618 human specific
SDs (i.e., human SDs that donot overlapwith any chimpanzee
SDs), and 658 human/chimpanzee shared SDs.Our duplicons
were BLAST aligned to SDs. Table 2 lists the number (and
percentage) for each type of SDs containing our duplicons.
The results indicated that our duplicons also appeared in
majority of chimpanzee specific SDs (which are not included
in our annotation process). In fact, over 98% of SDs in all
three categories contained our duplicons. Furthermore, each
SD includes an average of 24∼43 duplicons, regardless of
chimpanzee specific or human specific SDs. Consequently,
these results suggest that the mosaic structure composed
of duplicons is not only limited to human SDs but is also
common in chimpanzee SDs.

Similarly, we compare the distribution of duplicons
within CNVs between human and chimpanzee. 353 and 438
CNVs in the genomes of 30 humans and 30 chimpanzees
were obtained fromPerry et al. [17], respectively.These CNVs
were also classified into 288 chimpanzee specific CNVs, 207
human specific CNVs, and 296 human/chimpanzee shared
CNVs. As shown in Table 2, all of chimpanzee specific CNVs
also contain our duplicons, indicating that these duplicons

http://www.cs.ccu.edu.tw/~ythuang/Tool/HMMDupFinder/
http://www.cs.ccu.edu.tw/~ythuang/Tool/HMMDupFinder/
http://www.genome.ucsc.edu
http://www.genome.ucsc.edu
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Figure 6: (a) Chimpanzee specific SDs are clustered by running Neighbor-Joining algorithm on their phylogenetic profiles constructed by
duplicons. Four clades are revealed in this phylogenetic tree. (a) A cluster of chimpanzee specific SDs with shared duplicons. Different colors
denote distinct duplicons. A core duplicon shared by a majority of these SDs is highlighted by vertical dash lines.

are not limited to human CNVs. Overall, the majority
of CNVs in three categories includes our duplicons, and
each CNV contains approximately 16∼22 duplicons. This
phenomenon shows that duplicons are also common in
chimpanzee CNVs. Compared with the results on SDs, the
average numbers of duplicons on each CNV or SD are
also quite similar. Consequently, the mosaic structure of
juxtaposed dupliconsmay be commonwithin SDs and CNVs
in hominoid.

3.3. Phylogenetic Analysis and Identification of CoreDuplicons.
A number of studies suggested that secondary duplications

may have occurred recently among existing duplications,
and these recent duplications tend to share more dupli-
cons in common [24]. Thus, we reconstruct phylogenetic
history of these SDs and CNVs using a representation of
duplicons called phylogenetic profile [24]. A phylogenetic
profile is created for each SD and CNV based on the
presence or absence of each duplicon (see Method). For
each group of human specific, chimpanzee specific, and
human/chimpanzee shared SDs and CNVs from [17], a
phylogenetic tree is reconstructed by running the Neighbor-
Joining algorithm on their phylogenetic profiles constructed
by duplicons [33]. That is, the branch length reflects the
degree of SDs/CNVs having the same duplicons in common.



BioMed Research International 7

7188014 Human Chr5 7256093

7170000 7200000 7230000 7260000

Human CNV

Pair duplicon

(a)

150839614 Human Chrl 151164777

150800000 150950000 151100000 151250000

Chimp CNV

Pair duplicon

(b)

Figure 7: (a) The human CNV is flanked by two identical duplicons at both ends; (b) the chimpanzee CNV is flanked by two identical
duplicons at both ends.

Figure 6(a) illustrates one phylogenetic tree reconstructed
via duplicon profiles for chimpanzee specific SDs, where
the other phylogenetic results can be found in Supple-
mentary Figures 1–6 (see Supplementary Material available
online at http://dx.doi.org/10.1155/2013/264532). Together,
these results suggested that many of these SDs and CNVs
share common ancestry of duplications, which are probably
owing to recurrent duplications from a few seeding duplica-
tion blocks.

A large fraction of recent duplications have been shown
to be centered around a small subset of “core duplicons” [24].
The structure of core duplicons with flanking duplicons is
speculated to drive the rapid expansion of SDs widespread
in hominoid genomes. The phylogenetic clustering of SDs or
CNVs with common ancestry can be further used for iden-
tifying these core duplicons, which are shared by majority
of SDs/CNVs in the same clade. A core duplicon is defined
as a duplicon shared by >67% of SDs/CNVs in the same
clade [24]. Figure 6(b) illustrates one core duplicon found
in a clade. A total of 639 core duplicons were found. In
summary, our analysis shows that many SDs and CNVs
in human and chimpanzee have a nonrandom clustering
structure of common duplicons and ancestry, and a number
of core duplicons with flanking dupliconsmay trigger further
duplications leading to novel SDs or CNVs.

3.4. Comparison of Duplicon Densities in CNVs and Non-
CNV Regions. Duplicons identified by our pipeline were
based on a subset of known CNVs in the human genome.
As novel CNVs were reported by new sequencing projects,
the power of our method can be estimated by observing
the density of our duplicons in other newly annotated
CNVs and non-CNV regions. Coordinates of 21,678 human
CNVs are obtained from the Database of Genomic Vari-
ants (http://projects.tcag.ca/variation). Overlapping CNVs
are merged and the 1,447 training CNVs used for annotating
our duplicons are excluded. Non-CNV regions are defined as
the genomic regions in between these known CNV regions.

Note that non-CNV regions may still contain some CNVs
not annotated. We first align all duplicons against the entire
human genome and compute the duplicon density in CNV
and non-CNV regions. Since core duplicons tend to be shared
by more CNVs than noncore duplicons, each duplicon is
assigned a weight reflecting its frequency in the training
CNVs.Theweighted density in one genomic region is defined
as the summation of total weights of duplicons aligned to this
region divided by the region length.

Table 3 lists average densities of all CNVs and non-CNV
regions separately for each chromosome. The average den-
sities in CNVs and non-CNV regions in the entire genome
are 4.307 and 1.767, respectively. The density is significantly
higher in CNV than non-CNV regions (𝑃 < 10−5; two-tailed
Welch’s 𝑡 test). Although our duplicons are annotated from a
subset of CNVs in the human genome, the results show that
these duplicons also pervasively appear in other known CNV
regions. And core duplicons are indeed more common in all
CNVs. In non-CNV regions, there could be some CNVs still
uncovered, because we still found a few genomic regions with
high density.

3.5. NAHR Mediated by Flanking Duplicons. A number of
studies have noted that genomic regions flanked by dupli-
cated sequences are susceptible to NAHR [1, 9, 15, 21, 22, 29].
These regions are often hotspots of genomic instability that
was prone to recurrent CNVs. A recent analysis of a fosmid
clone indicated that a CNV is flanked by a pair of duplicons
[9]. Figures 7(a) and 7(b) illustrate one human CNV and
one chimpanzee CNV with flanking duplicons annotated
by our pipeline. As a consequence, we are interested in the
distribution of duplicons that locate in flanking regions of
CNVs. A pair of duplicons is defined as flanking a CNV if
it appears within 25% regions from two ends of the CNV and
the similarity (and length) is >90%.

We first investigated 1,097 human CNVs with duplicons
annotated by our pipeline [15]. Among them, 1,035 (94%)
CNVs have two or more duplicons within their genomic

http://dx.doi.org/10.1155/2013/264532
http://projects.tcag.ca/variation
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Table 1: The total number of duplicons of each chromosome.

Chr. No. of dup. Chr. No. of dup. Chr. No. of dup. Chr. No. of dup.
1 6047 7 5329 13 216 19 2346
2 3607 8 2192 14 889 20 408
3 2142 9 4049 15 2621 21 143
4 1847 10 2039 16 5659 22 1430
5 2537 11 1873 17 3266 X 3078
6 1681 12 1989 18 599 Y 390

Table 2: The distribution of duplicons on human/chimpanzee SDs and CNVs. The number of hits stands for the number of SDs/CNVs
containing our duplicons.The percentage of hits is shown in brackets.The last column is the average number of duplicons and the percentage
of base pair in one SD or CNV.

Data set Total no. No. of hits (%) Average no.
Chimpanzee-specific SDs 219 219 (100%) 43
Human-specific SDs 618 603 (98%) 31
Human/chimp-shared SDs 658 654 (99%) 24
Chimpanzee-specific CNVs 288 288 (100%) 16
Human-specific CNVs 207 206 (99%) 23
Human/chimp-shared CNVs 296 252 (85%) 22

Table 3: The average densities of duplicons in CNV and non-CNV
regions on each chromosome.

Chr. CNV Non-CNV Chr. CNV Non-CNV
1 1.95 1.48 13 1.58 1.51
2 2.13 1.83 14 2.59 1.56
3 2.53 2.11 15 1.80 1.27
4 2.68 2.44 16 1.25 0.92
5 3.03 2.17 17 0.74 0.90
6 2.67 1.93 18 2.51 1.68
7 1.97 1.84 19 0.93 0.44
8 2.77 2.14 20 1.27 1.37
9 2.11 1.50 21 1.50 0.65
10 1.77 1.75 22 0.62 0.22
11 2.90 1.77 X 3.21 3.04
12 1.92 1.97 Y 2.77 0.89

region. 815 out of 1,097 human CNVs (74%) were found to
have paired duplicons flanking 25% of both ends. We also
analyzed 791 human and chimpanzee CNVs from Perry et al.
[17]. Our results indicated that 519 human/chimpanzeeCNVs
(66%) are also flanked by paired duplicons. Interestingly, each
of these CNVs contains averagely∼11 paired duplicons, which
could be hotspots of NAHR.This implies that further NAHR
occurred within these CNVs may create different breaking
points, leading to a complex duplication-within-duplication
structure.Thus, these genomic regionsmay be prone to recur-
rent CNVs. However, it should be noted that our analysis
is based on predefined CNV boundaries, which have been
shown to be overestimated [34].Thus, the requirement of 25%
from both ends may eliminate many paired duplicons within
real CNV boundaries. Nevertheless, our results provided
evidence that there are many paired duplicons within or

surrounding a CNV region. As a consequence, boundaries of
these complex CNVs may be hard to delineate, since NAHR
may reoccur in different breaking points.

3.6. Comparison with Duplicon Library. We compared se-
quences of our duplicons with those in the duplicon library
[9], which contains 10,291 duplicon sequences. Our duplicons
were BLAST aligned against each duplicon sequence in the
library (we considered the alignment results with sequence
identities ≥95% and length ≥100 bp). In total, 16,819 (30%)
of our duplicons were overlapped with 2,359 (23%) of the
duplicon library. It has been shown that ∼24% of CNVs are
overlapped with SDs [15]. Thus, the difference between our
duplicons and duplicon library is probably due to the fact
that our duplicons were annotated based on CNVs, whereas
duplicons in the library were identified solely based on SDs.
However, it should be noted that duplicons with insignificant
copy numbers were filtered by our permutation test.Thus, the
difference between our duplicons and the duplicon library is
not unexpected.

We further compare the distribution of duplicons on
chimpanzee specific SDs and CNVs from [17]. These chim-
panzee SDs and CNVs are not included in both studies
and thus can observe distribution of these duplicons on
nonhuman duplications. Table 4 summarizes the differences
between our duplicons and the duplication library. There are
1,048 duplicons in the duplication library overlapped with
chimp-specific SDs. Of these, 681 duplicons (65%) are also
overlapped with our duplicons. On the other hand, there
are 3,310 duplicons annotated by our HMM overlapped with
chimp-specific SDs. Of these, 2,554 (82%) are also overlapped
with duplicons in the library. In the analysis of CNVs, 1,510
duplicons in the library are located in chimp-specific CNVs.
Of these, 886 (59%) duplicons are also overlapped with our
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Table 4: Comparison of duplicons annotated by HMM and the duplication library. The numbers of (1) duplicons overlapped with each
other, (2) duplicons overlapped with chimp-specific SDs, and (3) duplicons overlapped with chimp-specific CNVs are listed for each set of
duplicons.

Our duplicons Duplib
Total No. of duplicons 56377 10291
No. of duplicons satisfying (1) 16819 2359
No. of duplicons satisfying (2) 3110 1048
No. of duplicons satisfying (1) and (2) 2554 681
Percentage 15% (2554/16819) 29% (681/2359)
Percentage 82% (2554/3110) 65% (681/1048)
No. of duplicons satisfying (3) 2645 1510
No. of duplicons satisfying (1) and (3) 2209 886
Percentage 13% (2209/16819) 38% (886/2359)
Percentage 84% (2209/2645) 59% (886/1510)

Table 5: GO analysis of biological process at levels 2 and 3. 𝑃 values are computed by chi-square test with Bonferroni correction.

GO term GO category P value Obs./exp.
Level 2

GO:0000003 Metabolic process 4.36 × 10
−9 0.75

GO:0001906 Multicellular organismal process 8.22 × 10
−8 1.36

GO:0002376 Biological adhesion 1.10 × 10
−6 0.28

GO:0008152 Cellular process 3.53 × 10
−6 1.16

GO:0009987 Developmental process 4.35 × 10
−6 1.33

GO:0010926 Positive regulation of biological process 4.70 × 10
−3 1.38

GO:0016032 Regulation of biological process 1.90 × 10
−2 0.86

GO:0022414 Locomotion 2.80 × 10
−2 0.44

Level 3
GO:0048856 Anatomical structure development 1.40 × 10

−13 1.71
GO:0051239 Regulation of multicellular organismal process 6.28 × 10

−13 2.33
GO:0043170 Macromolecule metabolic process 1.53 × 10

−9 0.65
GO:0009058 Biosynthetic process 2.64 × 10

−9 0.57
GO:0002682 Regulation of immune system process 1.10 × 10

−8 2.70
GO:0019222 Regulation of metabolic process 1.74 × 10

−8 0.53
GO:0007275 Multicellular organismal development 8.82 × 10

−8 1.53
GO:0048518 Positive regulation of biological process 5.32 × 10

−7 1.68
GO:0007154 Cell communication 4.69 × 10

−6 0.65
GO:0001816 Cytokine production 4.98 × 10

−6 2.89
GO:0051656 Establishment of organelle localization 6.84 × 10

−6 4.29
GO:0045321 Leukocyte activation 1.35 × 10

−5 2.44
GO:0032879 Regulation of localization 3.90 × 10

−5 2.14
GO:0044238 Primary metabolic process 1.62 × 10

−4 0.77
GO:0001775 Cell activation 1.92 × 10

−4 2.21
GO:0055114 Oxidation reduction 2.17 × 10

−4 0.15
GO:0048583 Regulation of response to stimulus 5.14 × 10

−4 2.24
GO:0051050 Positive regulation of transport 6.46 × 10

−4 2.84
GO:0007155 Cell adhesion 1.08 × 10

−3 0.34
GO:0032898 Neurotrophin production 6.88 × 10

−3 18.9
GO:0060033 Anatomical structure regression 1.81 × 10

−2 9.47
GO:0008283 Cell proliferation 2.39 × 10

−2 0.45
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Table 6: GO analysis of molecular function at levels 2 and 3. 𝑃 values are computed by chi-square test with Bonferroni correction.

GO term GO category P value Obs./exp.
Level 2

GO:0003824 Catalytic activity 1.53 × 10
−33 1.78

GO:0005488 Binding 1.41 × 10
−27 0.62

GO:0005215 Transporter activity 4.72 × 10
−14 2.08

GO:0030528 Transcription regulator activity 3.31 × 10
−5 0.37

GO:0015457 Auxiliary transport protein activity 4.18 × 10
−3 3.92

GO:0005198 Structural molecule activity 1.01 × 10
−2 0.40

Level 3
GO:0022857 Transmembrane transporter activity 7.32 × 10

−31 3.10
GO:0004133 Glycogen debranching enzyme activity 4.35 × 10

−30 71.2
GO:0016740 Transferase activity 4.10 × 10

−28 2.52
GO:0022892 Substrate-specific transporter activity 1.64 × 10

−25 2.83
GO:0043167 Ion binding 3.89 × 10

−24 0.12
GO:0003676 Nucleic acid binding 1.42 × 10

−14 0.23
GO:0000166 Nucleotide binding 6.41 × 10

−11 0.15
GO:0016491 Oxidoreductase activity 8.19 × 10

−9 2.31
GO:0005515 Protein binding 2.84 × 10

−6 0.67
GO:0016787 Hydrolase activity 3.77 × 10

−6 1.61
GO:0016787 Transcription factor activity 1.97 × 10

−5 0.07
GO:0016787 Channel regulator activity 9.61 × 10

−4 4.97
GO:0016787 Bacterial binding 9.69 × 10

−4 8.21
GO:0016787 Cell surface binding 3.80 × 10

−3 5.93
GO:0016787 Peptide binding 4.77 × 10

−2 1.90
GO:0016787 Signal transducer activity 9.11 × 10

−2 1.35

Table 7: GO analysis of cellular component at levels 2 and 3. 𝑃 values are computed by chi-square test with Bonferroni correction.

GO term GO category P value Obs./exp.
Level 2

GO:0032991 Macromolecular complex 4.14 × 10
−15 1.97

GO:0044422 Organelle part 8.08 × 10
−9 1.59

GO:0005576 Extracellular region 3.09 × 10
−5 0.35

Level 3
GO:0043234 Protein complex 3.42 × 10

−20 2.36
GO:0044422 Organelle part 2.22 × 10

−9 1.65
GO:0044446 Intracellular organelle part 5.95 × 10

−9 1.64
GO:0044463 Cell projection part 1.17 × 10

−8 5.17
GO:0042995 Cell projection 2.09 × 10

−5 2.48
GO:0016020 Membrane 8.17 × 10

−5 0.65
GO:0044425 Membrane part 8.70 × 10

−5 0.62
GO:0032311 Angiogenin-PRI complex 5.55 × 10

−4 21.5
GO:0043227 Membrane-bounded organelle 2.04 × 10

−3 0.71
GO:0032994 Protein-lipid complex 3.68 × 10

−3 7.18
GO:0034358 Plasma lipoprotein particle 3.68 × 10

−3 7.18

duplicons. Among our 2,645 duplicons locatedwithin chimp-
specific CNVs, 2,209 (84%) are overlapped with duplicons in
their library.

These results suggested that duplicons identified by both
approaches all appear partially in chimp-specific SDs and

CNVs. However, given the higher percentage of our dupli-
cons intersected with both chimp-specific SDs/CNVs and
duplicons in the library (82% and 84% versus 65% and 59%),
we concluded that duplicons found by our approach are
more conservative. This may be due to the requirement of
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sufficient copy number in our HMM and permutation test,
whereas duplicon copies in the library are not validated with
a statistical approach.

In terms of efficiency, it is worth mentioning that our
HMM is quite efficient compared with the A-Bruijn graph
algorithm, which requires 29 gigabytes of memory from 32
gigabyte computational cluster [24]. Our HMM can finish
the computation within hours on a standard workstation.
Consequently, novel duplicons can be efficiently annotated
when more CNVs and SDs in other primate genomes are
available.

3.7. Functional Implication of Duplicons. Our duplicons are
smaller subunits within human CNVs. The functional analy-
sis of these dupliconsmay provide new insight into functional
bias not found in previous CNV analysis. We examined
the functional bias of our duplicons in gene ontology (GO)
categories and compared results with previous analysis of
human CNVs. A total of 3,904 genes annotated by Ensembl
are overlapped with our duplicons. Tables 5, 6, and 7 list the
GO categories (at levels 2 and 3) with over- or underrepre-
sentation of our duplicons (𝑃 < 0.05; chi-square tests with
Bonferroni correction).

For functions related to biological process, we found
that eight function categories at level two were significantly
biased to our duplicons. At level three, 22 of the 184 GO
functions were over- or underrepresented with our duplicons
(Table 5). In general, regulation of multicellular organismal
process and of biological process is significantly enriched.
The highly enriched GO categories overlapped partially with
those identified in a previous analysis of CNVs [15], such
as regulation of immune system process and regulation of
response to stimulus. In contrast to previous analysis, cell
adhesion was found to be underrepresented in duplicons.
In addition, categories of neurophysiological processes and
sensory perception enriched for CNVs are not found to be
significantly enriched in duplicons. On the other hand, cell
proliferation, oxidation reduction, and metabolic process are
found to be significantly underrepresented among duplicons.
The impoverishment of these functions probably reflects that
purifying selection is against duplicons on dosage of these
genes.

In terms ofmolecular functions, six GO terms at level two
and 16GO terms at level three are over- or underrepresented
(Table 6). Specifically, duplicons are overrepresented in cat-
alytic activity, transporter activities, and auxiliary transport
protein activity. On the other hand, majority of binding
activities, including ion binding, nucleic acid binding, and
nucleotide binding are, underrepresented. These results sug-
gest that distinct levels of evolutionary constraint on dupli-
cons vary among functional categories.
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