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Abstract: With a death toll of over one million worldwide, the COVID-19 pandemic caused by
SARS-CoV-2 has become the most devastating humanitarian catastrophe in recent decades. The fear of
acquiring infection and spreading to vulnerable people has severely impacted society’s socio-economic
status. To put an end to this growing number of infections and deaths as well as to switch from
restricted to everyday living, an effective vaccine is desperately needed. As a result, enormous efforts
have been made globally to develop numerous vaccine candidates in a matter of months. Currently,
over 30 vaccine candidates are under assessment in clinical trials, with several undergoing preclinical
studies. Here, we reviewed the major vaccine candidates based on the specific vaccine platform
utilized to develop them. We also discussed the immune responses generated by these candidates in
humans and preclinical models to determine vaccine safety, immunogenicity, and efficacy. Finally,
immune responses induced in recovered COVID-19 patients and their possible vaccine development
implications were also briefly reviewed.

Keywords: COVID-19; SARS-CoV-2; vaccine development; vaccine platforms; vaccine response;
neutralizing antibodies; T-cell responses; convalescent patients

1. Introduction

Coronavirus disease 2019 (COVID-19) pandemic has resulted in nearly 50 million infections,
claiming more than one million human lives globally (https://coronavirus.jhu.edu). COVID-19 is caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a beta-coronavirus that emerged
from bats and then transferred to humans through intermediate hosts [1–3]. SARS-CoV-2 transmits
from human to human via respiratory droplets leading to a respiratory tract infection that can progress
to severe pneumonia, multiple organ involvement, and fatal outcomes [4–6]. The SARS-CoV-2 infection
can be asymptomatic or symptomatic with mild to life-threatening symptoms [6–10]. Irrespective of
the severity of symptoms, an infected individual is very likely to spread the infection and especially
pose a greater risk to the vulnerable population [11–13].

A vaccine is urgently needed to control the current exploding global pandemic of COVID-19 and
prevent recurrent epidemics. COVID-19 combined with the seasonal Flu epidemic is expected to further
aggravate the situation in terms of diagnosis, co-infections and severity of the disease. An effective
vaccine would put a check on the ongoing health or medical crisis and improve the socio-economic
status of the society that has severely been impacted due to COVID-19 pandemic [14,15]. Additionally,
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a return to normalcy with no social distancing or masks can be achieved once all are vaccinated and
immune to COVID-19. Hence, eradicating SARS-CoV-2 is very much needed through an effective
vaccine, especially in the absence of specific licensed drugs to treat COVID-19.

Since SARS-CoV-2 is closely related to severe acute respiratory syndrome (SARS), Middle East
respiratory syndrome (MERS), and other coronaviruses, vaccine design greatly relies on the existing
preventive strategies that have been tested for these viruses at the preclinical or clinical level [16–19].
While virus-neutralizing antibody responses will always be the hallmark for all anti-viral vaccines,
some vaccines have also shown the potential to induce protective T-cell responses [16,20–23]. It is
currently not entirely known as to what exactly will prove to be a correlate of protection against this
novel coronavirus.

SARS-CoV-2 is an enveloped single-stranded RNA virus. The viral envelope is embedded with
spike (S) glycoprotein, the matrix (M) protein, and envelope (E) protein. Encased into this envelope is
a positive-sense single-stranded RNA as a viral genome bound to helical nucleocapsid (N) protein
(Figure 1) [24,25]. The viral spike protein that mediates entry into the host cell has been identified as
one of the preferred vaccine targets. SARS-CoV-2 targets the ACE2 receptor on the host cell via its
spike Protein (S), composed of S1 and S2 subunits [24,26]. The S1 subunit contains the receptor-binding
domain (RBD) that interacts with the ACE2 receptor, thereby inducing a series of conformational
changes facilitating membrane fusion and entry [26]. Due to the critical role played by the spike protein
in mediating viral attachment and entry, nearly all SARS-CoV-2 vaccines currently in development are
predominantly focused on eliciting protective immune responses targeting the viral spike [21,23,25–30].
Although the spike protein is the major component of most vaccines, the technical platform determines
how different platforms can modulate the immune responses. Therefore, safety, immunogenicity,
and efficacy will majorly depend on the vaccine approach or delivery platforms. In general, vaccine
platforms are broadly categorized into six types: live attenuated viral vaccine, inactivated virus vaccine,
recombinant viral-vectored vaccines, protein subunit vaccines, virus-like particles (VLPs), and nucleic
acid-based (DNA or mRNA) vaccines (https://www.vaccines.gov/basics/types). The relative progress
of the vaccine candidates towards different stages of clinical development is shown in Figure 2.

Here, we will discuss the predicted and observed immune responses for major vaccine candidates
depicting each platform that are currently in preclinical or clinical phases of development to prevent
the SARS-CoV-2 infection. Furthermore, we discussed the immune responses elicited in recovered
COVID-19 patients that can provide useful vaccine design insights.
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Figure 1. Structural features of SARS-CoV-2. Spike (S) glycoprotein, the membrane (M) protein,
and envelope (E) protein are embedded in the viral envelope. The RNA genome is complexed with
the nucleocapsid (N) protein. Virus spike trimer is enlarged to depict its key subunits (S1 and S2)
and N-terminal domains (NTD) and C-terminal domains (CTD) in the S1 subunit encompassing
receptor-binding domain (RBD). S protein targets the host cell receptor, ACE2, through RBD in S1
subunit (Created with Biorender.com).

https://www.vaccines.gov/basics/types
Biorender.com


Vaccines 2020, 8, 649 3 of 16Vaccines 2020, 8, x FOR PEER REVIEW 3 of 16 

 

 
Figure 2. Graphical representation of the vaccine candidates with respect to their clinical stages of 
development. The number of candidates on the x axis are compared for each of the major vaccine 
platforms shown on the y axis. The clinical stage for the vaccine candidates in each platform is 
depicted by color-coded legends on the right of the graph. The graph is constructed based on the data 
obtained from the World Health Organization; draft landscape of COVID-19 candidate vaccines and 
Coronavirus Vaccine tracker. VLPs-virus-like particles, RNA-ribonucleic acid, DNA-
deoxyribonucleic acid. 

Here, we will discuss the predicted and observed immune responses for major vaccine 
candidates depicting each platform that are currently in preclinical or clinical phases of development 
to prevent the SARS-CoV-2 infection. Furthermore, we discussed the immune responses elicited in 
recovered COVID-19 patients that can provide useful vaccine design insights. 

2. Major COVID-19 Vaccine Candidates and Their Responses 

Vaccine safety and efficacy vary for a protein/DNA/RNA vaccine or with the type of 
adjuvant/vector used in the vaccine formulation, and even with the route of administration. Similarly, 
whether the SARS-CoV-2 spike is made to express endogenously in the vaccines as part of the nucleic 
acid (DNA/mRNA) vaccine approach or administered as a recombinant protein antigen for 
immunization can induce considerable variations in vaccine responses that can subsequently 
influence the vaccine efficacy. Different types of vaccine platforms currently in trials for COVID-19 
are shown in Figure 3. While the vaccine efficacy is majorly assessed through adaptive immunity 
components, such as the induction of robust virus-neutralizing antibody responses, the innate arm 
of the immune defense plays a critical role in resulting in effective adaptive responses [31,32]. The 
adjuvants present in the vaccine formulation primarily activate innate responses and enhance the 
adaptive immune responses governing the effectiveness of the vaccine [33]. Mechanistically, 
adjuvants act as ligands for TLRs (Toll-like receptors) or PRRs (pattern recognition receptors), and 
the specific interaction of each adjuvant with the respective receptors determines the outcome of 
response [33]. A well-known adjuvant, alum, for instance, is known to activate Nalp3 inflammasome 
and activate Th2 T-cell response [34,35]. The adjuvant effect can also be seen for some vaccines that 
lack any added adjuvants. Killed or inactivated vaccines, live-attenuated vaccines, and viral-vectored 
vaccines contain their own PAMPs (pathogen associated molecular patterns) that can serve as built-
in adjuvants [36]. Discussed below are the major COVID-19 vaccine candidates under different 
vaccine technology platforms with their composition, respective responses, and development stage, 
along with the information summarized in Table 1. 

Figure 2. Graphical representation of the vaccine candidates with respect to their clinical stages of
development. The number of candidates on the x axis are compared for each of the major vaccine
platforms shown on the y axis. The clinical stage for the vaccine candidates in each platform is depicted
by color-coded legends on the right of the graph. The graph is constructed based on the data obtained
from the World Health Organization; draft landscape of COVID-19 candidate vaccines and Coronavirus
Vaccine tracker. VLPs-virus-like particles, RNA-ribonucleic acid, DNA-deoxyribonucleic acid.

2. Major COVID-19 Vaccine Candidates and Their Responses

Vaccine safety and efficacy vary for a protein/DNA/RNA vaccine or with the type of adjuvant/vector
used in the vaccine formulation, and even with the route of administration. Similarly, whether the
SARS-CoV-2 spike is made to express endogenously in the vaccines as part of the nucleic acid
(DNA/mRNA) vaccine approach or administered as a recombinant protein antigen for immunization
can induce considerable variations in vaccine responses that can subsequently influence the vaccine
efficacy. Different types of vaccine platforms currently in trials for COVID-19 are shown in Figure 3.
While the vaccine efficacy is majorly assessed through adaptive immunity components, such as the
induction of robust virus-neutralizing antibody responses, the innate arm of the immune defense
plays a critical role in resulting in effective adaptive responses [31,32]. The adjuvants present in the
vaccine formulation primarily activate innate responses and enhance the adaptive immune responses
governing the effectiveness of the vaccine [33]. Mechanistically, adjuvants act as ligands for TLRs
(Toll-like receptors) or PRRs (pattern recognition receptors), and the specific interaction of each adjuvant
with the respective receptors determines the outcome of response [33]. A well-known adjuvant, alum,
for instance, is known to activate Nalp3 inflammasome and activate Th2 T-cell response [34,35].
The adjuvant effect can also be seen for some vaccines that lack any added adjuvants. Killed or
inactivated vaccines, live-attenuated vaccines, and viral-vectored vaccines contain their own PAMPs
(pathogen associated molecular patterns) that can serve as built-in adjuvants [36]. Discussed below
are the major COVID-19 vaccine candidates under different vaccine technology platforms with their
composition, respective responses, and development stage, along with the information summarized
in Table 1.
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Figure 3. Different vaccine platforms for the COVID-19 vaccine. Left; viral and non-viral vaccine
delivery platforms are shown. Right; antigen induced activation of antigen-presenting cells (APCs);
a nexus of innate and adaptive immune arms activating T-cell and B-cell immunity by fundamental
immunological pathways are represented to show how vaccine-elicited immune responses lead to the
clearance of infection. (Created with Biorender.com).

Table 1. Various types of vaccines, their composition, developer, and stage of development.

Types of
Vaccines Name of Vaccine/Developer Composition Stage of

Development

Inactivated
Virus

Sinovac

Inactivated Virus

Phase 3

Wuhan Institute of Biological
Products/Sinopharm Phase 3

Beijing Institute of Biological
Products/Sinopharm Phase 3

Institute of Medical Biology, Chinese
Academy of Medical Sciences Phase 1/2

Research Institute for Biological Safety
Problems, Rep. of Kazakhstan Phase 1/2

Beijing Minhai Biotechnology Co., Ltd. Phase 1

Bharat Biotech Phase 1/2

Viral vectored

University of Oxford/AstraZeneca ChAdOx1-S Phase 3

CanSino Biological Inc./Beijing Institute of
Biotechnology Adenovirus Type 5 Vector Phase 3

Gamaleya Research Institute Adeno-based
(rAd26-S + rAd5-S) Phase 3

Janssen Pharmaceutical Companies Ad26COVS1 Phase 3

ReiThera/LEUKOCARE/Univercells Replication defective Simian
Adenovirus (GRAd) encoding S Phase 1

Biorender.com
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Table 1. Cont.

Types of
Vaccines Name of Vaccine/Developer Composition Stage of

Development

Viral vectored

Institute of Biotechnology, Academy of
Military Medical Sciences, PLA of China Ad5-nCoV Phase 1

Vaxart Ad5 adjuvanted Oral Vaccine
platform Phase 1

Ludwig-Maximilians— University of
Munich MVA-SARS-2-S Phase 1

Institute Pasteur/Themis/Univ. of Pittsburg
Center for Vaccine Research (CVR)/Merck

Sharp & Dohme
Measles-vector based Phase 1

Beijing Wantai Biological Pharmacy/
Xiamen University Intranasal flu-based-RBD Phase 1

RNA

Moderna/NIAID LNP-encapsulated mRNA Phase 3

BioNTech/Fosun Pharma/Pfizer 3 LNP-mRNAs Phase 3

Curevac mRNA Phase 2

Arcturus/Duke-NUS mRNA Phase 1/2

Imperial College London LNP-nCoVsaRNA Phase 1

People’s Liberation Army (PLA) Academy
of Military Sciences/Walvax Biotech. mRNA Phase 1

DNA

Inovio Pharmaceuticals/International
Vaccine Institute

DNA plasmid vaccine with
electroporation Phase 1/2

Osaka University/AnGes/Takara Bio DNA plasmid vaccine +
Adjuvant Phase 1/2

Cadila Healthcare Limited DNA plasmid vaccine Phase 1/2

Genexine Consortium DNA Vaccine (GX-19) Phase 1/2

Protein Subunit

Novavax

Full length recombinant SARS
CoV-2 glycoprotein nanoparticle

vaccine adjuvanted with
Matrix M

Phase 3

Anhui Zhifei Longcom
Biopharmaceutical/Institute of

Microbiology, Chinese Academy of Sciences

Adjuvanted recombinant
protein (RBD-Dimer) Phase 2

Kentucky Bioprocessing, Inc RBD-based Phase 1/2

Sanofi Pasteur/GSK S protein (baculovirus
production) Phase 1/2

Clover Biopharmaceuticals
Inc./GSK/Dynavax

Native-like Trimeric subunit
Spike Protein vaccine Phase 1

Vaxine Pty Ltd./Medytox Recombinant spike protein with
Advax™ adjuvant Phase 1

University of Queensland/CSL/Seqirus
Molecular clamp stabilized

Spike protein with MF59
adjuvant

Phase 1

Medigen Vaccine Biologics
Corporation/NIAID/Dynavax S-2P protein + CpG 1018 Phase 1

Instituto Finlay de Vacunas, Cuba RBD + Adjuvant Phase 1

FBRI SRC VB VECTOR, Rospotrebnadzor,
Koltsovo Peptide Phase 1

West China Hospital, Sichuan RBD (baculovirus production
expressed in Sf9 cells) Phase 1

University Hospital Tuebingen SARS-CoV-2 HLA-DR peptides Phase 1

COVAXX S1-RBD-protein Phase 1

VLP
SpyBiotech/Serum Institute of India RBD-HBsAg VLPs Phase 1/2

Medicago Inc. Plant-derived VLP adjuvanted
with GSK or Dynavax adjs. Phase 1
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2.1. Inactivated/Live Attenuated Virus Vaccine

Vaccine development using the weakened or inactivated virus has been a traditional approach for
decades, including measles and the first iteration of the Salk and Sabin polio vaccines [37,38]. A live
attenuated virus vaccine is weakened either by serial passaging in animal/human cells or by altering
the viral genetic code to dampen the virus [39,40]. A virus can also be inactivated using chemicals such
as formaldehyde and heat [41,42]. Codagenix (New York) partnered with Serum Institute of India,
and Indian immunologicals Ltd. and Griffith University, and Mehmet Ali Aydinlar University have
generated a genetically altered weakened form of SARS-CoV-2 as a live attenuated vaccine, currently
under preclinical evaluation (draft landscape of COVID-19 candidate vaccines). Live virus vaccines
are usually highly immunogenic; therefore, one dose is often enough to produce a substantial immune
response; however, there is always a high risk of the reversion of attenuated strain to a pathogenic one.

Sinovac Biotech in Beijing, China, has been testing an inactivated form of SARS-CoV-2 in preclinical
studies [43]. Sinovac’s SARS-CoV-2 virus vaccine candidate (PiCoVacc) has been produced in Vero cells
and inactivated using β-propiolactone. This vaccine was tested in mice, rats, and non-human primates
(NHPs) in two doses (3 and 6 µg). PiCoVacc reportedly induced antibodies in these preclinical animal
models capable of neutralizing 10 representative strains of SARS-CoV-2. Furthermore, partial-to-complete
protection was observed in macaques after three immunizations with PiCoVacc against the SARS-CoV-2
challenge [43]. Notably, the histopathological assessment showed no pathological changes in vaccinated
macaques’ vital organs [43]. Furthermore, in contrast to a live virus, the inactivated virus vaccine did
not result in a percent change in lymphocytes (CD3+, CD4+, or CD8+) or a cytokine storm that is a
leading cause of death in SARS-CoV-2 infected individuals [5,6,8,43]. Another inactivated vaccine
candidate, BBIBP-CorV, developed by Sinopharm, China, was also assessed for efficacy in multiple
animal models, including NHPs [44]. This vaccine elicited robust neutralizing antibody titers even
with the lowest dose (2 µg) tested. Additionally, BBIBP-CorV was able to confer protection in macaques
without any antibody-dependent enhancement [45]. Both Sinovac (NCT04582344) and Sinopharm
(NCT04560881) vaccine candidates are currently under Phase 3 study. Although it is encouraging
that these inactivated vaccines could elicit desirable humoral responses in preclinical models (draft
landscape of COVID-19 candidate vaccines), the complete inactivation of the virus would be critical
for the safety of the vaccines in humans.

2.2. Viral Vectored Vaccine

Recombinant viral vectored vaccines are among the most common candidates leading in the race of
SARS-CoV-2 vaccines, with four of them in the clinical phase and several in the preclinical development
stages. Adenovirus type-5 (Ad5), Ad26, and vesicular stomatitis virus (VSV) are commonly used
viral vectors for this vaccine platform. Developed by CanSino Biologics, China, a recombinant Ad5
vectored COVID-19 vaccine expressing the spike glycoprotein of a SARS-CoV-2 has been assessed
recently in Phase 1 non-randomized study for safety and immunogenicity (NCT04568811). A total
of 108 healthy participants were enrolled in Wuhan, China, in the age group of 18–60 years for this
trial [21]. Due to adenovirus-based vaccines’ undesirable immunogenicity risks, the vaccine was tested
in low, medium and high doses. All vaccine recipients had induced anti-RBD antibodies irrespective of
the dose after 14 days, that peaked 28 days post-vaccination. Though not examined, antibodies against
epitopes on the spike other than RBD are also expected to be induced through this vaccine approach.
These responses would also govern the extent of the vaccine’s success in the subsequent phases of the
clinical trials. Additionally, the Ad5-vectored vaccine generated antibodies also demonstrated in vitro
neutralization of the SARS-CoV-2 virus [21].

Additionally, T-cell responses in the form of the release of IFNγ, TNFα, and IL-2 were detected
from CD4+ and CD8+ T cells that peaked at day 14 post-vaccination in all dose groups [21]. However,
both humoral and cell-mediated responses were significantly higher in the high dose group compared
to the middle and low dose groups. Notably, antigen-specific antibodies and T-cell responses were
partially reduced in the recipients with pre-existing immunity against adenovirus [21]. Most of the



Vaccines 2020, 8, 649 7 of 16

participants also suffered from mild to moderate adverse reactions, such as pain at the injection site,
fever, fatigue, headache, and muscle pain post-vaccination. However, no severe adverse reactions were
reported at least until 28 days post-vaccination [21]. Since the responses were observed only for 28 days,
a follow-up study would be required to evaluate the immune response’s durability. Ad26-vectored
COVID-19 vaccine is another candidate developed by Johnson & Johnson that demonstrated protection
in NHPs with the advantage of being less immunogenic than Ad5 [46]. ChAdOx1-nCoV-19 vaccine
vectored with chimpanzee adenovirus has also been developed by the University of Oxford and
AstraZeneca [47,48]. The same platform was employed for MERS and tuberculosis (TB) with promising
results in human clinical trials [17,49]. Unlike Ad5/Ad26 vectors, ChAdOx1 has far less pre-existing
immunity in humans, which is a critical determinant of this platform’s efficacy. ChAdOx1-nCoV-19,
indeed, has shown a robust induction of neutralizing antibody and T-cell responses, in conjunction
with a reduction in viral titers in rhesus macaques. Importantly, the Phase 1/2 study has shown
ChAdOx1-nCoV-19 to be safe and also effective in producing cellular and humoral responses [17,48,50].
Ad5-vectored (NCT04540419), Ad26-vectored (NCT04505722) and ChAdOx1-nCoV-19 (NCT04540393)
vaccine are all currently in Phase 3 clinical trials. Other vaccines based on VSV and modified vaccinia
virus Ankara (MVA) viral vectors have also shown promising results in preclinical animal models
(draft landscape of COVID-19 candidate vaccines).

2.3. mRNA Vaccine

Like the DNA vaccine, no mRNA vaccine has been approved for human use. However, preclinical
studies conducted for mRNA-based influenza and zika virus vaccine have demonstrated the induction
of protective responses [51,52]. An mRNA vaccine, mRNA-1273 for SARS-CoV-2 encoding a prefusion
stabilized form of its Spike (S) protein, has been co-developed by researchers at the National Institute
of Allergy and Infectious Diseases (NIAID) and at Moderna (Cambridge, MA) [28,53]. This is the first
mRNA vaccine to go into clinical trials for the safety and immunogenicity assessment. The mRNA
vaccine concept is supported by the principle that SARS-CoV-2 itself is a (+) ss-RNA virus. In order
to block initial virus interactions and spike mediated viral entry into the host cell, spike-specific
mRNA was utilized as a vaccine target and delivered by encapsulating into lipid nanoparticles (LNPs).
As a general principle, the mRNA vaccine upon delivery is expected to enter cells and translate or
encode the target protein in the cell cytoplasm [53]. After translation, this foreign protein is released
from the cells and encountered by APCs, and results in processing and major histocompatibility
complex I (MHC I) subsequent MHC II-based presentation of the target protein. This cascade of
events leads to the engagement and activation of B-cells and T-cells to orchestrate both humoral
and cell-mediated antigen-specific responses. While MHC I presentation causes the activation of
antigen-specific CD8+ T cells, MHC II presentation facilitates CD4+ T cell and B-cell activation followed
by mounting of an antibody response [53–55].

Additionally, macrophages’ uptake of secreted target antigen results in the secretion of
pro-inflammatory cytokines and chemokines, activating the innate arm of immune defense [53].
Results from the Phase 1 study for this novel vaccine unveiled that mRNA-based vaccines can safely
induce binding and virus-neutralizing antibodies against the spike protein in all the vaccine recipients
after two doses. Th1-based CD4+ T-cell responses, and to a lesser extent, CD8+ T-cell responses, were also
observed in vaccine recipients. No severe side effects of the vaccine were reported [28]. Though efficacy
evaluation and correlates of protection are not currently known, preclinical studies performed
to evaluate mRNA-1273 vaccine responses in mice demonstrated the induction of neutralizing
responses post-vaccination and even protection after challenge with SARS-CoV-2 [56]. The safety and
immunogenicity data have recently been published for the phase 1 trial of mRNA-1273 in both young
and older adults, assessing a dose range from 25 to 100 µg (NCT04405076). A large phase 3 efficacy trial
(NCT04470427) evaluating a 100 µg dose has already begun to further assess the mRNA-1273 vaccine in
approximately 30,000 adult volunteers [28,56]. Alternatively, Pfizer and BioNTech vaccine candidates
based on mRNA encoding SARS-CoV-2 RBD complexed with lipid nanoparticles are also under
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Phase 3 study (NCT04368728). Other mRNA candidates developed by CureVac (NCT04515147) and
Arcturus/Duke-NUS (National University of Singapore) (NCT04480957) are also rapidly progressing
through Phase 2 trials for assessment.

2.4. DNA Vaccine

Although there are no approved licensed DNA vaccines for humans, many DNA vaccine
candidates are in preclinical and even clinical trials [57,58]. Once expressed, the protective protein
antigen can be processed endogenously and presented by an antigen-presenting cell (APC) complexed
with MHC. DNA delivered via different viral and non-viral vaccine platforms enter the cell via
endocytosis and trigger an innate immune response through innate immune-system receptors, such as
Toll-Like Receptor 9 (TLR9) present in endosomes [59,60]. MERS-CoV vaccine (INO-4700) and zika
vaccine candidate (GLS-5700) are the DNA vaccines that are currently in clinical testing [19,61,62].
In recipients of INO-4700, durable neutralizing antibodies (nAbs) and T cell immune responses were
observed with a seroconversion rate of 96% [61]. SARS-CoV-2 spike protein-coding DNA vaccine,
INO-4800, has recently been developed and evaluated for immunogenicity in mice and guinea pigs.
In this preclinical testing, INO-4800 induced immunoglobulin G (IgG) responses against spike protein
just after a single dose. Additionally, virus-neutralizing antibodies were observed in these immunized
animals with a demonstrated potential to compete with ACE2 binding to the SARS-CoV-2 Spike
protein [63]. INO-4800 (NCT04336410), along with three other DNA vaccines, are currently under Phase
1/2 study with several in the preclinical studies (draft landscape of COVID-19 candidate vaccines).

By virtue of highly flexible and cost-effective features of the DNA vaccine platform, a series of
prototypic DNA vaccine candidates based on differing lengths of the SARS-CoV-2 spike encoding gene
have also been evaluated for immunogenicity and efficacy in rhesus macaques via the intramuscular
route without an adjuvant [23]. These candidates included six variants of the SARS-CoV-2 S protein
based on the site of truncation; full-length (S), cytoplasmic tail deletion mutant (S.dCT), transmembrane
domain and cytoplasmic tail deletion mutant (S.dTM), S1 subunit (S1), receptor-binding domain (RBD),
and a prefusion stabilized ectodomain with two proline mutations (S.dTM.PP). Spike-specific binding
and virus-neutralizing antibody responses exhibiting various subclasses and effector functions were
observed after boost immunization. Higher antibody-dependent complement deposition (ADCD)
responses were also observed in the S and S.dCT groups, whereas higher natural killer (NK) cell
activation was observed in the RBD and S.dTM.PP groups. Cellular immune responses targeted
to a pool of S peptides were also detected in the majority of the vaccinated macaques shown by
IFN-γ enzyme-linked immune absorbent spot (ELISPOT) assays after the booster dose. Intracellular
cytokine staining assays showed an induction of S-specific IFN-γ+ CD4+ and CD8+ T cell responses,
with relatively reduced responses observed in the shorter S1 and RBD immunogen groups. Moderate
S-specific IL-4+ CD4+ and CD8+ T cell responses were observed, indicating a bias towards Th1 over
Th2 cellular immune responses. The vaccinated animals challenged with SARS-CoV-2 showed a
significant reduction of viral RNA, demonstrating the protective efficacy. However, a minimal level
of protection was seen in the S.dTM group highlighting the importance of prefusion ectodomain
stabilization for an effective vaccine [23]. More optimal protection was collectively achieved with the
full-length S immunogen than soluble S immunogens and smaller fragments.

While the DNA vaccine platform might have the potential to generate protective responses,
the risk of random insertion mutagenesis resulting from integration in the host genome, anti-DNA
antibody generation, and auto-immune diseases will remain [64].

2.5. Recombinant Protein-Based Vaccine

Protein components of the targeted pathogen that can stimulate protective responses are considered
useful for the subunit vaccines [65,66]. Typically, subunit vaccines constitute surface or structural proteins.
For viral vaccine candidates, the spike protein required for virus attachment and entry into the host
cell is often targeted with a rationale to elicit responses that can block viral entry [67–69]. SARS-CoV-2
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spike (S) protein is composed of the S1 subunit that encompasses- N-Terminal Domain (NTD), RBD,
and C-Terminal Domain (CTD), and S2 subunit that contains fusion peptide, the transmembrane
domain, and the cytoplasmic tail [24,70]. Spike protein S assembles as a homotrimer and is heavily
glycosylated [24,70]. Variants of SARS-CoV-2 spike antigens have been analyzed in a preclinical study
in rabbits by Ravichandran et al. [71]. In this study, rabbits were immunized with spike-ectodomain
(S1 + S2), S1 domain, receptor-binding domain (RBD), and S2 domain. They observed that all but the S2
group could induce strong nAb responses. Higher titers of high-affinity nAbs were observed in the RBD
immunized group, supporting it as a promising vaccine candidate [71]. Similar RBD-induced potent
responses were also observed in the preclinical studies of SARS, MERS, and other coronaviruses [72,73].
Both full-length S-trimer and RBD-based vaccine candidates such as that developed by Novavax
(2020-004123-16) has entered Phase 3 study, followed by candidates developed by Sanofi Pasteur
(NCT04537208), Clover Biopharmaceuticals/GSK (GlaxoSmithKline plc) (NCT04405908), Vaxine Pty
Ltd. (NCT04453852), etc. in Phase 1/2 and Phase 1 trials, especially with different adjuvants (draft
landscape of COVID-19 candidate vaccines).

Additionally, virus-like nanoparticles (VLP) mimicking the viral structural features but devoid
of the genome are also planned to be evaluated in clinical trials. Medicago (NCT04450004)
SARS-CoV-2 VLP (CoVLPs) vaccine adjuvanted with GSK proprietary adjuvant system is under
Phase 1 study (draft landscape of COVID-19 candidate vaccines) [74]. Similarly, many other
VLP-based vaccines are in preclinical trials. A non-invasive oral vaccine for SARS-CoV-2 designed
by Vaxart, aimed at eliciting mucosal immune responses, is an additional novel vaccine candidate in
the pipeline (https://investors.vaxart.com/news-releases/news-release-details/vaxart-announces-fda-
clearance-ind-application-oral-covid-19). Adjuvants are commonly used in protein-based vaccine
formulations that might govern the outcome of responses as well as the protective efficacy of a vaccine.

Exploring the intra-cutaneous route of administration for COVID-19 vaccine, a minimally-invasive
microneedle array (MNA) vaccine delivery platform is also under development. Since the skin is
abundantly rich with immune cells, specifically Langerhans cells, it is a robust target for immunization
to generate potent immune responses [75,76]. SARS-CoV-2 spike protein fused to a trimerization
motif-foldon (derived from phage T4 fibritin) was embedded into MNA for the SARS-CoV-2 vaccine [27].
A similar strategy was also applied previously for the MERS vaccine using its spike protein [27].
Furthermore, virus-specific nAbs were detected for the MERS-MNA vaccine in mice, while the
neutralizing responses are yet to be determined for the SARS-CoV-2-MNA vaccine [27]. Though
MNA-mediated immunization demonstrated potent adaptive responses based on the preclinical
study in mice, the actual efficacy and protection will be obtained from future human clinical trials.
By targeting the skin microenvironment through microneedle array, this platform utilizes physical
adjuvant to generate antigen-specific responses with relatively low doses. Further studies to determine
the potency of adaptive/innate responses in SARS-CoV-2-MNA vaccine recipients in clinical stages
would be highly sought.

3. Insights from Immune Responses Elicited in the Recovered Patients for Vaccine Development

A more in-depth understanding of the immune responses that are elicited in recovering COVID-19
patients might provide useful insights into vaccine design. As a hallmark for an effective vaccine,
the induction of virus-neutralizing antibody responses is often considered inevitable. With the recent
approval of convalescent plasma therapy, the U.S. FDA ignited great interest in its therapeutic potential.
However, several independent studies performed at multiple locations globally have shown that
nAbs titers in the plasma of mildly symptomatic patients recovering from COVID-19 are highly
variable [77–79]. A similar study, based on 68 convalescent SARS-CoV-2 patients, by Robbiani et al.
showed that on average, the nAb titers remained low in these patients, even undetectable in 18% of
them, while only 3% had high nAb titers [80]. Variability in nAbs titers was also reported by Wu et al.,
based on a cohort study of 175 convalescent COVID-19 patients [81]. Additionally, they observed
higher nAb titers in older rather than younger people. Both studies also confirmed the presence

https://investors.vaxart.com/news-releases/news-release-details/vaxart-announces-fda-clearance-ind-application-oral-covid-19
https://investors.vaxart.com/news-releases/news-release-details/vaxart-announces-fda-clearance-ind-application-oral-covid-19
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of spike and RBD-specific antibodies, titers of which directly correlated with virus neutralization.
Interestingly, RBD-specific antibodies were found to be effective even at much lower titers when tested
for virus neutralization in in vitro assays.

Furthermore, RBD-specific B-cell precursors were identified to be commonly prevalent in patients
based on antibody sequencing data [80,82,83]. Studies have also shown that several epitopes were
targeted exclusively in the RBD region for antibody generation in natural infections, and the majority
of such antibodies proved potent in virus neutralization [80]. Other than spike-directed responses,
antibodies targeting the nucleoprotein (NP) of SARS-CoV-2 were also observed with the potential of
virus neutralization in the COVID-19 infected patients [84]. However, expected variability in immune
responses is due to many factors such as age, sex, geographical location, and prevalent strain of the
virus, as reviewed above. Considering wide variations in nAbs titers in the convalescent patients
and a lack of correlation with the disease and the recovery’s mild outcome, it is difficult to say if
vaccine-elicited nAbs would be enough for adequate protection against SARS-CoV-2.

In order to mount a robust immune response against an invading pathogen, both adaptive and
innate arms of the immune system work in conjunction. Though antibodies are traditionally considered
as necessary molecules of immune defense, their generation relies on effective cross-talk with the T-cells.
Griffoni et al. detected SARS-CoV-2-specific CD4+ and CD8+ T-cells in convalescent patients based on
predicted T-cell epitopes spanning the whole viral genome. Spike-specific CD4+ T-cell responses were
exceptionally prevalent in all infected individuals and were notably correlated with the anti-spike RBD
antibody responses [85]. Unlike SARS infections where T-cell responses were predominantly directed
to the viral spike, in SARS-CoV-2 infections, M and N proteins along with a spike were targeted to
elicit T-cell responses.

Furthermore, CD4+ T-cells responses were also directed towards the non-structural antigens such
as; nsp4, ORF3s, ORF7a, nsp12, and ORF8 [85]. This suggests that although spike/RBD is a prime
vaccine target for all current vaccine development approaches, the inclusion of other structural and
non-structural viral antigens might better recapitulate a scenario occurring in the convalescent patients
after natural infection. Overall, T-cell immunity has been positively correlated with improved recovery
in infected patients, and SARS-CoV-2 infected individuals with severe disease have been shown to
undergo T-cell lymphopenia [86]. Some studies have also predicted the occurrence of T-cell exhaustion
in COVID-19 patients [87]. Although virus targeted T-cell immune responses might be beneficial to
consider for vaccine development, T-cell immunopathologies should be monitored in vaccine recipients,
as these undesirable responses have previously been observed for SARS vaccine candidates.

Developing a vaccine that can cross-protect against similar coronaviruses would be an ideal
consideration for the future. SARS shares about 80% of the sequence homology with SARS-CoV-2
at the genomic level, with both viruses utilizing the ACE2 receptor for the host cell entry [24,88,89].
While these commonalities have shown cross-reactive responses as observed by many studies,
cross-protection could not become evident. This cross-reactivity is majorly attributed to the conserved
viral antigenic epitopes and would be worth considering while designing a broadly cross-protective
vaccine against related coronaviruses. However, such attempts should be made cautiously as the
presence of cross-reactive antibodies has also been previously observed to enhance the infection through
antibody-dependent enhancement (ADE) in case of other viral infections, including SARS [18,90].
Thus, despite the urgency of a SARS-CoV-2 vaccine, both the safety and efficacy should be critically
evaluated before licensing a vaccine.

4. Rapid Nature of the Vaccine Development and Its Drawbacks

Owing to the advancements in vaccine development in recent decades, the time-frame for bringing
a vaccine from bench to bedside has considerably shortened. Ebola and zika vaccine development
exemplify this rapid clinical translation [91]. While it is very much possible to develop any vaccine with
a targeted approach in months to years’ time window, rigorous evaluation in large scale human studies
with extended follow-up studies are essential to determine the durability of responses and long-term
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vaccine efficacy. Additionally, many vaccine studies enroll young, healthy volunteers to assess vaccine
efficacy and rapidly progress through vaccine development stages. Due to the urgent need for the
COVID-19 vaccine, if a vaccine is licensed based on healthy people’s safety and efficacy, then the
response of high-risk people (elderly individuals, children, pregnant women, nursing mothers, etc.) to
the vaccine will remain unknown. COVID-19-related immunopathologies observed in severe cases
of SARS-CoV-2 infected individuals pose the greatest risk for the safety of a vaccine [6,8]. Further
determination of risk due to interaction between the vaccine and virus-induced responses after natural
infection in vaccinated individuals will remain a critical focus.

5. Conclusions

We are in the very initial stages of understanding the interaction between the immune system
and SARS-CoV-2 vaccines to mediate protection and/or susceptibility to COVID-19. However, basic
viral immunology knowledge can serve to design a vaccine. Currently, hundreds of COVID-19 vaccine
candidates are in development, and success is unknown. However, owing to the concerted efforts
made around the globe in a short period to end this pandemic, the likelihood of finding a successful
candidate/s is relatively high, especially with the use of a variety of vaccine platforms. Hopefully,
the critical evaluation of vaccine candidates for their safety, efficacy, long-term immunity, and protection
in widespread population groups will soon bring the COVID-19 pandemic to an end.
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COVID-19 Coronavirus disease 2019
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
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APC Antigen-presenting cell
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NIAID National Institute of Allergy and Infectious Diseases
ADCD Antibody-dependent complement deposition
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