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Conditional deletion of Rcanl predisposes to
hypertension-mediated intramural hematoma and
subsequent aneurysm and aortic rupture
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Aortic intramural hematoma (IMH) can evolve toward reabsorption, dissection or aneurysm.
Hypertension is the most common predisposing factor in IMH and aneurysm patients, and
the hypertensive mediator angiotensin-Il induces both in mice. We have previously shown
that constitutive deletion of Rcanl isoforms prevents Angiotensin Il-induced aneurysm in
mice. Here we generate mice conditionally lacking each isoform or all isoforms in vascular
smooth muscle cells, endothelial cells, or ubiquitously, to determine the contribution to
aneurysm development of Rcanl isoforms in vascular cells. Surprisingly, conditional Rcanl
deletion in either vascular cell-type induces a hypercontractile phenotype and aortic medial
layer disorganization, predisposing to hypertension-mediated aortic rupture, IMH, and
aneurysm. These processes are blocked by ROCK inhibition. We find that Rcan1 associates
with GSK-3p, whose inhibition decreases myosin activation. Our results identify potential
therapeutic targets for intervention in IMH and aneurysm and call for caution when inter-
preting phenotypes of constitutively and inducibly deficient mice.
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athological vascular wall remodeling, involving structural

and functional modifications that destabilize the ordered

multilayered organization of the wall, is a central feature of
several diseases, including aortic intramural hematoma (IMH)
and aortic aneurysm (AA). IMH, a life-threatening acute aortic
disease, is a contained hematoma featuring bleeding within the
medial layer that weakens the aortic wall. The distinguishing
feature of IMH is the absence of the intimal tear or flap formation
that characterizes classical aortic dissection. In its early
phases, IMH can regress or progress to aortic dissection or rup-
ture, whereas long-duration IMH can progress to aortic aneurysm
or pseudoaneurysm!. Although the etiology and molecular
mechanisms underlying IMH are mostly unknown, it is asso-
ciated with old age and hypertension?>~*. Hypertension is also
a major risk factor for aortic aneurysm and dissection in
humans®~’. Indeed, nearly 80% of patients who develop an aortic
dissection have hypertension®’. In addition, the hypertensive
factor angiotensin 1T (AngIl) induces IMH!? and contributes to
aneurysm formation in the ascending and the abdominal aorta in
animal models!0-13,

We previously reported Angll-induced expression of regulator
of calcineurin 1 (Rcanl) in the aortal?. RCANI, previously
known as DSCR1/MCIP1/Calcipressin-1/Adapt78 in mammals,
belongs to a family of endogenous regulators of calcineurin
activity that also includes RCAN2 and RCAN3!'>. The RCANI
gene is expressed as 2 isoforms, RCANI-1 and RCANI-4, that
differ only in their first exon!>16. While RCANI-1 seems to be
constitutively expressed, RCANI-4 transcription is induced de
novo by several stimuli that activate the calcineurin-NFAT
pathway!417-23. RCANI has been implicated in important phy-
siological and pathological processes, including atherosclerosis,
aneurysm and neointima formation, cardiac hypertrophy, tumor
growth, angiogenesis, mast-cell function, T-cell survival, sepsis,
and synaptic plasticity and memory!'424-28, Constitutive germline
genetic ablation of both Rcanl isoforms in the mouse confers
resistance to abdominal AA (AAA), neointima formation, and
atherosclerosis progression!426. However, it has not been yet
possible to ascribe specific roles to each Rcanl isoform separately
because previous studies have not selectively targeted Rcanl-1I
and Rcanl-4. Bone marrow transplantation experiments showed
that while hematopoietic-cell expression of Rcanl was not
required for aneurysm'4, it was critical for atherogenesis®.
However, the individual contributions to these pathologies of
smooth-muscle-expressed and endothelial-cell-expressed Rcanl
remain unexplored.

Also unknown are the molecular mechanisms through which
Rcanl contributes to these pathologies. Rcanl was initially
identified as an inhibitor of calcineurin activity?®, but subsequent
reports indicated that it can also activate calcineurin3%3!. More-
over, our previous studies showed that Rcanl does not regulate
calcineurin activity in aortic tissues or in primary vascular
smooth muscle cells (vSMCs) and macrophagesl4’26. It therefore
seems that Rcanl regulates vascular wall remodeling through
interactions with proteins other than calcineurin.

Here, to gain insight into the role of Rcanl in vascular disease,
we use a proteomics approach to identify Rcanl-interacting
proteins and engineer mice that enable tissue-specific inducible
deletion of each isoform separately or both isoforms simulta-
neously. The resistance of constitutively Rcanl—/~ mice to vas-
cular pathologies strongly suggested that strategies to inhibit
RCANT1 expression or activity might be useful in the treatment of
these diseases. However, we show here that the inducible deletion
of Rcanl in SMCs or endothelial cells (ECs) disrupts aortic wall
homeostasis, predisposing the aorta to hypertension-induced
rupture, IMH, and aneurysm. Opposing effects are therefore
observed in constitutive and inducible RcanI-deficient mice.

Results

Induced Rcanl deletion predisposes to aortic rupture and
IMH. To analyze the specific roles of Rcanl isoforms in vascular
wall remodeling, we generated inducible knockout mice specific
for Reanl isoforms. We used gene targeting to insert LoxP sites
flanking Rcanl exon 1, exon 4, or exon 6 (Fig. la, b). Details of
the targeting strategy are described in Supplementary Figure 1.
Mice with LoxP-flanked Rcanl exon 1, exon 4, or exon 6 were
crossed with mice expressing tamoxifen-inducible Cre recombi-
nase (CreERT2) specifically in ECs (Cdh5-CreERT2)32 or SMCs
(Myh11-CreFRT2)33 " Alternatively, mice with LoxP-flanked Rcanl
exon 6 were crossed with mice expressing CreFRT2 in a wide cell
spectrum (Ubc-CreERT2)34 Tn this way, we were able to delete
Rcanl-1, Reanl-4, or both isoforms specifically in ECs (EC),
SMCs (SM), or in most cells (Ubc) (Supplementary Table 1).

To confirm the specificity of the Cdh5-CrePRT2 and Myhl1-
CreERT2 drivers, we generated Myhll-CreERT2;R05a26-LSL-YFP
mice and Cdh5-CreERT2,Rosa26-LSL-Tomato mice. Upon tamox-
ifen inoculation, Myh11-CrePRT%Rosa26-LSL-YFP mice expressed
YFP only in the medial layer and Cdh5-CrefRT2R05a26-LSL-
Tomato mice expressed Tomato only in the intima (Supplemen-
tary Figure 2a, b). Transduction of vSMCs with GFP- or Cre-
encoding lentivirus confirmed isoform-specific deletion within
the Rcanl locus (Supplementary Figure le, f). To establish the
isoform-specificity of the Cre-Lox system in the Rcanl locus
in vivo, we treated SM-Rcan ", SM-Rcan1-1/, and SM-Rcan1-
4"l mice with tamoxifen and then induced Rcanl-4 expression
by stimulation with AnglI for 24h (Supplementary Figure 2c).
Immunoblot analysis of aortic protein extracts from these mice
showed that deletion of exon 1, exon 4, or exon 6 specifically in
SMCs markedly decreased aortic expression of Rcanl-1, Rcanl-4,
or both isoforms (Supplementary Figure 2d). Protein expression
was not completely lost, possibly because of the contribution of
the intimal and adventitial layers. Efficient deletion of both Recanl
isoforms upon tamoxifen injection was confirmed in aortic tissue
from Ubc-Rcanl ™'~ mice (Supplementary Figure 2e).

While extracting the aortas of SM-Rcanl~/~ mice stimulated
with Angll for 24h, we occasionally observed pink shadows
(Supplementary Figure 2f). Hematoxylin-eosin staining of aortic
cross-sections showed the accumulation of blood in the medial
layer without intimal tearing (Supplementary Figure 2g), indicat-
ing IMH. However, induced deletion of Rcanl isoforms caused no
major symptoms in the absence of Angll: aortic tissue structure
and values for body weight, heart rate, and blood pressure were
not substantially different to those in Rcanl®/* mice (Supple-
mentary Figure 3), and no differences were observed in grooming,
drinking, or eating habits.

To ascertain whether IMH was caused by the specific
inactivation of Rcanl in SMCs, we deleted both Rcanl isoforms
in ECs or SMCs and then treated the mice with AnglI for 7 days
(Fig. 1c). Angll significantly decreased survival relative to
RcanIt/* littermates, which consisted of vehicle-treated Cre-
positive or tamoxifen-treated Cre-negative RcanIf mice
(Fig. 1d). Necropsy revealed the presence of aortic rupture and
hemothorax or hemoabdomen (Fig. 1e). Nearly 90% of surviving
AnglI-treated conditional Rcanl '~ mice had hematomas in the
ascending aorta (AsAo), thoracic descending aorta (TDAo), or
abdominal aorta (AbAo) (Fig. 1f, g). These results were
unexpected because the constitutive deletion of both Rcanl
isoforms protects against several aortic diseases'#2%. In line with
these earlier findings, constitutive Rcanl~/~ mice showed no
predisposition to Angll-induced acute aortic rupture (Fig. 1d)
and hematoma formation was not significantly more pronounced
than in Rcanl1*/+ C57BL/6 ] mice (Fig. 1g). Histological analysis
showed that all hematomas, including those found in the AbAo,
consisted of bleeding within the medial layer in the absence of
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Fig. 1 Inducible Rcanl deletion predisposes to aortic rupture and IMH. a Schematic representation of the RcanT locus and RcanT isoforms (Transcripts),
indicating exons (boxes) and transcription initiation sites (arrows). b Relative position of LoxP sites (orange boxes) flanking exon 1, 4, or 6 in Rcan1-1V/f,
Reani-4f/f or Rean1/fl, respectively. € Experimental design. Mice were treated with tamoxifen for 5 consecutive days (black arrows) before the
implantation of osmotic minipumps for Angll infusion (1 pg kg~ min~"). Mice were monitored for BP (red arrowheads) and euthanized after 7 days. d
Survival curves of 6-8-week-old male SM-Rcan1=— (n = 20), EC-RcanT~/~ (n =18), Ubc-RcanT~"~ (n =11), RcanT~ (n =17), and RecanT+/+ (n = 39) mice
after Angll osmotic minipump implantation. Log-rank (Mantel-Cox) test, **p < 0.01, *p < 0.05 vs Rcanl*/+. All deaths were due to aortic rupture. e
Representative macroscopic image (top) and hematoxylin-eosin stained section (bottom) of ruptured aortas from mice dead before the end of the
experiment. Scale bars, 1Tmm (top) and 200 um (bottom). f Representative images of macroscopic hematomas in aortas from mice euthanized at the end
of the experiment. Scale bar, Tmm. g End-of-experiment IMH incidence in the AsAo, TDAo, and AbAo. Chi-square distribution, ****p <0.0001 vs. RcanT
+/+: n.s., non-significant vs RcanTt/+. h Representative images of aortic sections from Rcan1™/+, SM-Rcan1~~, EC-Rcan1~/~, Ubc-Rcan1~/~, and Rcan1~~
mice stained with hematoxylin-eosin. Scale bar, 500 um. i Hemorrhage area in aortic sections. Each data point denotes an individual mouse, whereas
histograms denote means £ s.e.m. Kruskal-Wallis with Dunn multiple comparison post-hoc test, ****p < 0.0001, ***p < 0.001, **p < 0.01 vs

Rcan™t/+; n.s., non-significant vs. Rcan1t/+. d-i RcanTt/* littermates consisted of a pool of vehicle-treated Cre-positive and tamoxifen-treated Cre-
negative Rcanfl mice
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intimal tear or flap formation (Fig. 1h and Supplementary
Figure 4). Quantification of the area covered by the hematoma in
these sections showed that they were markedly larger in inducibly
deficient mice than in constitutively deficient or RcanI™/* mice
(Fig. 1i). A more detailed histological analysis of IMH in SM-
Rcanl~/~ mice revealed an absence of collagen accumulation and
the disorganization and rupture of the elastic lamellae (Supple-
mentary Figure 4).

Tamoxifen priming of mice carrying the cardiomyocyte-
specific CrePRT? cassette causes dose-dependent cardiac dysfunc-
tion within the first week following tamoxifen exposure and
mitochondrial damage3. These results raised the possibility that
Cre activation by tamoxifen, instead of Rcanl deletion, predis-
posed to IMH formation. However, none of the Rcanlt/t;
Myh11-CreERT2 Rean1t/+;Cdh5-CreFRT2, and Reanl™/+;Ubc-
CreFRT2 mice treated with tamoxifen and Angll died of aortic
rupture or showed increased IMH incidence or extent relative to
Angll-treated Rcanlt/+;Cre-negative mice (Supplementary Fig-
ure 5). Constitutive Rcanl depletion in cultured cardiomyocytes
activates calcineurin and induces calcineurin-mediated mitochon-
drial fission®®. In addition, Rcanl-1 knockdown increases
transcript levels for hexokinase 2 (Hk2)%°. We therefore
investigated whether constitutive or conditional Rcanl deletion
induced mitochondrial aberrations in aortic smooth muscle cells.
Flow cytometry analysis of cultured aortic smooth muscle cells
from SM-Rcanl”~, Rcanl”-, or tamoxifen-treated Rcanlt/*;
Myh11-CrefRT2 mice stained with Mitotracker revealed no
alteration of the mitochondrial content relative to Cre-negative
RcanI™* cells (Supplementary Figure 6a—c). Confocal micro-
scope inspection of these cells showed that the number of
mitochondria was also similar in all genotypes (Supplementary
Figure 6d, e). Accordingly, the expression of Hk2 and other
mitochondrial genes remained unaltered (Supplementary Fig-
ure 6f). These data strongly suggest that no mitochondrial
damage is caused by Cre activation or by constitutive or
conditional Rcanl deletion in vSMCs.

Together, our results indicate that conditional and constitutive
Rcanl inactivation cause opposite effects on aortic pathology.
Since conditional Recanl inactivation either in SMCs or in ECs
predisposes to the same aortic lesion, our results also suggest that
Rcanl might be implicated in a cross-talk between both cell types
necessary for aortic wall homeostasis maintenance.

To determine the contribution of each Rcanl isoform to aortic
homeostasis, we treated SM-Rcanl~/—, EC-Rcanl—'~, SM-Rcanl-
17/=, EC-Reanl-1-'=, SM-Rcan1-4~'~, EC-Rcanl-4~/~, and wt
mice with AngIl. Whereas simultaneous deletion of both Rcanl
isoforms in either ECs or SMCs significantly increased the risk of
aortic rupture upon exposure to Angll, this phenomenon was less
frequent when only one isoform was deleted (Fig. 2a). Deletion of
a single isoform promoted IMH in the presence of Angll
(Fig. 2b), but the incidence was again lower than in mice with
simultaneous deletion of both isoforms (Fig. 2¢). Histological
analysis also revealed smaller hematomas in mice lacking only
one isoform than in mice lacking both (Fig. 2d-f). Together, these
data suggest that Rcanl-1 and Rcanl-4 isoforms play similar and
additive roles in the maintenance of aortic homeostasis.

IMH evolves to AA or rupture in conditional Rcanl—/~ mice.
The most frequent outcome of the long-term clinical progression
of IMH is aortic aneurysm or pseudoaneurysm!. To determine
the development of IMH in Rcanl-deficient mice, we used
ultrasound imaging to monitor for the presence of aneurysms in
the aortas of mice treated with AnglII for 28 days. We also con-
ducted postmortem examinations in a parallel group of mice
treated with Angll for 7 days (Fig. 3a). In line with the results

shown in Fig. 1, nearly 40% of Angll-infused SM-Rcanl—/—, EC-
Rcanl~'~, and Ubc-Reanl~'~ mice died within the first week of
treatment, whereas 100% of constitutive Rcanl '~ mice survived
(Supplementary Figure 7a). In addition, >80% of SM-Rcanl~/~,
EC-Rcanl~/—, and Ubc-Rcanl”" mice sacrificed after 7 days’
treatment with AnglII showed IMH in the AsAo and/or the TDAo
or the AbAo (Supplementary Figure 7b-e). Treatment of condi-
tional or constitutive Rcanl”" mice with AngII for 28 days did not
substantially enlarge AsAo diameter relative to Rcanl™/* mice
(Fig. 3b, c). However, this treatment sharply increased AbAo
diameter in SM-Rcanl~/~, EC-Rcanl~'~, and Ubc-Rcanl~/~
mice relative to Reanl™/* mice, but not in constitutive Rcanl =/~
mice (Fig. 3b, d). In fact, 100% of conditional Reanl~/~ mice
showed either abdominal aortic aneurysm (AAA) or dilated
AbAo (diameter = 1.2-1.5mm) upon Angll infusion (Fig. 3e).
AAA in these mice was suprarenal (Fig. 3f) and featured marked
collagen deposition and destabilization of the ordered multi-
layered vessel wall structure (Fig. 3g). In contrast, constitutive
Rcanl~'~ mice showed even less dilatation than Rcanl*/* mice
and the aortic wall structure in these genotypes was indis-
tinguishable (Fig. 3e-g). Together, these data suggest that while
AnglI-induced hemorrhages in the AsAo either progress to aortic
rupture or regress, IMH in the AbAo progresses to aortic rupture
or to AA.

AnglI is best known for its hypertensive action, but AngII is
also implicated in processes related to pathological vessel
remodeling, including fibrosis, inflammation, and vascular
aging®-3°. To test whether Angll induced IMH through its
hypertensive effect, we treated SM-Rcanl~/~ mice simultaneously
with Angll and amlodipine (Fig. 4a), an established antihyper-
tensive agent?’. Amlodipine blocked not only Angll-induced
hypertension (Fig. 4b), but also the occurrence of lethal aortic
ruptures (Fig. 4c) and IMH along the aorta (Fig. 4d-g). We also
treated SM-Rcanl ™/~ mice simultaneously with Angll and with
the combination of the vasorelaxant hydralazine plus hydro-
chlorothiazide. Similar to amlodipine, this vasodilator treatment
prevented aortic rupture and blocked Angll-induced hyperten-
sion and IMH formation (Supplementary Figure 8). To further
confirm the role of hypertension in IMH formation, we treated
SM-Rcanl~'— mice with the vasopressor norepinephrine. A
norepinephrine dose equi-prohypertensive to AngIl induced
IMH formation in SM-Rcanl~/~ mice as efficiently as AnglI
(Supplementary Figure 9). Norepinephrine, however, did not
induce aortic rupture in conditional Rcanl~/~ mice (Supple-
mentary Figure 9b), suggesting that AnglI-induced hypertension
is necessary but not sufficient to elicit aortic rupture. Together,
these data strongly suggest that conditional Rcanl deficiency
alters vascular wall homeostasis to predispose the aorta to AnglI-
induced pathological vessel remodeling.

SM- and EC-Rcanl deficiency increases vascular permeability.
We investigated whether Angll induced IMH formation early
after its infusion. A 6 h AnglI treatment induced incipient IMH in
80% of SM-Rcanl~'~, 33% of EC-Rcanl~/~ mice, and 7% of
Rcanlt/* mice (Fig. 5a, b). Hematoxilin-eosin staining of these
inceptive lesions showed that hemorrhages were contained in the
outer lamellar units of the medial layer, but never close to the
intimal layer (Fig. 5a). Immunostaining of aortic ECs in
whole-mount or transverse sections from SM-Rcanl—/~ and EC-
Rcanl~/~ mice showed intimal layer integrity both in saline-
treated mice (Supplementary Figure 10a, b) and in AnglI-treated
mice (Fig. 5¢), suggesting that the bleeding came from adventitial
or from peri-aortic vessels.

To identify the point of blood entry into the tunica media, we
injected 10-kDa and 70-kDa fluorescently labeled dextrans into
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Fig. 2 Rcanl-1 and Rcani-4 contribute to aortic homeostasis. Six-eight-week-old SM-Rcan1-1~/= (n =10), SM-Rcan1-4~/~ (n =16), EC-Rcan1-1~/= (n=17),
and EC-Rcanl-4~/~ (n = 9) male mice were treated with Angll at the same time as the SM-RcanT/~ (n = 20), EC-Rcan1~"~ (n =18), and control Rcan1*/+
(n=39) mice described in Fig. 1. Quantitative data for SM-RcanT~/~, EC-Rcan1~/~, and control Rcan1*/+ are therefore the same in both figures. a Survival
curves. Log-rank (Mantel-Cox) test, **p < 0.01, *p < 0.05 vs. RcanTt/*. All deaths were due to aortic rupture. b Representative images of macroscopic

hematomas in aortas from mice euthanized at the end of the experiment. Scale bar, Tmm. ¢ IMH incidence in the AsAo, TDAo, and AbAo of the same
mice. Chi-square distribution, ****p < 0.0001, **p < 0.01, *p < 0.05 vs. RcanTt/+. d Representative images of hematoxylin-eosin staining of aortic sections
from the indicated genotypes and IMH area quantification in aortic sections from e SM-RcanT~/~, SM-Rcan1-1-/~, and SM-Rcan1-4~/~ mice and f from EC-
Rcan1~~, EC-Rcani-1-/~, EC-Rcan1-4~7~, and control Rcan1t/+ mice. Each data point denotes an individual mouse, whereas histograms denote means *s.
e.m. Kruskal-Wallis with Dunn multiple comparison post-hoc test, ****p < 0.00071, *p < 0.05 vs. RcanT™”+. Scale bar, 500 um. a-d Rcan?*/* littermates

consisted of a pool of vehicle-treated Cre-positive and tamoxifen-treated Cre-negative Rcan?fl mice
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the tail veins of Rcanl™/*, SM-Rcan1~/~, and EC-Rcanl~/~ mice
treated for 6 h with Angll. In the aorta, labeled dextrans were
detected only in the outer lamellar units of the media (Fig. 5d, e).
Immunostaining of ECs showed no intimal layer disruption in the
region where dextrans were found (Fig. 5d). A search for labeled
dextrans in highly vascularized tissues revealed a modest
increase of 10-kDa dextrans in the kidneys of SM-Rcanl™/~
and EC-Rcanl~'~ mice, but not in the lungs (Supplementary

Figure 1la-c). No hemorrhages were found in these tissues
(Supplementary Figure 11d).

ROCK-mediated MLC activation predisposes to aortic disease.
The rapid onset of IMH formation upon Angll-induced acute
hypertension suggests that aortic tissue in conditionally Rcanl-
deficient mice may have underlying structural defects that are
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Fig. 3 IMH progression into AAA in conditional Rcan~~ mice. a Experimental design: 6-8-week-old male mice were treated with tamoxifen for 5
consecutive days (black arrows) before the implantation of osmotic minipumps for Angll infusion (1pg kg~ min~1). Aortas were monitored by
ultrasonography (red arrowheads), and mice were euthanized after 7 or 28 days of treatment with Angll. Data from the analysis performed after 7 days are
shown in Supplementary Figure 7. b Representative ultrasound images of AsAo and AbAo from mice treated with Angll for 28 days. Yellow and blue lines
mark the lumen boundary and the lumen diameter, respectively. Scale bar, Tmm. Maximal (¢) AsAo and (d) AbAo diameter at the indicated times of Angll
treatment. The boxes represent the 25th and 75th percentile range of the mean values, the line in the box shows the median value, and the whiskers extend
from the minimum to the maximum value. Two-way ANOVA with Tukey multiple comparison post-hoc test (¢) and Kruskal-Wallis with Dunn multiple
comparison post-hoc test (d), **p < 0.01, *p < 0.05 vs RcanTt/*; n.s., non-significant vs. RcanTt/*. e Incidence of AAA and aortic dilation. Normal,
diameter < 1.2 mm:; Dilated, 1.2 mm < diameter < 1.5 mm; AAA, diameter >1.5 mm. Chi-square distribution, ***p < 0.001, **p < 0.01, vs. Rcan1*/*. f
Representative images of AAA. Scale bar, 1mm. g Representative images of aortic sections stained with hematoxylin-eosin (HE), Masson's trichrome
(Masson) and Elastic Van Gieson stain (EVG). Scale bar, 500pm. ReanT™* (n=12), SM-RcanT~ (n=7), EC-RcanT~”~ (n=11), Ubc-RcanT~~ (n=6),
and RcanT~~ (n = 6). b-g Rcanl*/~ littermates consisted of a pool of vehicle-treated Cre-positive and tamoxifen-treated Cre-negative Rcan?l mice

exacerbated by Angll. Transmission electron microscopy of SM-
Rcanl~/~ and EC-Rcanl~/~ aortas revealed loss of vSMC contact
with the elastic lamina, a markedly increased intercellular space,
and extracellular accumulation of microfibers (Fig. 6a). The
decreased area occupied by vSMCs suggested that they might be
undergoing apoptosis or be in a more contractile state than in
RcanIt/* or constitutive Rcanl~/~ mice. Staining of aortic sec-
tions with ApopTag confirmed the absence of apoptotic cells in
SM-Rcanl1~'~ and RcanI™/* mice (Supplementary Figure 12a).
Examination of markers of vSMC contractile phenotype also
revealed no differences in Acta2, Myhll, and Cnnl mRNA
content (Supplementary Figure 12b). However, aortas from SM-
Rcanl~'~ and EC-Rcanl~’~ mice showed substantially higher
phosphorylation of myosin light chain (MLC) (Fig. 6b), a reg-
ulatory subunit whose phosphorylation promotes myosin-
mediated contractility*!. We confirmed these data in aortic
smooth muscle cells isolated from Rean /1 mice; transduction of
these cells with Cre-encoding lentiviral vectors markedly
increased p-MLC staining relative to cells transduced with a
control lentivirus (Fig. 6¢). Accordingly, forced Rcanl expression
had the opposite effect, decreasing p-MLC levels (Fig. 6d). Of
note, aortas from Rcanl~/~ mice showed no substantial increase
of MLC phosphorylation (Fig. 6b), suggesting that compensatory
mechanisms might act during embryonic development or early
post-natal stages to prevent MLC hyperphosphorylation.

MLC phosphorylation can be induced upon inactivation of
MLC phosphatase mediated by RhoA kinase (ROCK)*2. We
found that the ROCK inhibitor Fasudil** blocked MLC
phosphorylation in Recanl///! aortic SMCs transduced with a
control lentivirus or Cre-encoding lentivirus (Fig. 7a). Further-
more, Fasudil blocked AnglI-induced mortality in SM-Rcanl~/~,
EC-Rcanl—'~, and control mice (Fig. 7b, c) and sharply decreased
IMH incidence along the aorta and IMH size in conditional
Rcanl™'~ mice (Fig. 7d-g). Immunoblot and immunofluores-
cence analysis revealed that Fasudil substantially decreased MLC
phosphorylation in the aortas of these mice (Fig. 7h and
Supplementary Figure 13a). Notably, the protective effect of
Fasudil was independent of blood pressure regulation (Supple-
mentary Figure 13b). Together, these data indicate that, contrary
to constitutive Rcanl genetic inactivation, its conditional deletion
promotes a hypercontractile phenotype in aortic SMCs that
predisposes to aortic rupture and IMH.

Gsk-3 p mediates MLC activation in conditional Rcanl—/~
mice. To investigate the molecular mechanisms involved in MLC
activation upon inducible Rcanl deletion, we conducted a pro-
teomics analysis of Rcanl-interacting proteins. The low amount
of Rcanl in the aorta precluded use of this organ, and we
therefore used brain extracts, in which Rcanl is abundant. Rcanl-
interacting proteins were identified by mass spectrometry of
Rcanl immunoprecipitates from Rcanlt/t and Recanl—/— mouse

brain extracts (Fig. 8a). Rcanl was specifically immunoprecipi-
tated from Reanl™/* mice extracts together with several potential
Rcanl-interacting candidates, one of the most significantly enri-
ched being Gsk-3 B (Fig. 8b). GSK-3 B is a candidate activator of
ROCK*»®, suggesting that Rcanl might regulate Gsk-3 f-
mediated activation of ROCK and MLC. Immunoblot analysis
confirmed the Rcan1-Gsk-3 P association in vSMCs (Fig. 8c). As
a readout of Gsk-3 [ activity in aorta, we measured the
protein content of B-catenin, which is degraded upon Gsk-3 -
mediated phosphorylation*®47. B-catenin levels were lower in
SM-Rcanl~'~ and EC-Rcanl™/~ aorta than in Reanl*/* aorta
(Fig. 8d). In contrast, p-MLC levels were markedly elevated in
both inducibly Rcanl-deficient genotypes (Fig. 8d). Contrary to
induced Rcanl deletion, its constitutive inactivation did not
substantially affect B-catenin levels (Fig. 8e), suggesting that
compensatory mechanisms prevented Gsk-3 { activation in the
aorta of constitutive Rcanl~/~ mice. Gsk-3 B inhibition with
lithium chloride*® or the highly specific Gsk-3 B inhibitor VIII#®
blocked the MLC phosphorylation induced upon Rcanl deletion
in vSMCs from RcanI"fl mice (Fig. 8f, g). Consistent with the
role of Gsk-3 B in B-catenin proteolysis, Gsk-3 B inhibitor VIII
prevented B-catenin degradation in parallel control experiments
(Fig. 8g).

Discussion

Our previous studies in constitutive Rcanl—/~ mice showed that
Rcanl is a critical mediator of neointima formation, aneurysm,
and atherosclerosis!426, Here, we used mice with tissue-specific
inducible deletion of Recanl isoforms to gain insight into the role
of Rcanl isoforms in vascular pathologies. Unexpectedly, we
found that inducible and constitutive deletion of Rcanl produce
opposing effects in the aorta: inducible Rean deletion in Apoe™/+
mice but not its constitutive deletion predisposes to AngllI-
induced lethal aortic rupture and IMH. It is important to note
that we analyzed constitutive and inducible Rcanl—/~ mice in
parallel. Our results strongly support the notion that Rcanl plays
a critical homeostatic role in the aorta and that compensatory
mechanisms are induced during embryonic development or early
post-natal stages of constitutive Rcanl~/~ mice. Furthermore, our
data strongly suggest that interaction with Rcanl limits Gsk-3 f
activity and therefore the activation of the ROCK/MLC axis
under homeostatic conditions. Disruption of this pathway in
inducible Rcanl~/~ mice severely compromises arterial wall
homeostasis through the induction of a contractile vSMC phe-
notype. However, this pathway was preserved in constitutive
Rcanl~'~ mice, suggesting that compensatory mechanisms might
prevent Gsk-3 P activation during development in these mice.
Inducing Rcanl deletion during different developmental stages
might help to elucidate this issue and uncover the mechanisms of
compensation.
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Fig. 4 The hypertensive effect of Angll is required for IMH formation. a Experimental design: 6-8-week-old male mice were treated with tamoxifen for 5
consecutive days (black arrows) before the implantation of osmotic minipumps for infusion of Angll (1 pg kg™ min~") and amlodipine (Amlo, 6 mg kg~!
day~1). Mice were monitored for blood pressure (BP; red arrowheads) and euthanized at the end of the experiment. b Systolic BP measurements in Rcan!
+/+ mice treated with saline (n=3), Angll (n=6), or Amlo plus Angll (n=6). One-way ANOVA with Tukey multiple comparison post-hoc test,

***1 < 0.001, *p < 0.05 vs. untreated, ###p < 0.001 vs. Angll. ¢ Survival curve of RcanTt/+ and SM-Rcan1~/~ mice treated with Angll and Amlo as indicated.
Log-rank (Mantel-Cox) test, *p < 0.05 vs. Rcan?™/+ Angll. All deaths were due to aortic rupture. d Representative images of macroscopic hematomas in
aortas from mice treated with Angll or Angll + Amlo (scale bar, 1Tmm) and e hematoma incidence in these mice. Chi-square distribution, ***p < 0.001 vs.
Rean1t/+ Angll, ###p < 0.001 vs. SM-Rcan1~"~ Angll. f Hematoxylin-eosin staining of AbAo cross-sections from the same mice (scale bar, 500 um) and g
IMH area quantification in these sections shown as mean + s.e.m; each data point denotes an individual mouse. Rcan1™/+ Angll (n = 8), RcanT™/*+ Angll +
Amlo (n=6), SM-Rcan?~~ Angll (n=15), and SM-RcanT~~ Angll + Amlo (n = 6). Kruskal-Wallis with Dunn multiple comparison post-hoc test,

*p < 0.05 vs. RcanTt/+ Angll, ###p < 0.001 vs SM-Rcan1~~ Angll. c-g RcanTt/* littermates consisted of a pool of vehicle-treated Cre-positive and
tamoxifen-treated Cre-negative Rean?fl mice
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Fig. 5 Conditional RcanT~/~ mice show increased aortic permeability. a (Top panels) Representative images of macroscopic incipient hematomas found
after 6 h of Angll infusion (1 pg kg~! min—). Scale bar, T mm. (Middle and bottom panels) Hematoxylin-eosin staining of these hematomas. Scale bars, 100
um. b Incidence of aortic IMH after 6 h of Angll infusion in ReanTt/+ (n=14), SM-RcanT~"~ (n=16), and EC-RcanT~/~ mice (n=12). Chi-square
distribution, ****p < 0.0001 vs. Rcan1t/*. ¢ Representative images of Cd31 immunofluorescence in en face (top panels) and transversal section (bottom
panels) of aortas from mice infused for 6 h with Angll. Cd31 (gray, top panels; green, bottom panels), DAPI-stained nuclei (blue). Scale bar, 20 pm.

d Representative images showing the accumulation of FITC-labeled 70-kDa

dextran (green) and RhodamineB-labeled 10-kDa dextran (red) in aortas of

RecanT/+ (n=10), SM-Rcan1~"~ (n=16), and EC-Rcan1~"~ (n =12) mice infused for 6 h with Angll. Elastin autofluorescence is shown also in green.
Aortas were also stained with anti-Cd31 (gray) and DAPI (blue). Scale bar, 50 um. e Fluorescence intensity quantification of the accumulation of (top)
FITC-labeled 70-kDa dextran and (bottom) RhodamineB-labeled 10-kDa dextran in aortic sections from the same mice; a.u., arbitrary units. Each data point
denotes an individual mouse, whereas histograms denote means + s.e.m. Kruskal-Wallis with Tukey Dunn multiple comparison post-hoc test, ****p <
0.0001, **p < 0.01, *p < 0.05 vs Rcanl™”+. b-e Rcan1™/+ littermates consisted of a pool of vehicle-treated Cre-positive and tamoxifen-treated Cre-negative

Rean/fl mice

Although IMH is a severe condition that can progress to aortic
dissection or aortic aneurysm, very little is known about its
etiology and the molecular mechanisms underlying its formation.
We show that AnglI elicited IMH in the AsAo of <20% wt mice,
and these hematomas were small. These results are in line with
those reported by Rateri et al.10. It is important to note that these
hematomas very rarely caused aortic rupture and we never
detected their progression to aneurysm. Similarly, AnglI also
induced small IMH in constitutive Rcanl~/~ mice, and these
hematomas also did not progress either to aneurysm or to aortic
rupture. In contrast, Angll infusion into conditional Reanl =/~

| (2018)9:4795 | DOI: 10.1038/541467-018-07071-7 | www.nature.com/naturecommunications

mice readily induced lethal aortic rupture and IMH that pro-
gressed to aneurysm. Since the phenotype of AnglI-treated con-
ditional Rcanl™~ mice resembles human IMH disease,
these mice appear to provide a preclinical model for
investigating the mechanisms underlying IMH and testing can-
didate therapies.

In human IMH, it is unclear if the blood comes from the aortic
lumen or a leaky vasa vasorum. We were unable to identify the
blood entry point in our mouse models. However, as in the
human disease, the aortic intimal layer was always intact in the
hematoma region. In addition, incipient hematomas detected
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Fig. 6 Vascular ultrastructure alteration and MLC activation in inducible RcanT~~ mice. a Representative transmission electron microscopy (TEM) images
of aortic sections from RcanTt+ (n = 6), SM-RcanT”~ (n=6), EC-RcanT™~ (n=16), and RcanT~ mice (n=4). L, lumen; E, elastic lamella; vSMC,
vascular smooth muscle cells. Red asterisks mark regions with spaces between elastic layers and vSMCs. Bar, 2 um. b Representative images of elastin
autofluorescence (green), DAPI-stained nuclei (blue), and p-MLC (pink) and SMA (gray) immunofluorescence on aortic sections from ReanT/+ (n=6),
SM-RcanT~= (n=6), EC-Rcan1~"~ (n=6), and Rcan1~"— mice (n=11). Scale bar, 20 um. ¢ Representative images of DAPI staining (blue), and p-MLC
(pink) and SMA (gray) immunofluorescence in ReanT/fl vSMCs transduced with Cre-encoding or control lentiviral vectors. Scale bar, 20 um. d
Representative p-MLC, Rcan1, and tubulin immunoblots of ReanT/fl vSMCs transduced with Cre-encoding or control lentivirus and treated with the ROCK
inhibitor Fasudil (30 uM) for 1h (n= 3 independent experiments). a, b Rcan1t/* littermates consisted of a pool of vehicle-treated Cre-positive and

tamoxifen-treated Cre-negative Rean?fl mice

early after AnglIl administration were always located in the outer
elastic lamellar units. Since there is no vasa vasorum in the
nonatherosclerotic mouse aorta®?, our results suggest that the
blood might leak from adventitial small vessels or periaortic
vessels. We might therefore expect blood to leak from other small
vessels in these mice, but did not detect hemorrhages in any other
organ. However, fluorescently labeled 10-kDa dextrans were
extravasated to the kidney, suggesting that Angll increased the
permeability of small vessels in Rcanl-deficient mice. These
results are in line with a recent report showing increased vessel
permeability in Rcanl™/~ mice during the anaphylactic
response’!. We hypothesize that Angll might increase vascular
permeability of various small vessels in conditional Rcanl "/~
mice and that while the body’s repair mechanisms may have no
access to the blood extravasated into the outer laminae of the
aorta, these mechanisms might readily remove blood leaked into
other organs.

Clinical IMH is associated with hypertension?>~4, and the
vasopressor Angll induces IMH in the mouse, suggesting that
increased blood pressure might be a cause of IMH. Hypertension
is also a major risk factor for aortic aneurysm and dissection in
humans®~7. Although Angll also induces aneurysm and aortic
rupture in the mouse, the contribution of Angll-induced hyper-
tension to these conditions is controversial, as opposing results
were reported in normocholesterolemic and hypercholesterolemic
mice!>>2. AnglI also promotes inflammation and induces fibro-
sis37739, two events involved in pathological vessel remodeling.
H&E staining of incipient IMH in the mouse did not reveal an
inflammatory response in the aorta, and we did not detect sub-
stantial collagen accumulation in this organ, suggesting that the
Angll-dependent IMH induction was caused by the acute
increase in blood pressure. Supporting this hypothesis,

amlodipine, a well-known hypotensive agent, blocked IMH for-
mation in our mouse models. Similarly, the hypotensive combi-
nation of hydralazine plus hydrochlorothiazide also blocked IMH
formation. Further supporting our hypothesis, the vasopressor
norepinephrine increased IMH formation. It seems therefore
likely that Angll induces IMH and aneurysm through its
hypertensive capacity in normocholesterolemic mice and through
hypertension-independent mechanisms in hypercholesterolemic
mice. While amlodipine or the combination of hydralazine plus
hydrochlorotiazide also prevented Angll-induced aortic rupture
in conditional Rcanl~/~ mice, norepinephrine infusion of these
mice did not induce aortic rupture, suggesting that AngllI-
induced hypertension is necessary but not sufficient to elicit
aortic rupture.

Conditional Reanl-1~/~ and Rcanl-4—/~— mice showed a pre-
disposition to form IMH following AnglII administration, but the
effect was less marked upon deletion of a single isoform than in
mice simultaneously lacking both isoforms. This suggests that the
two isoforms play a similar and additive role in the maintenance
of aortic homeostasis. Our data also show that aortic homeostasis
depends on Rcanl expression in both SMCs and ECs, because its
specific deletion in either cell type predisposed to lethal aortic
dissection and IMH formation. This result suggests that aortic
wall homeostasis involves crosstalk between vSMCs and ECs. In
this regard, our ultrastructural analysis of the aortic wall indicated
that SM-Rcan1~/~ and EC-Rcanl '~ aortas have similar medial-
layer defects before Angll administration: substantial enlarge-
ment of the intercellular space, accumulation of extracellular
matrix, and partial loss of vSMC contact with elastic fibers. The
increased intercellular space was consistent with a hypercon-
tractile vSMC state or the induction of apoptosis. While no
apoptotic cells were found in the aorta of these mice, there was a
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Fig. 7 ROCK mediates MLC activation and aortic disease. a Representative p-MLC, Rcan, and tubulin immunoblots of ReanTf vSMCs transduced with
Cre-encoding or control lentivirus and treated with the ROCK inhibitor Fasudil (30 uM) for Th (n = 3 independent experiments). b Experimental timeline.
Black arrows, tamoxifen injection. A group of mice was treated with Fasudil (1 mg per ml in drinking water) starting 2 days before 7-day treatment with
Angll. Red arrowheads, BP measurements. Red arrows, Fasudil start of treatment (—2), Angll osmotic minipump implantation (0), and end-of-experiment
(7). ¢ Survival curves of 6-8-week-old male mice treated according to the scheme in b as indicated. Saline = Angll-treated: Rcan1™/+ (n = 7), SM-RcanT~/~
(n=10), and EC-RcanT~/~ (n = 11); Fasudil = Fasudil + Angll treated: Rcan1*/* (n = 8), SM-RcanT~/~ (n=7), and EC-Rcan1~/~ (n = 11). Log-rank (Mantel-
Cox) test, *p < 0.05 vs Rcan1”+ Angll (Saline), #p < 0.05 vs. SM-RcanT~”~ Angll (Saline), &p < 0.05 vs. EC-Rcan~~ Angll (Saline). All deaths were due
to aortic rupture. d Representative images of aortas with macroscopic hematomas (scale bar, 1 mm) and e hematoma incidence in these mice. Chi-square
distribution, *p <0.05, **p < 0.01, vs. Rcan1t/+ Saline, ##p <0.01 vs. SM-RcanT~/~ Saline, p<0.05 vs. EC-Rcan1=/~ Saline. f Representative images of HE
staining in AbAo sections from these mice (scale bar, 500 um) and g IMH area quantification in these sections shown as mean + s.e.m.; each data point
denotes an individual mouse. Kruskal-Wallis with Tukey Dunn multiple comparison post-hoc test, **p < 0.01, *p < 0.05 vs. RcanTt/* Saline, #p < 0.05 vs
SM-Rcan1~~ Saline, &&p < 0.01 vs EC-Rcan1~~ Saline. h Representative p-MLC immunoblot of aortic extracts from the same mice. Tubulin was used as
loading control. e-h RcanT™/* littermates consisted of a pool of vehicle-treated Cre-positive and tamoxifen-treated Cre-negative RcanT/f mice
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marked increase in p-MLC, which activates myosin-dependent
contractile force. Our results thus suggest that conditional Rcanl
loss in ECs or in vSMCs induces a hypercontractile phenotype in
vSMCs.

MLC phosphorylation is dynamically regulated by MLC kinase
(MYLK) and MLC phosphatase (MLCP), whose activities are

12

controlled through several pathways, including the inactivating
phosphorylation of MLCP by ROCK (reviewed in>3). Our finding
that the ROCK inhibitor Fasudil inhibits MLC phosphorylation
and sharply inhibits the occurrence of lethal aortic rupture and
IMH strongly suggests that conditional Rcanl inactivation leads
to ROCK-mediated MLC activation. Although we cannot exclude
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Fig. 8 GSK-3 p mediates MLC activation in inducible Rcan1~”~ mice. a Experimental design. Protein extracts from brains of Rcan*/+ and Rcan1~/~ mice
were immunoprecipitated with anti-Rcan1 antibodies, and interacting proteins were identified by mass spectrometry and quantified by spectral counting. b
Significantly enriched proteins (Student t-test, p < 0.05) identified in Rcan1 immunoprecipitates from RcanTt/+ and RcanT~~ extracts are listed according
to their enrichment in 3 independent experiments. € Gsk-3 p and RcanT immunoblot analysis of vSMC protein extracts immunoprecipitated with anti-Rcan1
antibody (IP Rcan1) or control antibody (IP IgG), compared with crude extract (Input). d Representative p-MLC, B-catenin, and tubulin (loading control)
immunoblot analysis of aortic extracts from Recan1t/+, SM-RcanT~/~, and EC-Rcan1~”~ mice (n = 3 independent experiments). e Representative p-catenin,
and tubulin (loading control) immunoblot analysis of aortic extracts from Rcan1*/+ (n = 7), RecanT~~ (n = 6) and SM-RcanT~~ (n = 8) mice. d, e Rcan1*/+
littermates consisted of a pool of vehicle-treated Cre-positive and tamoxifen-treated Cre-negative RcanT/fl mice. f Representative images (n = 3) of p-MLC
immunofluorescence (gray) and DAPI staining (blue) in Rean?fl vSMCs transduced with Cre-encoding or control lentivirus and treated for 2 h with saline
or the GSK-3 B inhibitors LiCl (50 uM) or inhibitor VIII (GSK-3 Bi) (10 uM). Scale bar, 20 um. g Representative Rcanl, p-MLC, and p-catenin immunoblot
analysis (n=3) in vSMCs from f. Gapdh was used as loading control. h Model depicting the GSK-3 - and ROCK-mediated induction of aortic IMH, aortic
dissection, and AAA in conditional Rcan’~~ mice subjected to hypertensive stress. While hypertension induces spontaneously-regressing small IMH in
Rcan1t/+ mice at low frequency, in most conditional Rcan1~~ mice it induces large IMH that dissect or progress to aneurysm

the possibility that MYLK becomes activated in the aortas of
conditional Rcanl ™/~ mice, our results are in line with a recent
report showing the involvement of ROCK in the regulation of
vascular permeability>%.

Rcanl can activate or repress CN activity?*=3!. Rcan1 depletion
in cultured cardiomyocytes, in particular, activates CN and
induces CN-mediated mitochondrial fission®0. However, we
found no mitochondrial aberrations in constitutive or in condi-
tional Rcanl~/~ vSMCs. These results suggest that Rcanl
depletion in vSMCs does not affect CN activity and are therefore
in line with our previous observations showing that CN activity
was unaffected by Rcanl expression in aortic tissue, vSMCs, or
macrophages!426. Tt therefore seems likely that Rcanl regulates
distinct signaling pathways in cardiomyocytes and vascular cells.
Our proteomics analysis identified Gsk-3 B as a potential Rcanl-
interacting protein. Immunoprecipitation/immunoblotting con-
firmed interaction between these proteins in aortic SMCs, in line
with previous reports of phosphorylation-mediated regulation of
Rcanl by Gsk-3 B°>%°. Although regulation in the reverse
direction (of Gsk-3 B activity by Rcanl) was unexpected, we
found decreased B-catenin levels in the aortas of SM-Rcanl—/~
and EC-Rcanl~/~ mice. Since Gsk-3 B-mediated phosphorylation
rapidly triggers B-catenin proteolysis*>#’, our results strongly
suggest that Gsk-3 { activity is increased in the aortas of condi-
tional Rcanl~/~ mice and therefore that the association of Rcanl
with Gsk-3 f inhibits its enzymatic activity in the aorta. f-catenin
levels remained however unaffected in the aortas of constitutive
Rcanl™~ mice, suggesting that Gsk-3 B activity was not
increased in these mice.

Another Gsk-3 P substrate is the RhoGTPase activator
p190ARhoGAP# whose phosphorylation by Gsk-3 B activates
Rho in fibroblasts*4. By using two independent Gsk-3 f inhibi-
tors, we demonstrated that Gsk-3 P activity mediates not only
basal MLC phosphorylation in aortic Rean /1 SMCs but also the
enhanced phosphorylation observed in aortic Rcanl~/~ SMCs.
These results are in line with a recent study showing that lithium
decreases MLC phosphorylation in ECs and attenuates endothe-
lial permeability®’. We propose a model in which Rcan1 inhibits
Gsk-3 f-mediated phosphorylation of its other substrates; the loss
of Gsk-3 B inhibition in conditional Reanl~~ cells would thus
increase ROCK activation and therefore MLC phosphorylation
and SMC contractility (Fig. 8h). In mice with this altered aortic
wall structure, the sharp blood pressure rise induced by AngllI
would then increase vascular permeability and promote the
accumulation of extravasated blood in the outer layers of the
aorta tunica media (Fig. 8h).

Our study demonstrates that hypertensive treatment of con-
ditional Rcanl~/~ mice recapitulates the main features of human
IMH, a hypertension-associated disease that can either regress or

progress to dissection in the short term or progress to aneurysm
in the long term. We have uncovered a critical role for the RHO-
ROCK-MLC axis in IMH formation and an unexpected con-
tribution of GSK-3 P to this process. The mouse models devel-
oped here have great potential for research into the cellular and
molecular mechanisms involved in IMH. Moreover, the preven-
tion of aortic rupture and IMH formation upon blood pressure
control and ROCK inhibition suggest potential therapeutic
routes. Lithium has been used widely as a mood stabilizer since
the mid-20t" century?8. Lithium and other GSK-3 inhibitors have
also reached clinical trials for diabetes and several types of cancer
and neural diseases®®. One recent clinical study showed that
lithium decreases the risk of ischemic stroke in bipolar disorder
patients®®, Given that Gsk-3 B inhibition decreased MLC phos-
phorylation in our studies, it might be of interest to compare the
incidence of IMH, aortic dissection, and aneurysm in the general
population with that in a population of bipolar disorder patients
with long-term exposure to lithium.

Methods

Mouse strains. Myh11-CrePRT2 and Cdh5-CrePRT2 mice express tamoxifen-
inducible Cre specifically in SMCs and ECs, respectively, whereas Ubc-CrefRT2
mice express tamoxifen-inducible Cre in a wide range of cells’*. The Cre-reporter
transgenic lines Gt(ROSA)26Sor'm9(CAG-tdTomato)Hze (Rosq26-LSL-Tomato) and Gt
(ROSA)26Sor™1(EYFP)Cos (Rosa26-LSL-YFP) were obtained from the Jackson
Laboratory (JAX mice stock 007905 and 006148, respectively). Constitutive Rcanl
knockout mice (Rcanl~/~) were previously described®!. Targeting vectors for
conditional knockout of Reanl, Rcanl-1, and Rcanl-4 were engineered by flanking
Rcanl exon 1, exon 4, or exon 6 with LoxP sites and introducing a PGKgb2/neo
selection cassette flanked by Frt sites, as represented in Supplementary Fig. 1a. The
Rean11 alleles were generated after crossing Rcanl-1( + /loxfrt), Reanl-4

(+ /loxfrt), and Rcanl(+ /loxfrt) mice with transgenic mice expressing Flp
recombinase (JAX mice stock 003946). The Cdh5-CreERT2, Myh11-CreERT2, and
Ubc-CreERT2 gleles were always used in hemizygosity. Apoe '~ mice were obtained
from Charles River (JAX mice stock 002052). All mouse strains were backcrossed
with C57BL/6 ] mice for more than nine generations. All mice were genotyped by
PCR of tail samples using the primers indicated in Supplementary Table 2. For
Reanl-VA, Rean1-4"f, and Rcan ! mice, the common primer “Cassette Neo
common” was used before removal of the selection cassette. Cre recombination
after tamoxifen treatment (delta band) was validated using the “Delta” primers
indicated in Supplementary Table 2.

Southern blotting. Genomic DNA was obtained from mESC clones previously
electroporated with the transgene construction. Genomic digestion was performed
with the specific restriction enzymes Apal and BamHI. Digestion products were
separated on a 0.7% agarose gel, transferred to a nylon membrane, and crosslinked
with UV irradiation for 15 min. Membranes were incubated with previously
radiolabeled 32P-probes and washed with SSC buffers in decreasing concentrations.
Hybridization of the radiolabeled probe was detected with a STORM 840 radio-
graphy scanner (GE Healthcare).

Animal procedures. Animal procedures were approved by the CNIC Ethics
Committee and the Madrid regional authorities (Ref. PROEX 080/16) and con-
formed with EU Directive 2010/63EU and Recommendation 2007/526/EC
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regarding the protection of animals used for experimental and other scientific
purposes, enforced in Spanish law under Real Decreto 1201/2005. For conditional
gene deletion, mice received daily 1 mg i.p. injections of tamoxifen (Sigma Aldrich)
on 5 consecutive days. Control animals (Recan1™/*) were vehicle-treated littermates
or tamoxifen-treated Cre-negative littermates. Constitutive Rcanl '~ mice were
also treated with tamoxifen as a control measure. AnglI (dissolved in saline),
amlodipine (dissolved in 50% DMSO), and noerpinephrine (dissolved in saline
with 0.2% ascorbic acid), all from Sigma-Aldrich, were infused at 1 pgkg~! min—1,
6 mgkg~! day~!, and 34.5 mgkg~! day~!, respectively, using subcutaneous
osmotic minipumps (Alzet Corp). Fasudil (LC laboratories; 1 mg per ml), and a
combination of hydralazine (Sigma-Aldrich; 320 pg per ml) plus hydro-
chlorothiazide (Sigma-Aldrich; 60 ug per ml) were administered in drinking water.
For IMH and AAA experiments, aortas were dissected, perivascular tissue was
carefully removed, and images of the aortas were taken with a Nikon

SMZ800 scoop camera.

Blood pressure measurements. Arterial blood pressure (BP) was measured by the
mouse-tail cuff method using the automated BP-2000 Blood Pressure Analysis
System (Visitech Systems, Apex, NC, USA). In brief, mice were trained for BP
measurements every day for one week. After training, BP was measured one day
before treatment to determine the baseline BP values in each mouse cohort. Mea-
surements were repeated several times during experiments. BP measurements were
recorded in mice located in a tail-cuff restrainer over a warmed surface (37 °C).
Fifteen consecutive systolic and diastolic BP measurements were made, and the last
10 readings per mouse were recorded and averaged.

In vivo ultrasound imaging. Images of the aorta were taken in isoflurane-
anesthetized mice (2% isoflurane) by high-frequency ultrasound with a VEVO
2100 echography device (VisualSonics, Toronto, Canada) at 30-micron resolution.
Maximal internal aortic diameters were measured at diastole using VEVO

2100 software, version 1.5.0. All recordings were made by a cardiologist or tech-
nician blinded to animal genotype and treatment. Measurements were taken before
treatment initiation to determine the baseline diameters and were repeated several
times during the experiment.

In vivo permeability assays. Mice were immobilized in a bucket holder and a
mixture of 1 mg ml~! of each 10-kDa-rhodamine and 70 kDa-FITC labeled dex-
trans (Sigma-Aldrich) in saline were injected into the tail vein. Mice were eutha-
nized after 20 min and perfused with PBS and 4% paraformaldehyde in PBS.
Organs were collected and embedded in OCT for cryopreservation and sections
were inspected by confocal microscopy.

Cell procedures. To isolate and culture primary mouse vascular smooth muscle
cells (vSMC), aortas were dissected and the adventitia was removed with forceps!.
Tissue was digested with a solution of collagenase and elastase until a single-cell
suspension was obtained. All experiments were performed during passages 3-7.
vSMCs were infected over 5h at a multiplicity of infection = 3. The medium was
then replaced with fresh DMEM supplemented with 10% FBS, and cells were
cultured for 3 more days for Rcanl genomic recombination analysis. When indi-
cated, vSMC were treated for 1-2h with 10 uM GSK-3p inhibitor VIII (Calbio-
chem; #361549), 50 uM LiCl, or 30 uM Fasudil (LC Laboratories). The HEK-293T
(CRL-1573) and Jurkat (Clone E6-1, TIB-152) cell lines, required for high-titer
lentivirus production and lentivirus titration, respectively, were purchased from
ATCC. HEK293 is one of the cell lines listed in the database of commonly mis-
identified cell lines. However, the HEK-293T cell line used in this study was used
only after receipt from ATCC or after resucitation from early stocks at low passage
number. All cells were mycoplasma-negative.

For cell immunostaining, cells where fixed with 4% paraformaldehyde for 10
min and permeabilized with 0.3% Triton X-100 in PBS for 30 min. Samples were
incubated overnight with Cy3-conjugated monoclonal anti-SMA (1:500, C6198,
Sigma) and rabbit anti-p-MLC (1:50, #3671, Cell Signaling). Secondary antibody
was AlexaFluor647-conjugated goat anti-rabbit (1:500; A-21245; BD Pharmingen).
Images were acquired under a Leica SPE microscope with 40x or 63x oil immersion
objective lenses and Leica LAS-AF acquisition software.

vSMC were incubated with Mitotracker Green (Thermo Fisher M7514; 500 nM)
for 60 min in DMEM medium supplemented with 10% FBS. The total
mitochondrial content was quantified by flow cytometry analysis of these cells. To
determine the number of mitochondria per cell, confocal images stacks were
captured with a Zeiss LSM 700 confocal microscope using a 63x oil immersion
objective lens and ZEN acquisition software. The number of each object
(mitochondrion) was quantified using the Imaris volume and surface plugging,
which 3-D reconstructed mitochondria from from Z-stack images. Each
experiment was done 4 times and 12-16 cells per condition were quantified.

Lentivirus production and infection. The Cre coding sequence was obtained by
PCR amplification and cloned into the pHRSIN lentiviral vector®2. Pseudo-typed
lentiviruses were produced by transient calcium phosphate transfection of HEK-
293T cells and concentrated from culture supernatant by ultracentrifugation (2 h at
128,000xg; Ultraclear Tubes; SW28 rotor and Optima L-100 XP Ultracentrifuge;

Beckman). Viruses were suspended in cold sterile PBS and titrated by transduction
of Jurkat cells for 48 h. Transduction efficiency (GFP-expressing cells) and cell
death (propidium iodide staining) were quantified by flow cytometry.

Aortic histology. After sacrifice of mice by CO, inhalation, aortas were perfused
with saline, isolated, and fixed in 4% paraformaldehyde overnight at 4 °C. Paraffin
cross sections (5 um) from fixed aortas were stained with Masson’s trichrome
(Masson), Hematoxylin and Eosin (HE), or Elastic Verhoeff-Van Gieson (EVG) or
were used for immunofluorescence. Images were acquired under a Leica DM2500
microscope with 20x, 40x, or 63xHCX PL Fluotar objective lenses and Leica
Application Suite V3.5.0 acquisition software. IMH were considered as contained
hematomas featuring bleeding within the medial layer in the absence of intimal tear
or flap formation. The area of hemorrhage was quantified using Image] software,
splitting the channels and applying the same threshold in all samples to highlight
the blood accumulation. Hematomas were considered as individual events, and
when an animal had more than one hematoma, all of them where quantified and
included in the analysis when possible. For immunofluorescence, deparaffinized
sections were rehydrated, boiled to retrieve antigens (10 mM citrate buffer, pH6),
and blocked for 45 min with 10% goat serum plus 2% BSA in PBS. Samples were
incubated with the following antibodies for immunofluorescence: Cy3-conjugated
monoclonal anti-SMA (1:500, C6198, Sigma), rabbit anti-cd31 (1:50, ab28364,
Abcam), and rabbit anti-p-MLC (1:50, #3671, Cell Signaling). For permeability
assays, cryosections (8 um) were obtained, blocked with 10% goat serum plus 2%
BSA in PBS for 1 h, and then incubated with hamster anti-cd31 (1:200; MAB1398Z;
Millipore) and rabbit anti-p-MLC primary antibodies. Specificity was determined
by substituting the primary antibody with unrelated IgG (diluted as antigen-
specific antibodies; sc-2025, Santa Cruz). For immunofluorescence, secondary
antibodies were AlexaFluor647-conjugated goat anti-hamster (1:500, 127-605-160,
Jackson Inmuno Reasearch) and AlexaFluor647-conjugated goat anti-rabbit (1:500;
A-21245, BD Pharmingen). Sections were mounted with DAPI in Citifluor AF4
mounting medium (Aname). For Apoptosis staining, aortas were analyzed with the
ApopTag TdT enzyme kit (S7165, Millipore). Images were acquired with a Nikon
A1R confocal microscope fitted with a 20x air objective or a 40x or 63x oil
immersion objective and using Nikon NIS-Elements software (1024 x 1024 pixels,
8bits) or with a Zeiss LSM 700 confocal microscope fitted with a 20x air objective
or a 40x or 63x oil immersion objective and using Zeiss ZEN software (2448 x 2448
pixels, 8 bits).

Aortic whole-mount immunostaining. Aortas from euthanized mice were isolated
after perfusion with saline followed by 4% paraformaldehyde. Aortas were then
longitudinally cut and pinned to a gelatin-coated plate and fixed in 4% paraf-
ormaldehyde overnight at 4 °C. The tissue was permeabilized and blocked with
0.3% Triton X-100, 10% goat serum, 5% BSA, and FcBlock (1:100; Rat Anti-Mouse
CD16/CD32; BD Bioscience) in PBS for 1 h. Aortas were incubated overnight at
room temperature hamster anti-cd31 (1:200; MAB1398Z; Millipore) in blocking
buffer. After abundant washes with PBS, samples were incubated overnight with
AlexaFluor647-conjugated goat anti-hamster secondary antibody (1:500, 127-605-
160, Jackson Inmuno Reasearch) and DAPI (1:10,000). Aortas were mounted in
Citifluor AF4 mounting medium (Aname). Images were acquired with a Nikon
A1R confocal microscope fitted with a 20x air objective or a 40x oil immersion
objective and using Nikon NIS-Elements software (1024 x 1024 pixels, 8bits).

Transmission electron microscopy. Male mice were euthanized and transcar-
dially perfused with saline followed by fixation solution (50 ml 4% PFA in PBS).
Dissected aortas were additionally fixed in 3% glutaraldehyde for 24hs and
embedded in resin (Durcupan ACM Fluka, Sigma-Aldrich) for transverse sec-
tioning. Ultrathin sections were cut and counterstained at the Electron Microscopy
facility (SIdI service) at the Universidad Auténoma de Madrid. Sections were
imaged with a transmission electron microscope (Jeol Jem 1010, 80 kV, Jeol Ltd.
Tokyo, Japan) and recorded with a Gatan camera (Orius, SC200W, Pleasenton,
California) at the indicated magnifications.

Immunoprecipitation and mass spectrometry. For immunoprecipitation, protein
lysates from mouse brains (5 mg) or from cultured vSMCs (1 mg) were prepared in
lysis buffer (50 mM HEPES pH 7.9, 150 mM NaCl, 1% NP-40, 5% glycerol, 1%
benzonase, 1 mM MgCI2), precleared with 50 ul of underivatized agarose beads
(Co-IP, Pierce) for 1h at 4 °C, and then incubated overnight with 20 ul sepharose
beads conjugated to anti-Rcanl antibody (Sigma) using the Pierce Co-IP kit
(ThermoFisher). Beads were washed three times in lysis buffer and two times with
lysis buffer without detergent. Immunoprecipitation efficiency was analyzed by
immunoblot with anti-Rcanl antibody. Immune complexes from brain lysates were
trypsin digested followed by nanoliquid chromatography coupled to mass spec-
trometry for protein identification and quantification by spectral counting®.
Peptide were identified from MS/MS data by the probability ratio method®*. False
discovery rates (FDR) of peptide identifications were calculated using the refined
method®6; 1%FDR was used as the criterion for peptide identification. Raw mass
spectrometer output data are available at PeptideAtlas [http://www.peptideatlas.
org/PASS/PASS01228]. Aortic protein lysates and immunoprecipitated complexes
were also analyzed by immunobloting with anti-GSK3p antibody.
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Immunoblotting. To prepare aortic protein lysates, mouse aortic samples were
isolated, frozen in liquid nitrogen, and then homogenized using a mortar and an
automatic bead homogenizer (MagNA lyzer, Roche). Protein extracts were
obtained in ice-cold RIPA buffer (50 mM NaCl, 50 mM Tris HCI pH8, 1% NP40,
0.1% SDS, 0.5% sodium deoxycholate) supplemented with protease, phosphatase,
and kinase inhibitors. Cultured cells were washed with ice-cold PBS and lysed in
RIPA buffer.

Immunoprecipitated proteins and protein lysates were separated under
reducing conditions on SDS-polyacrylamide gels and transferred to nitrocellulose
membranes. Proteins were detected with the following primary antibodies: rabbit
anti-Rcanl (1:1000; D6694, Sigma), anti-p-MLC (1:1000; #3671, Cell Signaling),
mouse monoclonal anti-B-catenin (1:1000; 610153, BD Biosciences), mouse
monoclonal anti-GSK3p (1:1000; 610202, BD Biosciences), mouse monoclonal
anti-alpha tubulin (1:40,000; T 6074 Sigma-Aldrich), and anti-GAPDH (1:5000;
ab8245 Abcam). HRP-conjugated secondary antibodies were detected with
enhanced chemiluminescence (ECL) detection reagent (Millipore).

RT and quantitative PCR. Aortas were extracted after perfusion with 5ml saline
solution, and the adventitia layer was discarded. Frozen tissue was homogenized
using a mortar and an automatic bead homogenizer (MagNA Lyzer). Total RNA
was isolated with TRIZOL (Life Technologies). Total RNA (2 pg) was reverse
transcribed at 37 °C for 50 min in a 20 pl reaction mix containing 200U Moloney
murine leukemia virus (MMLYV) reverse transcriptase (Life Technologies), 100 ng
random primers, and 40U RNase Inhibitor (Life Technologies). Real-time quan-
titative RT-PCR was performed with the RT-PCR primers indicated in Supple-
mentary Table 2.

RT-qPCR reactions were performed in triplicate with SYBR-master mix
(Applied Biosystems). Probe specificity was checked by post-amplification melting-
curve analysis; for each reaction, only one Tm peak was produced. The amount of
target mRNA in samples was estimated by the 2~ACT relative quantification
method, using Gapdh or Hprt for normalization. Fold ratios were calculated
relative to control animals.

Statistical analysis. GraphPad Prism software 7.0 was used for the analysis. Data
normality and homoscedasticity were assessed by Shapiro-Wilk and Bartlett’s tests,
respectively. Appropriate tests were chosen according to the data distribution. For
survival curves, differences were analyzed with the Log-rank (Mantel-Cox) test.
Incidence of IMH or AAA (presence of at least one event per animal) was
represented as percentage of affected animals. Statistics were analyzed by the Chi-
square test for trend. The aortic diameter data are presented as box and whiskers
plots; bars represent maximal and minimal values. Blood pressure, fluorescence
intensity, and RT-PCR data were compared to the values in wt mice or to baseline
measurements, as appropriate. Gaussian data were analyzed by one-way or two-
way ANOVA and the Bonferroni post-hoc test or Tukey post-hoc test (experiments
with > 3 groups), as appropriate. Non-gaussian data were compared with Kruskal-
Wallis with Dunn’s multiple comparison post-hoc test. Statistical significance was
assigned at *p <0.05, **p < 0.01, ***p <0.001, and ****p < 0.0001.

The numbers of animals used are indicated in the corresponding figure legends.
Sample size was chosen empirically according to our experience in the calculation
of experimental variability; no statistical method was used to predetermine sample
size, and no data were excluded. All experiments were carried out with at least
three biological replicates. Experimental groups were balanced in terms of animal
age, and weight. Only male mice were used because the Myh1I-CreERT2 transgene
was inserted in the Y chromosome (https://www.jax.org/strain/019079). No
randomization was used to allocate animals to experimental groups and
investigators were not blinded to group allocation during experiments or to
outcome assessments. Animals were genotyped before experiments, caged together
(regardless of their genotype), and treated in the same way.

Data availability

Proteomics data are available at PeptideAtlas under the accession code PASS01228.
Other datasets generated and/or analyzed during the current study are available
form the corresponding authors on reasonable request.
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