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Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an
important limitation in current epilepsy research andmay be one of the main causes of our inadequate ability to treat it. Addressing
this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale
simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the
cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale
simulations.We have determined the detailed behavior of two such simulators on parallel computer systems.The observedmemory
and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in
terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between
a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability
of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on
current supercomputers.

1. Introduction

Biological systems are complex and networks of neurons are
no exception. Simulating these systems provides a means for
testing configurations that would be difficult or impractical to
replicate in vitro or in vivo. Taking a computational approach
can also enable sweeps in configuration space that would
otherwise be intractable, as it often requires extremely large
sample sizes to achieve any degree of significance because of
the inherently low power of multidimensional exploratory
data analysis [1, 2]. One approach to study how the many
possible combinations of parameter values measured can
affect experimental findings across scales is via modeling and
large-scale simulations [3–17]. Furthermore, the behavior of
macroscopic neural tissues depends on factors determined

across a range of physical scales, from microscale (a few
to a hundred neurons) to the meso- and macroscales (the
emergent behavior produced by the simultaneous interaction
of millions of neurons). Science has dramatically improved
our ability to study the micro- and macroscales indepen-
dently, but to date only simulations are capable of trying to
infer the emergent macroscopic behavior from microscopic
properties, even though more sophisticated tools are being
developed [18, 19]. In fact, the problematic gap between scales
in neuroscience has even reached the non-scientific press
[20].

Simulations of these large neuronal populations require
parallel computing, spreading the work across many pro-
cessing units, in order to reduce the execution time into a
practical regime [7, 15, 21, 22]. However, it is rarely easy to
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design an algorithm that will take half the time when twice
the processor count is used for the computation, particularly
over a wide range of these doublings. Scalability, the measure
of an algorithm’s ability to do this, is characterized in
two distinct ways referred to as strong and weak scaling
[23]. Strong scaling refers to the time to completion of an
algorithm applied to a fixed-size problem as a function of
the number of allocated processing units. It is sometimes
characterized by a quantity called speedup, the ratio of the
wall clock time (the time interval measured on the wall
clock in the office of a scientist waiting for a calculation to
complete) necessary to complete a task on a small number
(usually 1) of processors (or nodes) and the time necessary
to compute it with many more processors. In the case of
linear speedup, the problem is solved 𝑛 times faster if 𝑛 times
as many processors are allocated to work on it in parallel.
Increasing the number of processors will not necessarily
result in linear speedup because communication, the key
expense incurred by parallelism, of interactions in simulated
networks (e.g., spikes) might eventually dominate execution
time. Weak scaling refers to the behavior of an algorithm
applied to a problem whose size increases in proportion to
the number of processing units assigned to it. For example,
if we simulate neuronal activity under a very low spiking
rate regime, neurons can be updated almost independently.
Therefore, we can increase the size of the system we can
handle by simply adding processors, each handling about the
same number of neurons, that is, keeping the load on each
processor approximately constant and without incurring an
overwhelming communication burden.

The purpose of this paper is to determine whether
simulating the activity of a large-scale neuronal network can
be achieved in a practical amount of time, even when the
neuronal model contains a very high level of detail due to
the specific requirements of epilepsy research. If so, what
strategies could make this possible? How flexible will the
resulting model be in terms of being capable of testing
different biophysical models and thus understanding which
factors determine their emergent behavior? Will they be
efficient enough to allow us to explore, at least in part, the
parameter space and thus generate hypotheses that can be
tested experimentally? Our simulations are based on parallel
programs developed in our laboratories [6, 21, 24–27], but
we will make reference to other large-scale work [7] and
related research evenwhen it does not cover the network sizes
we are interested in [4, 5]. When comparing our previous
work with these models, this paper specifically addresses
how computer architecture and software design affect parallel
performance, particularly in terms of how the parallelization
is implemented and the various simultaneous calculations are
coordinated.

2. Materials and Methods

2.1. From Neurons to Networks. To understand massive net-
work phenomena such as epileptiform activity, it is necessary
to model sufficient numbers of neurons and to model them
in sufficient detail. Moreover, it is necessary to run models

that vary both in complexity and nature in order to generate
meaningful new hypotheses. Indeed, efficient large-scale
detailed models of neuronal activity have recently become
relevant to develop understanding because they can help
resolve the following.

(i) Questions that are meaningful biologically: exper-
imental setups are starting to produce data that
could be compared with these models quantita-
tively because of both the microscopic details and
large-scale data, for example, multichannel record-
ing in implanted arrays, such as electrocorticogra-
phy (ECoG), electroencephalogram (EEG), calcium
imaging [28], and in vitro multielectrode arrays
(MEAs).

(ii) Questions that aremeaningful computationally: com-
putational tools such as supercomputers have evolved
to the point where simulations of a realistic detail and
size appear to be manageable (e.g., [7]).

To add to the complexity of these modeling approaches
and their numerical demands, the necessity of performing
validation runs has to be considered in order to determine
the sensitivity and the statistical properties of these nonlinear
models with regard to model parameters, including network
geometry.

In the following, we will provide a brief description of
how neurons and networks are modeled in our programs;
we will provide a single description of the model unless
implementations differ.

2.2. Realistic Single Neuron Models. We evaluated two sim-
ulators, pNeo [25] and Verdandi [27], modeling the micro-
circuitry of a neocortical area using six distinct cell types,
differentiated by morphology and compartment parameters:
two excitatory (deep and superficial pyramidal cells) and
four inhibitory (three types of basket cells and the chandelier
cells). All cells are modeled using a number of cylindrical
compartments in order to include spatial effects and extra-
cellular currents.

Superficial and deep pyramidal cells are modeled with
five and seven compartments, respectively; the inhibitory
cell types are modeled with two compartments (Table 1).
pNeo places neurons on a regular grid at a distance of 5𝜇m
from each other for the pyramidal cell types and 15𝜇m
for the chandelier and basket cells. To compensate for this
regularity, conduction velocities are partially randomized. In
Verdandi, neurons are set on the same lattice as pNeo but
have a small random displacement from it. Basic capacitance,
conductivity, and channel characteristics are identical for the
two models. The interested reader can find a complete and
detailed description of those models in our previous work
(e.g., [6, 26]).

Compared to other large-scale models [7], our simu-
lations include more cell types, covering the entire depth
of the neocortex. While our more complete approach is
not necessary to investigate all cortical models, it must be
included to realistically model epileptiform activity since it
is not known which factors determine its behavior.
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Table 1: Size (diameter and length) of cells compartments in 𝜇m [26].

Soma (𝜇m) D1 (𝜇m) D2 (𝜇m) D3 (𝜇m) D4 (𝜇m) BD (𝜇m) IS (𝜇m)
SPYR 16.1, 22 2.0, 140 3.3, 190 — — 2.4, 200 2.2, 50
DPYR 16.1, 22 2.0, 250 2.9, 400 4.4, 400 4.7, 400 6.3, 200 2.2, 50
BASK1 16.1, 22 2.0, 900 — — — — —
BASK2 8.0, 11 2.0, 600 — — — — —
BASK3 5.4, 5.5 2.0, 300 — — — — —
CHAN 4.0, 5.5 2.0, 150 — — — — —
Rows contain cell types (SPYR: superficial pyramidal, DPYR: deep pyramidal, BASK1,. . ., BASK3: basket cells of type 1 to 3, CHAN: chandelier cell) while
columns represent the various segments (Soma, D1,. . ., D4: dendritic compartments 1 to 4, BD: basal dendrite, IS: axon initial segment).

2.3. Modeling Networks. We simulated rectangular cortical
areas with sizes depending on the number of neurons (cell
density was kept constant). Network wiring in our model
was based on literature data on mammalian neocortex and
included specific functional connection types between cell
classes, randomized but representative density distributions
for each connection class, and both fast and slow connections
(e.g., [26]). Long-range cortical connections are included in
pNeo for interneural distances of more than 1mm (networks
larger than about 100K neurons). Excitatory synaptic signals
were modeled with an alpha function (time constant 1–3ms)
and inhibitory signals were modeled with a dual exponential
function (time constants 1–7ms). Each of the six groups of
cells has its own set of multiplicative tuning parameters to
modulate the strength of its connection from other neurons,
for either inhibitory or excitatory synapses.These values were
kept constant over all pNeo simulations to keep the basic
biology of the network invariable, while they were changed
with network size for Verdandi in order to keep the network
activity similar among different sizes. Detailed descriptions
of the characteristics of the networks can be found in our
previous work [6, 21, 24–27].

Our simulations do not include columnar structures as
many other large and small-scale models do because their
existence as anatomic or functional units remains controver-
sial at least to some degree [7, 29]. Moreover, it is unclear
how connectivity affects epileptic seizures, which places great
value on the ability of a model to explore a more general
set of network topologies. In the simulations described here,
the probability of having a connection between two neurons
is simply dictated by their cell type, location, and distance
as described in Visser et al. [27] and the references therein.
The absence of columnar structures leads to a much higher
connectivity in our models, as will be reported in more detail
in the results section.

2.4. Designing for Scalable Performance. The two simulators
we evaluated in this work, pNeo and Verdandi, included
extensive instrumentation for collecting detailed perform-
ance data on all aspects of their execution, interprocess
communication, and memory usage so that we could
evaluate their scaling over a wide range of network sizes
on different computing architectures. pNeo was derived
from an earlier simulation using p-Genesis ([30]; http://
www.genesis-sim.org/project/pgenesis) by removing all

overhead codes. Verdandi was created as a more general
simulation tool. Both pNeo and Verdandi port easily to
most parallel-computing platforms: they need only MPI
([31, 32]; http://www.mcs.anl.gov/research/projects/ mpi)
and C++. Verdandi can also work with OpenMP ([33];
http://OpenMP.org/wp) to support lighter weight parallelism
on multicore nodes and benefit from shared memory access
within that MPI process.

The I/O is usually done asynchronously by MPI process:
each writes to its own output and log files; input is also read
asynchronously. OpenMP threads belonging to the sameMPI
process on the other hand are synchronized. The MPI envi-
ronment is needed only to propagate spikes among neurons
that belong to different MPI processes. Synchronization was
achieved using barriers. When a barrier is inserted into a
program, no OpenMP thread (orMPI process, depending on
the type of barrier) can proceed past it unless all threads have
reached it. This, for example, guarantees that all spikes have
been sent and received before moving to the next time step.
However, barriers often cause inefficiency, as shown below.

The programs can be downloaded from our labo-
ratory’swebsite (http://epilepsylab.uchicago.edu/page/neuro-
science-links).

pNeo assigns each neuron to an MPI process based on
its spatial location. From there, the program proceeds in
parallel: each MPI process determines the characteristics of
its neurons and the connections within and across processes
are established, after which each process starts the time prop-
agation of its set of neurons. After each node completes its
propagation time step, the spike exchange step is performed
in a nonblocking fashion by each process independently. All
processes wait at a barrier associated with the end of the spike
exchange to synchronize before the next time step.

Verdandi consists of 3 related packages: netgen, which
generates networks with specified characteristics (e.g., size
and type of neurons); distnet, which distributes netgen’s
cell and network data over the desired number of MPI
processes; sim, which runs the dynamics. The OpenMP-
enabled part of the code covers only the time evolution of
the neurons on the nodes for each time step; the remaining
operations, principally involved in exchange and handling
of node-to-node spike propagation, are done using one
thread per MPI process. After the OpenMP threads have
completed their independent tasks, an MPI barrier is set,
forcing synchronization of all processes to exchange spikes.
Further barriers are used to separate the phases for collecting

http://www.genesis-sim.org/project/pgenesis
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Table 2: Percentage of time spent at an MPI barrier as a function of
the network size and pool of MPI processes used for Verdandi.

Network size Number of MPI processes used
4 9 16 36 81 144

2.6 K 16% 34% 42% 56% 77% N/A
32K 12% 25% 27% 34% 43% 53%
94K 21% 35% 38% 42% 46% 51%
380K N/A 44% 48% 53% 56% 57%

the spikes, pushing them to all processes and connecting each
spike event to the local neurons that it targets. It is important
to realize that all those barriers produce inefficiencies in the
code parallelization because they force a number of comput-
ing cores to stay idle while other processes are completed.
These inefficiencies do not affect how the overall MPI scaling
behaves if they are only slightly affected by the number of
MPI processes utilized (see Table 2 and related text). Perfect
scaling does not mean perfectly efficient code, just as perfect
MPI scaling does not imply perfect OpenMP scaling.

2.5. Simulation Approach. We ran our experiments on two
distinct large parallel architectures to give us an idea of
how generalizable our scaling results are. Beagle is a Cray
XE6 massively parallel supercomputer with more than 700
shared memory nodes with 32GB of RAM each. Each shared
memory node is made of 4 six-core dies (packaged in two
2.1 GHz AMDMagni-Cours Opterons) for a total of 24 cores
per node. It is based on the Cray Gemini interconnect with
a folded 4D-torus topology. The latency is expected to be
slightly over 1 𝜇s, depending on the operation, and to depend
only weakly on internode distance. Gemini is capable of
supporting a minimum of 4.7GB/s bandwidth per direction
(a “flattened” 4D-torus is linked in 6 directions: X, -X, Y, -Y, Z,
and -Z). For more detail, see https://beagle.ci.uchicago.edu/;
http://www.cray.com/Products/XE/CrayXE6System.aspx.

Fusion (http://www.lcrc.anl.gov) is a Linux cluster with
320 nodes each with 36GB of RAM (16 have 96GB of RAM).
Each shared memory node has a dual 2.53GHz 4-core Intel
Nehalem Xeon for a total of 8 cores per node. The cluster
is based on an Infiniband QDR interconnect with a flat tree
topology (i.e., all nodes are connected to the same switch).
The latency is expected to be around 2 𝜇s. Bandwidth should
be 4GB/s per link. Therefore, the most obvious differences
between the twomachines are processors (2.1 versus 2.53GHz
or a 83% difference in clock rate), cores per node (24 versus
8, therefore a considerable difference in number of cores,
memory per core, and messaging conflicts), bandwidth, and
latency (potentially affecting scaling).

Verdandi is able to take advantage of both distributed-
memory parallelism using MPI processes and shared mem-
ory parallelism within a multicore node using threads. This
allows us to gain some understanding in the performance
tradeoffs of replacing MPI processes with threads.

To simplify the interpretation of the results, we made the
runs as similar as possible across both sizes and machines.
Therefore, we used combinations of MPI processes that

respected the symmetry of bothmachine’s nodes (i.e., we used
4MPI processes per node, and thus not all cores could be
utilized in most of our simulations).

We simulated networks of 8.8 K, 35 K, 98K, and 390K
cells with pNeo and of 2.6 K, 32 K, 94K, and 380K for
Verdandi.The differences in network sizes between pNeo and
Verdandi runs are incidental and immaterial to the scaling
results presented here.

The number of MPI processes considered in the scaling
simulations ranged between 4 and 256. Not all combinations
of MPI processes and network sizes were considered: on few
cores, large networks require too much memory per process
or take toomuch time to be practical; onmany cores, running
small networks leaves each process with too few neurons
to efficiently amortize interprocess communications. Large
processor pools were not considered because we did not want
to simulate networks that would be too large to be realistic in
our understanding of epilepsy given themodeling approaches
followed by pNeo and Verdandi. More precise modeling of
the longer range connections would be required for such runs
to be biologically meaningful.

To start activity at the simulation onset, a subset of cells
received a current injection. The system was propagated
for a total of 0.4 and 0.5 seconds for Pneo and Verdandi,
respectively. Verdandi computation times here include only
network upload and dynamics propagation; that is, they do
not include network generation.

3. Results and Discussion

3.1. Biophysical Behavior. The goal of this type of model is
to study the relationships between cellular and population
activity. Figure 1 shows part of a typical result of a 90K sim-
ulation with an oscillatory pseudo-EEG and a representative
selection of associated cellular activities. Note how each of the
single cell behaviors corresponds to the EEG trace, which is
impossible to do experimentally for 90K cells.

3.2. Memory Scaling. The expected relationship between net-
work size and requiredmemory is straightforward. If the sim-
ulated cortex volume is relatively small (small𝑁, number of
neurons), the total number of connections in the cortical area
and thus the memory occupation of the interneuron connec-
tion datawill be quadratic:∼probability of connection × 𝑁 ×
𝑁. As the volume increases (𝑁 larger), the fraction of neurons
to which each neuron is connected becomes smaller because
the probability of having a connection is distance dependent
and subject to a cutoff. This cutoff ranged between 100
and 900 𝜇m depending on the type of connection, with
the most frequently occurring excitatory-excitatory ones at
500𝜇m. Eventually, increasing the total number of neurons
will have no effect on the number of connections for each
of them and memory occupation will become linear in 𝑁,
∼probability of connection ×𝑁max × 𝑁. In the regime simu-
lated here, the storing of inter-neuron connection data should
approximate 𝑐

1

(𝑁)𝑁
𝑐

2
(𝑁), where 𝑐

1

(𝑁) is equal to 𝑘 for
small networks and 𝑘𝑁max for very large networks and
1 < 𝑐
2

(𝑁) < 2. Thus, it should produce simple plots on
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http://www.lcrc.anl.gov
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Figure 1: Example of emergent behavior produced by this type of
simulation (using Verdandi). Seizure-like oscillation in a patch of
90K neurons as displayed by the pseudo-EEG. Below are the action
potential trains of ten representative cells of each kind: superficial
pyramidal cells (SPYR), deep pyramidal cells (DPYR), large basket
cells (BASK), and chandelier cells (CHAN).The ten cells are selected
from different locations in the simulated network.

a log-log scale. On the other hand, the information about the
status of neurons scales as 𝑐

3

𝑁, with 𝑐
1

(𝑁) < 𝑐
3

for small
networks and 𝑐

1

(𝑁) ≫ 𝑐
3

for very large ones [4]. Therefore,
for networks of at least a few thousand neurons, we expect
memory use to be dominated by connectivity.

In pNeo, the memory needed per core for each network
size was reduced as the number of MPI processes used
was increased keeping the total approximately constant (see
Figure 2). However, for larger numbers of MPI processes
duplications eventually become important; for example, for
the smallest network, running the computations on 9 and
144 cores used a total of 0.48GB and 0.86GB, respec-
tively. Verdandi’s behavior was similar except that the small
network-size region was dominated by fixed memory usage
(∼100 MB per core). In the region around 100K cells, the
two programs had very similar memory use, around 20GB
in total. For larger networks, the total number of connections
for each network simulated became almost linear inVerdandi
while it kept growing superlinearly in pNeo, consistently with
the latter including long-range interactions. (In Verdandi, the
total number of connections for each network size was 0.5M
for 2.6 K, 31M for 32K, 0.13 G for 94K, and 0.64G for 380K,
while in pNeo had 4.2M for 8.8 K, 38M for 35K, 0.16G for
98K, and 1.6G for 390K.) In the following analysis, pNeowill
be used in order to produce estimates that are bothmore real-
istic (as it includes long-range interactions which can affect
memory considerably for large networks) and more conser-
vative. We based our estimates on the smallest MPI pool
that spanned a realistic memory use, 9-MPI processes, and
the largest used, 144-MPI processes, to reduce artifacts. Data
were fit with a simple regression based on log-transformed
data, using the function lm of R (http://www.r-project.org/).
We used a relatively simple model because the plots are
very close to straight lines (confirmed by the r-squared
values) and to avoid overfitting: 𝑀𝑒𝑚𝑜𝑟𝑦 = 𝛼 ⋅ 𝑁𝛽, where
Memory is in GB. We estimated 𝛼 = 0.5𝐸 − 7GB and 𝛽 = 1.5
with an adjusted r-squared of 0.998 (to confirm the results,
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Figure 2: Maximummemory usage per process for pNeo on Beagle
as a function of network size on a log-log plot with basis 10.
Different lines depict simulations that used a different number of
MPI processes. Results on Fusion were essentially identical. The
results for Verdandi were qualitatively similar. The total memory
used by each simulation can be obtained by multiplying these
numbers by the number of MPI processes and it is reasonably
constant for each network size.

the 144-MPI process simulation had 𝛽 = 1.4 and 𝛼 =
2.5𝐸 − 06GB with all the points and 𝛼 = 1.3𝐸−06GB
excluding the smallest network—the variability in the value
of 𝛼 is relatively unimportant for this extrapolation). Using
these estimates, the amount of RAM necessary to simulate
1 and 10 million cell networks, representative for generating
the aggregate signal picked up by a single EEG electrode,
would be 760GB and 26TB, that is, within the capability
of modern supercomputers. It is important to realize that
even a small increase in connectivity would affect these
estimates drastically, for example, if we set 𝛽 to 1.6 or 1.8 the
estimates for a 1 million cell network become 2 and 31 TB,
respectively.

3.3. Execution-Time Scaling. Our programs exhibited near
perfect strong scaling as the number of MPI processes used
increased (Figure 3). The main deviation from linear scaling
was found for Verdandi when using largeMPI-process pools,
which suggests that synchronization and communication
issues started to become more important (e.g., rightmost
points in Figure 3(a)). This is consistent with local cal-
culations becoming much smaller and faster and needing
to communicate with more and further away nodes, thus
needing to synchronize at barriers a lot more often. Indeed
the time spent synchronizing increases with MPI process
pool size (Table 2).The time spent on barriers increases most
dramatically for the smallest network and it is consistent
with the strong scaling plot becoming almost flat near the
end (i.e., no gain from parallelization): this small network
simply cannot be run efficiently on such a large machine.

http://www.r-project.org/
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Figure 3: Strong scaling plots for calculations performed on Beagle: (a) Verdandi and (b) pNeo. Run time is the time it took to complete a
simulation, from beginning to end. Most of the measurements exhibit nearly perfect strong scaling.

Excluding the latter network size, the time spent on barriers
increases with network size most likely because of changes
in activity levels, thus affecting both the time evolution of
the single neurons and the number of spikes that need to be
transmitted. Excluding the 4 MPI-process data point (which
was run entirely on a single node and therefore did not use the
interconnect), the time spent on barriers changes only around
10∼15% when more MPI-processes are utilized and therefore
did not affect the scaling appreciably.

Therefore, in the case of Verdandi it is possible that
synchronization issues will affect weak scalability even more
seriously for future models, which will have higher connec-
tivity.

On the other hand, pNeo scaled very well for all network
sizes and MPI pools in our test set. From the plots it appears
that pNeo is two to three times faster than Verdandi for
the same problem size even without considering threads
(otherwise it would be about 20 times faster) or the larger
number of connections included in pNeo for larger network
sizes.

In Table 3 we try to extrapolate the weak scaling proper-
ties of the two programs. We are not presenting weak scaling
in a conventional way because keeping the load per processor
constant would require quantities difficult to interpret (e.g.,
network size at some variable power). Instead, we studied
how computation time changed when we kept the number of
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Table 3: Estimated values for weak scaling problem for Verdandi
(first block) and pNeo (second block).

Network
size

Closest actual MPI
pool from
simulation

Estimated
size of MPI pool

Expected
computation
Time (s)

Verdandi
2.6 K 4 4 0.94K
32K 36 49 2.2 K
94K 81 144 6.2 K
380K 256 576 6.6 K

pNeo
8.8 K 4 4 1.8 K
35K 16 16 2.6 K
98K 36 45 4.1 K
390K 81 178 6.8 K

“Closest actual simulation” is an MPI pool that was actually run for that
network size. “Estimated size of MPI pool” is the number of processes
necessary to keep the ratio of number of cells/number of processors constant.
The estimate time is computed assuming the observed scaling laws either
with interpolation (up to 94K for Verdandi, and up to 98K for pNeo) or with
extrapolation on a straight line (the larger network).

neurons per node nearly constant. Since keeping the number
of neurons per node constant would have been impractical in
our simulations, we estimated some of the values in the table
from the strong scaling results (Figure 3, and this should have
a negligible effect since it essentially requires interpolation—
extrapolation for the largest network size—on almost straight
lines: r-squared > 0.99). Verdandi shows a flattening of
the expected computation time for larger sizes—at least in
part because the average number of synapses per neuron is
becoming constant. Keeping the total time required about
the same as for the larger simulations, of the order of two to
three hours, we would need 1.5 K and 15K MPI processes to
simulate one million and ten millions neurons, respectively.
pNeo’s expected computation time is still increasing even
if with a flattening slope. Extrapolating from Table 3, pNeo
would require 450MPI processes for onemillion neurons and
about 4.5 K for ten million. If we assume that the time will
grow linearly from the last two points, a fairly conservative
assumption, the time required for the one and ten million
neuron patches would be approximately 4 and 25 hours,
respectively, that is, both simulations could be done easily on
any supercomputer.

The results obtained onFusion showed the same behavior,
with very good strong scaling plots and very predictable
behavior. For Verdandi, to understand the different perfor-
mance on the two architectures (about 4 times faster on
Fusion on a per core basis), the effect of using a shared mem-
ory approach on computation time needs to be considered.

3.4. Behavior of Mixed Simulations. Sharedmemory parallel-
ism can circumvent interprocess communication overhead.
We measured the tradeoff in performance by exchanging
MPI process-level parallelism against OpenMP thread-level
parallelism. Verdandi can make very effective use of shared

memory: for the simulations we tested changing from 1 to 24
threads increased the total memory used by only 25%.

As for the MPI processes, it is expected that the total
time will increase slightly when very good scaling is observed
(producing the approximately 1/n decrease in wall time
observed previously). Multithreading becomes useless when
the total time increases proportionally to the number of
threads.

Figure 4 displays the total computation-time as a function
of the number of OpenMP threads for a single node calcula-
tion. The fit to a linear model, also plotted in the figure, is
very good, indicating that a simple model might explain this
behavior. Overall, OpenMPproduced a speedup of a little less
than 4 for this calculation when using 24 cores and a little
more than 2 when using 6.

Therefore, while using OpenMP reduced the wall clock
time required to complete a task, the maximum speedup was
6 times less than expected when using 24 MPI processes.
There can be multiple reasons for this behavior, which is
usually caused by serial calculations and/or conflicts in the
use of fast memory (cache) and other resources [23]. In this
case, the good fit we have with a linear model suggests that
there is a sizeable serial part in the calculations, consistent
with Verdandi’s implementation and Amdahl’s law [34], with
about a 1/3 of the single thread time becoming serial, thus
increasing the total time linearly in the number of cores
because they would all sit idly, plus a 2/3 parallel part whose
total time would be unaffected by the number of cores.
Indeed, the profiling runs show that the time spent waiting
on barriers (meaning threads halted waiting for some process
to complete) increased from 0 to 25, 30, 60, and 75% as
the number of threads increased from 1 to 2, 4, 8, and 12
(note that this has no effect on Figure 3 since the number of
OpenMP threads perMPI process is kept constant). Different
approaches for scheduling threads (OpenMP schedule set
to “dynamic,” “guided,” or “static” [33]) failed to produce
meaningful differences in performance, confirming that time
is spent on barriers largely because of serial processing.

In Figure 5, the tradeoff between MPI processes and
OpenMP-threads is shown. We have seen that halving the
number of MPI processes should double the CPU time
(Figure 3), while doubling the number of the threads should
reduce it by 1.5 (Figure 4). Indeed, the second point from the
right in Figure 5 indicates a factor of 1.33 times larger than
the point to its right. As more MPI processes are replaced
with threads, Figure 5 shows better scaling than that shown
in Figure 4, most likely because the simulation ran longer,
reducing the effect of I/O, which is not parallelized.

Now, let us reconsider Verdandi’s performance difference
in completing the same simulation as a hybrid calculation
(MPI + OpenMP) on Beagle or as a pure MPI calculation on
Fusion. For example, on Beagle it took a total of about 5 K
seconds to simulate the dynamics of 300K neurons, while it
took only about 1.3 K seconds on Fusion. On Beagle there
were 6 OpenMP threads for each MPI process. From the
OpenMP scaling results we expect the total time to increase
by a factor of 4 when 6 threads are used to replace 6 MPI
processes, 1.3(Ks) × 4 ≅ 5(Ks), which explains most of the
performance difference.
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Figure 4: Increase in total time (sum of the time taken by each
thread in a simulation and called “Parallelization penalty” because
it is the total CPU time allocated to the simulation) as the number
of OpenMP threads is increased while keeping the number of MPI
processes at 1 (single node). This calculation was performed on
Beagle.

3.5. Discussion. We showed that our complex and highly con-
nected neuronal network models can exhibit nearly perfect
linear scaling for biologically meaningful parameter values.
Even if, as the network is distributed over more and more
nodes, communication should eventually dominate other
aspects and limit the scalability of the models, this did not
appear to become a serious issue within the scenarios we pre-
sented here, at least for pNeo. Verdandi spent a considerable
amount of time on barriers, both for MPI (synchronizing
communication) and OpenMP (mostly waiting for serial
parts and synchronizing threads): the combined effect could
easily put the total amount of idle CPU time over 90% of the
total used for computation. We believe that this fraction can
be reduced considerably by using approaches more similar to
pNeo (e.g., removing barriers, using nonblocking messaging
and one-sided communication).

The memory utilization in large-scale simulations com-
parable to ours [7] was 2.8 TB for a 22M neuron simulation
having 11 B synapses (about half of the connections expected
from Verdandi for a network of this size, as Verdandi is
already in a linear regime at 100K, and much less than
the number of connections expected in a pNeo simulation
of that size). In the same paper, [7], a 2M neuron 2G
connection simulation took about 20 minutes to run 1s of
simulation on 4K processors. The computation time is of
about the same magnitude as pNeo and the difference is
in line with the higher connectivity of our model (pNeo
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Figure 5: Run time (wall clock time here, not total time as in the
previous plot) for a 100K-cell network on 9 nodes (216 cores) of
Beagle. The number of MPI processes was varied while the number
of OpenMP threads was adjusted so that each run used all 216
available cores. The leftmost point corresponds to 3 MPI processes
per node with 8 OpenMP threads per process.

has about 2G connections already for a 400K network)
and the extrapolative nature of our large-network estimate.
Therefore, their finding is in line with our projections given
the differences in connectivity between our models.

Model complexity is still the main limitation of our
models: we believe that to have an accurate understanding
of epileptiform activity it is necessary to at least include gap-
junctions and possibly plasticity and other types of neurons
or an even higher level of detail in the current model types.
Moreover, Verdandi did not include long-range interactions.
However, the purpose of this work was to evaluate current
tools and develop an understanding of whether more com-
plex models could be run with current simulation tools,
which is quite relevant to current trends in neuroscience
research [18, 19]. The lack of gap junctions is unlikely to
affect our estimates for memory scaling for more complex
models since they are local in nature; however, they are
likely to affect our time extrapolation. We believe that the
conservative nature of our extrapolations should be sufficient
to account for their effect. Implementation of plasticity rules
requiresmonitoring of activities and implementation of a rule
to adjust synaptic coupling strength between the neurons.
Therefore, we do not expect it to affect the scaling sufficiently
to alter our projections enough to change our conclusions.
Another potential limitation is that we did not explore
larger networks and/or processor pool sizes. As explained
previously, we do not believe that this would have been a
good use of resources because the models are still too simple
to represent epilepsy faithfully at larger scales, which implies
that the results would not have practical scientific value.
Moreover, we believe that computation time andmemory use
behaved very predictably rendering the information provided
by such simulations of limited computational value.
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4. Conclusions

Both MPI processes and OpenMP threads allowed faster
simulations; however, these results suggest that our current
implementations produce more gains with the former, which
should therefore be preferred when possible. Our results also
indicate that for large-scale neuronal network simulations,
shared memory parallelism with OpenMP can provide an
efficient alternative to MPI process-per-core as long as the
most time consuming phases of the computation are imple-
mented to take advantage of it. However, it is crucial to very
carefully implement synchronization, IO, and barriers.

The object-oriented approach used in Verdandi allows
for more straightforward and faster testing of alternative
approaches in terms of networks and neuronal models.
However, this is associated with computational cost for this
specific implementation. In general, it is not possible to create
this type of flexible model without paying a performance
penalty, but we made this choice because the advantage
it gives in terms of flexibility and reliability outweigh the
computational overhead, given the complexity of neuronal
network simulations.
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